Abstract

A linear temperature dependence between -70 °C and +70 °C is reported for the peak stimulated emission cross section of Nd3+ ions in both yttrium aluminum garnet (YAG) and gadolinium scandium gallium garnet (GSGG).

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Xiao, “The design of passively Q-switched solid state lasers,” doctoral dissertation (University of Central Florida and University Microfilms Incorporated, Ann Arbor, Michigan, 1998).
  2. T. Kushida, H. M. Marcos, J. E. Geusic, “Laser transition cross-section and fluorescence branching ratio for Nd3+ in yttrium aluminum garnet,” Phys. Rev. 167, 289–291 (1968).
    [CrossRef]
  3. A. A. Kaminskii, Crystalline Lasers: Physical Processes and operating Schemes (CRC Press, Boca Raton, Fla., 1996).
  4. A. A. Kaminskii, Laser Crystals: Their Physics and Properties (Springer-Verlag, New York, 1981).
  5. R. C. Powell, Physics of Solid-State Laser Materials (AIP Press/Springer, New York, 1998).
  6. S. Singh, R. G. Smith, L. G. Van Uitert, “Stimulated emission cross section and fluorescent quantum efficiency of Nd in yttrium aluminum garnet at room temperature,” Phys. Rev. B 10, 2566–2572 (1974).
    [CrossRef]
  7. W. F. Krupke, M. D. Shinn, J. E. Marion, J. A. Caird, S. E. Stokowski, “Spectroscopic, optical, and thermomechanical properties of neodymium- and chromium-doped gadolinium scandium gallium garnet,” J. Opt. Soc. Am. B 3, 102–113 (1986).
    [CrossRef]
  8. D. S. Sumida, M. S. Mangir, D. A. Rockwell, M. D. Shinn, “Laser-related properties of chromium- and neodymium-doped gadolinium scandium aluminum garnet (Cr:Nd:GSAG),” J. Opt. Soc. Am. B 11, 2066–2078 (1994).
    [CrossRef]
  9. V. A. Buchenkov, I. B. Vitrishchak, V. G. Evdokimova, L. N. Soms, A. I. Stepanov, V. K. Stupnikov, “Temperature dependence of giant pulse amplification in YAG:Nd3+,” Sov. J. Quantum Electron. 11, 702–705 (1981).
    [CrossRef]
  10. B. F. Aull, H. P. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Electron. QE-18, 925–930 (1982).
    [CrossRef]
  11. P. F. Moulton, “Spectroscopic and laser characteristics of Ti:Al2O3,” J. Opt. Soc. Am. B 3, 125–133 (1986).
    [CrossRef]
  12. U. Brauch, J. Muckenschnabel, “Temperature dependence of flashlamp-pumped Nd:YAG and Nd:Cr:GSGG lasers,” Opt. Commun. 73, 62–66 (1989).
    [CrossRef]
  13. G. Armagan, B. DiBartolo, Tunable Solid State Lasers II (Springer-Verlag, Berlin, 1986).
  14. W. Koechner, Solid-State Laser Engineering (Springer-Verlag, New York, 1999)
  15. W. F. Krupke, “Induced-emission cross sections in neodymium laser glasses,” IEEE J. Quantum Electron. QE-10, 450–457 (1974).
    [CrossRef]
  16. I. Garcia-Rubio, J. A. Pardo, R. I. Merino, R. Cases, V. M. Orera, “Concentration and temperature dependence of Nd3+ luminescence in LaGaO3,” J. of Lumin. 86, 147–153 (2000).
    [CrossRef]
  17. Th. Forster, “Transfer mechanisms of electronic excitation energy,” Radiat. Res. Suppl. 2, 326–339 (1960).
    [CrossRef]
  18. D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys. 21, 836–850 (1953).
    [CrossRef]
  19. V. P. Sakun, “Kinetics of energy transfer in a crystal,” Sov. Phys. Solid State 14, 1906–1914 (1973).
  20. T. T. Basiev, E. M. Dianov, A. M. Prokhorov, I. A. Shcherbakov, “Quantum yield of the luminescence radiation emitted from the metastable state of Nd3+ in silicate glasses and Y3Al5O12 crystals,” Sov. Phys. Dokl 19, 288–289 (1974).
  21. T. Y. Fan, J. L. Daneu, “Thermal coefficients of the optical path length and refractive index in YAG,” Appl. Opt. 37, 1635–1637 (1998).
    [CrossRef]
  22. D. C. Brown, “Nonlinear thermal distortion in YAG rod amplifiers,” IEEE J. Quantum Electron. 34, 2383–2392 (1998).
    [CrossRef]
  23. M. Bass, L. S. Weichman, S. R. Vigil, “Predicting the temperature dependence of solid-state lasers,” presented at the International Quantum Electronics Conference/Lasers, Applications, and Technologies Conference, Moscow, Russia, 23 June 2002.
  24. A. L. Denisov, V. G. Ostroumov, Z. S. Saidov, V. A. Smirnov, I. A. Shcherbakov, “Spectral and luminescence properties of Cr and Nd ions in gallium garnet crystals,” J. Opt. Soc. Am. B 3, 95–101 (1986).
    [CrossRef]
  25. C. Pfistner, R. Weber, H. P. Weber, S. Merazzi, R. Gruber, “Thermal beam distortions in end-pumped Nd:YAG, Nd:GSGG, and Nd:YLF rods,” IEEE J. Quantum Electron. 30, 1605–1615 (1994).
    [CrossRef]

2000

I. Garcia-Rubio, J. A. Pardo, R. I. Merino, R. Cases, V. M. Orera, “Concentration and temperature dependence of Nd3+ luminescence in LaGaO3,” J. of Lumin. 86, 147–153 (2000).
[CrossRef]

1998

D. C. Brown, “Nonlinear thermal distortion in YAG rod amplifiers,” IEEE J. Quantum Electron. 34, 2383–2392 (1998).
[CrossRef]

T. Y. Fan, J. L. Daneu, “Thermal coefficients of the optical path length and refractive index in YAG,” Appl. Opt. 37, 1635–1637 (1998).
[CrossRef]

1994

D. S. Sumida, M. S. Mangir, D. A. Rockwell, M. D. Shinn, “Laser-related properties of chromium- and neodymium-doped gadolinium scandium aluminum garnet (Cr:Nd:GSAG),” J. Opt. Soc. Am. B 11, 2066–2078 (1994).
[CrossRef]

C. Pfistner, R. Weber, H. P. Weber, S. Merazzi, R. Gruber, “Thermal beam distortions in end-pumped Nd:YAG, Nd:GSGG, and Nd:YLF rods,” IEEE J. Quantum Electron. 30, 1605–1615 (1994).
[CrossRef]

1989

U. Brauch, J. Muckenschnabel, “Temperature dependence of flashlamp-pumped Nd:YAG and Nd:Cr:GSGG lasers,” Opt. Commun. 73, 62–66 (1989).
[CrossRef]

1986

1982

B. F. Aull, H. P. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Electron. QE-18, 925–930 (1982).
[CrossRef]

1981

V. A. Buchenkov, I. B. Vitrishchak, V. G. Evdokimova, L. N. Soms, A. I. Stepanov, V. K. Stupnikov, “Temperature dependence of giant pulse amplification in YAG:Nd3+,” Sov. J. Quantum Electron. 11, 702–705 (1981).
[CrossRef]

1974

W. F. Krupke, “Induced-emission cross sections in neodymium laser glasses,” IEEE J. Quantum Electron. QE-10, 450–457 (1974).
[CrossRef]

T. T. Basiev, E. M. Dianov, A. M. Prokhorov, I. A. Shcherbakov, “Quantum yield of the luminescence radiation emitted from the metastable state of Nd3+ in silicate glasses and Y3Al5O12 crystals,” Sov. Phys. Dokl 19, 288–289 (1974).

S. Singh, R. G. Smith, L. G. Van Uitert, “Stimulated emission cross section and fluorescent quantum efficiency of Nd in yttrium aluminum garnet at room temperature,” Phys. Rev. B 10, 2566–2572 (1974).
[CrossRef]

1973

V. P. Sakun, “Kinetics of energy transfer in a crystal,” Sov. Phys. Solid State 14, 1906–1914 (1973).

1968

T. Kushida, H. M. Marcos, J. E. Geusic, “Laser transition cross-section and fluorescence branching ratio for Nd3+ in yttrium aluminum garnet,” Phys. Rev. 167, 289–291 (1968).
[CrossRef]

1960

Th. Forster, “Transfer mechanisms of electronic excitation energy,” Radiat. Res. Suppl. 2, 326–339 (1960).
[CrossRef]

1953

D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys. 21, 836–850 (1953).
[CrossRef]

Armagan, G.

G. Armagan, B. DiBartolo, Tunable Solid State Lasers II (Springer-Verlag, Berlin, 1986).

Aull, B. F.

B. F. Aull, H. P. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Electron. QE-18, 925–930 (1982).
[CrossRef]

Basiev, T. T.

T. T. Basiev, E. M. Dianov, A. M. Prokhorov, I. A. Shcherbakov, “Quantum yield of the luminescence radiation emitted from the metastable state of Nd3+ in silicate glasses and Y3Al5O12 crystals,” Sov. Phys. Dokl 19, 288–289 (1974).

Bass, M.

M. Bass, L. S. Weichman, S. R. Vigil, “Predicting the temperature dependence of solid-state lasers,” presented at the International Quantum Electronics Conference/Lasers, Applications, and Technologies Conference, Moscow, Russia, 23 June 2002.

Brauch, U.

U. Brauch, J. Muckenschnabel, “Temperature dependence of flashlamp-pumped Nd:YAG and Nd:Cr:GSGG lasers,” Opt. Commun. 73, 62–66 (1989).
[CrossRef]

Brown, D. C.

D. C. Brown, “Nonlinear thermal distortion in YAG rod amplifiers,” IEEE J. Quantum Electron. 34, 2383–2392 (1998).
[CrossRef]

Buchenkov, V. A.

V. A. Buchenkov, I. B. Vitrishchak, V. G. Evdokimova, L. N. Soms, A. I. Stepanov, V. K. Stupnikov, “Temperature dependence of giant pulse amplification in YAG:Nd3+,” Sov. J. Quantum Electron. 11, 702–705 (1981).
[CrossRef]

Caird, J. A.

Cases, R.

I. Garcia-Rubio, J. A. Pardo, R. I. Merino, R. Cases, V. M. Orera, “Concentration and temperature dependence of Nd3+ luminescence in LaGaO3,” J. of Lumin. 86, 147–153 (2000).
[CrossRef]

Daneu, J. L.

Denisov, A. L.

Dexter, D. L.

D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys. 21, 836–850 (1953).
[CrossRef]

Dianov, E. M.

T. T. Basiev, E. M. Dianov, A. M. Prokhorov, I. A. Shcherbakov, “Quantum yield of the luminescence radiation emitted from the metastable state of Nd3+ in silicate glasses and Y3Al5O12 crystals,” Sov. Phys. Dokl 19, 288–289 (1974).

DiBartolo, B.

G. Armagan, B. DiBartolo, Tunable Solid State Lasers II (Springer-Verlag, Berlin, 1986).

Evdokimova, V. G.

V. A. Buchenkov, I. B. Vitrishchak, V. G. Evdokimova, L. N. Soms, A. I. Stepanov, V. K. Stupnikov, “Temperature dependence of giant pulse amplification in YAG:Nd3+,” Sov. J. Quantum Electron. 11, 702–705 (1981).
[CrossRef]

Fan, T. Y.

Forster, Th.

Th. Forster, “Transfer mechanisms of electronic excitation energy,” Radiat. Res. Suppl. 2, 326–339 (1960).
[CrossRef]

Garcia-Rubio, I.

I. Garcia-Rubio, J. A. Pardo, R. I. Merino, R. Cases, V. M. Orera, “Concentration and temperature dependence of Nd3+ luminescence in LaGaO3,” J. of Lumin. 86, 147–153 (2000).
[CrossRef]

Geusic, J. E.

T. Kushida, H. M. Marcos, J. E. Geusic, “Laser transition cross-section and fluorescence branching ratio for Nd3+ in yttrium aluminum garnet,” Phys. Rev. 167, 289–291 (1968).
[CrossRef]

Gruber, R.

C. Pfistner, R. Weber, H. P. Weber, S. Merazzi, R. Gruber, “Thermal beam distortions in end-pumped Nd:YAG, Nd:GSGG, and Nd:YLF rods,” IEEE J. Quantum Electron. 30, 1605–1615 (1994).
[CrossRef]

Jenssen, H. P.

B. F. Aull, H. P. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Electron. QE-18, 925–930 (1982).
[CrossRef]

Kaminskii, A. A.

A. A. Kaminskii, Crystalline Lasers: Physical Processes and operating Schemes (CRC Press, Boca Raton, Fla., 1996).

A. A. Kaminskii, Laser Crystals: Their Physics and Properties (Springer-Verlag, New York, 1981).

Koechner, W.

W. Koechner, Solid-State Laser Engineering (Springer-Verlag, New York, 1999)

Krupke, W. F.

Kushida, T.

T. Kushida, H. M. Marcos, J. E. Geusic, “Laser transition cross-section and fluorescence branching ratio for Nd3+ in yttrium aluminum garnet,” Phys. Rev. 167, 289–291 (1968).
[CrossRef]

Mangir, M. S.

Marcos, H. M.

T. Kushida, H. M. Marcos, J. E. Geusic, “Laser transition cross-section and fluorescence branching ratio for Nd3+ in yttrium aluminum garnet,” Phys. Rev. 167, 289–291 (1968).
[CrossRef]

Marion, J. E.

Merazzi, S.

C. Pfistner, R. Weber, H. P. Weber, S. Merazzi, R. Gruber, “Thermal beam distortions in end-pumped Nd:YAG, Nd:GSGG, and Nd:YLF rods,” IEEE J. Quantum Electron. 30, 1605–1615 (1994).
[CrossRef]

Merino, R. I.

I. Garcia-Rubio, J. A. Pardo, R. I. Merino, R. Cases, V. M. Orera, “Concentration and temperature dependence of Nd3+ luminescence in LaGaO3,” J. of Lumin. 86, 147–153 (2000).
[CrossRef]

Moulton, P. F.

Muckenschnabel, J.

U. Brauch, J. Muckenschnabel, “Temperature dependence of flashlamp-pumped Nd:YAG and Nd:Cr:GSGG lasers,” Opt. Commun. 73, 62–66 (1989).
[CrossRef]

Orera, V. M.

I. Garcia-Rubio, J. A. Pardo, R. I. Merino, R. Cases, V. M. Orera, “Concentration and temperature dependence of Nd3+ luminescence in LaGaO3,” J. of Lumin. 86, 147–153 (2000).
[CrossRef]

Ostroumov, V. G.

Pardo, J. A.

I. Garcia-Rubio, J. A. Pardo, R. I. Merino, R. Cases, V. M. Orera, “Concentration and temperature dependence of Nd3+ luminescence in LaGaO3,” J. of Lumin. 86, 147–153 (2000).
[CrossRef]

Pfistner, C.

C. Pfistner, R. Weber, H. P. Weber, S. Merazzi, R. Gruber, “Thermal beam distortions in end-pumped Nd:YAG, Nd:GSGG, and Nd:YLF rods,” IEEE J. Quantum Electron. 30, 1605–1615 (1994).
[CrossRef]

Powell, R. C.

R. C. Powell, Physics of Solid-State Laser Materials (AIP Press/Springer, New York, 1998).

Prokhorov, A. M.

T. T. Basiev, E. M. Dianov, A. M. Prokhorov, I. A. Shcherbakov, “Quantum yield of the luminescence radiation emitted from the metastable state of Nd3+ in silicate glasses and Y3Al5O12 crystals,” Sov. Phys. Dokl 19, 288–289 (1974).

Rockwell, D. A.

Saidov, Z. S.

Sakun, V. P.

V. P. Sakun, “Kinetics of energy transfer in a crystal,” Sov. Phys. Solid State 14, 1906–1914 (1973).

Shcherbakov, I. A.

A. L. Denisov, V. G. Ostroumov, Z. S. Saidov, V. A. Smirnov, I. A. Shcherbakov, “Spectral and luminescence properties of Cr and Nd ions in gallium garnet crystals,” J. Opt. Soc. Am. B 3, 95–101 (1986).
[CrossRef]

T. T. Basiev, E. M. Dianov, A. M. Prokhorov, I. A. Shcherbakov, “Quantum yield of the luminescence radiation emitted from the metastable state of Nd3+ in silicate glasses and Y3Al5O12 crystals,” Sov. Phys. Dokl 19, 288–289 (1974).

Shinn, M. D.

Singh, S.

S. Singh, R. G. Smith, L. G. Van Uitert, “Stimulated emission cross section and fluorescent quantum efficiency of Nd in yttrium aluminum garnet at room temperature,” Phys. Rev. B 10, 2566–2572 (1974).
[CrossRef]

Smirnov, V. A.

Smith, R. G.

S. Singh, R. G. Smith, L. G. Van Uitert, “Stimulated emission cross section and fluorescent quantum efficiency of Nd in yttrium aluminum garnet at room temperature,” Phys. Rev. B 10, 2566–2572 (1974).
[CrossRef]

Soms, L. N.

V. A. Buchenkov, I. B. Vitrishchak, V. G. Evdokimova, L. N. Soms, A. I. Stepanov, V. K. Stupnikov, “Temperature dependence of giant pulse amplification in YAG:Nd3+,” Sov. J. Quantum Electron. 11, 702–705 (1981).
[CrossRef]

Stepanov, A. I.

V. A. Buchenkov, I. B. Vitrishchak, V. G. Evdokimova, L. N. Soms, A. I. Stepanov, V. K. Stupnikov, “Temperature dependence of giant pulse amplification in YAG:Nd3+,” Sov. J. Quantum Electron. 11, 702–705 (1981).
[CrossRef]

Stokowski, S. E.

Stupnikov, V. K.

V. A. Buchenkov, I. B. Vitrishchak, V. G. Evdokimova, L. N. Soms, A. I. Stepanov, V. K. Stupnikov, “Temperature dependence of giant pulse amplification in YAG:Nd3+,” Sov. J. Quantum Electron. 11, 702–705 (1981).
[CrossRef]

Sumida, D. S.

Van Uitert, L. G.

S. Singh, R. G. Smith, L. G. Van Uitert, “Stimulated emission cross section and fluorescent quantum efficiency of Nd in yttrium aluminum garnet at room temperature,” Phys. Rev. B 10, 2566–2572 (1974).
[CrossRef]

Vigil, S. R.

M. Bass, L. S. Weichman, S. R. Vigil, “Predicting the temperature dependence of solid-state lasers,” presented at the International Quantum Electronics Conference/Lasers, Applications, and Technologies Conference, Moscow, Russia, 23 June 2002.

Vitrishchak, I. B.

V. A. Buchenkov, I. B. Vitrishchak, V. G. Evdokimova, L. N. Soms, A. I. Stepanov, V. K. Stupnikov, “Temperature dependence of giant pulse amplification in YAG:Nd3+,” Sov. J. Quantum Electron. 11, 702–705 (1981).
[CrossRef]

Weber, H. P.

C. Pfistner, R. Weber, H. P. Weber, S. Merazzi, R. Gruber, “Thermal beam distortions in end-pumped Nd:YAG, Nd:GSGG, and Nd:YLF rods,” IEEE J. Quantum Electron. 30, 1605–1615 (1994).
[CrossRef]

Weber, R.

C. Pfistner, R. Weber, H. P. Weber, S. Merazzi, R. Gruber, “Thermal beam distortions in end-pumped Nd:YAG, Nd:GSGG, and Nd:YLF rods,” IEEE J. Quantum Electron. 30, 1605–1615 (1994).
[CrossRef]

Weichman, L. S.

M. Bass, L. S. Weichman, S. R. Vigil, “Predicting the temperature dependence of solid-state lasers,” presented at the International Quantum Electronics Conference/Lasers, Applications, and Technologies Conference, Moscow, Russia, 23 June 2002.

Xiao, G.

G. Xiao, “The design of passively Q-switched solid state lasers,” doctoral dissertation (University of Central Florida and University Microfilms Incorporated, Ann Arbor, Michigan, 1998).

Appl. Opt.

IEEE J. Quantum Electron.

C. Pfistner, R. Weber, H. P. Weber, S. Merazzi, R. Gruber, “Thermal beam distortions in end-pumped Nd:YAG, Nd:GSGG, and Nd:YLF rods,” IEEE J. Quantum Electron. 30, 1605–1615 (1994).
[CrossRef]

W. F. Krupke, “Induced-emission cross sections in neodymium laser glasses,” IEEE J. Quantum Electron. QE-10, 450–457 (1974).
[CrossRef]

B. F. Aull, H. P. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Electron. QE-18, 925–930 (1982).
[CrossRef]

D. C. Brown, “Nonlinear thermal distortion in YAG rod amplifiers,” IEEE J. Quantum Electron. 34, 2383–2392 (1998).
[CrossRef]

J. Chem. Phys.

D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys. 21, 836–850 (1953).
[CrossRef]

J. of Lumin.

I. Garcia-Rubio, J. A. Pardo, R. I. Merino, R. Cases, V. M. Orera, “Concentration and temperature dependence of Nd3+ luminescence in LaGaO3,” J. of Lumin. 86, 147–153 (2000).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Commun.

U. Brauch, J. Muckenschnabel, “Temperature dependence of flashlamp-pumped Nd:YAG and Nd:Cr:GSGG lasers,” Opt. Commun. 73, 62–66 (1989).
[CrossRef]

Phys. Rev.

T. Kushida, H. M. Marcos, J. E. Geusic, “Laser transition cross-section and fluorescence branching ratio for Nd3+ in yttrium aluminum garnet,” Phys. Rev. 167, 289–291 (1968).
[CrossRef]

Phys. Rev. B

S. Singh, R. G. Smith, L. G. Van Uitert, “Stimulated emission cross section and fluorescent quantum efficiency of Nd in yttrium aluminum garnet at room temperature,” Phys. Rev. B 10, 2566–2572 (1974).
[CrossRef]

Radiat. Res. Suppl.

Th. Forster, “Transfer mechanisms of electronic excitation energy,” Radiat. Res. Suppl. 2, 326–339 (1960).
[CrossRef]

Sov. J. Quantum Electron.

V. A. Buchenkov, I. B. Vitrishchak, V. G. Evdokimova, L. N. Soms, A. I. Stepanov, V. K. Stupnikov, “Temperature dependence of giant pulse amplification in YAG:Nd3+,” Sov. J. Quantum Electron. 11, 702–705 (1981).
[CrossRef]

Sov. Phys. Dokl

T. T. Basiev, E. M. Dianov, A. M. Prokhorov, I. A. Shcherbakov, “Quantum yield of the luminescence radiation emitted from the metastable state of Nd3+ in silicate glasses and Y3Al5O12 crystals,” Sov. Phys. Dokl 19, 288–289 (1974).

Sov. Phys. Solid State

V. P. Sakun, “Kinetics of energy transfer in a crystal,” Sov. Phys. Solid State 14, 1906–1914 (1973).

Other

M. Bass, L. S. Weichman, S. R. Vigil, “Predicting the temperature dependence of solid-state lasers,” presented at the International Quantum Electronics Conference/Lasers, Applications, and Technologies Conference, Moscow, Russia, 23 June 2002.

G. Xiao, “The design of passively Q-switched solid state lasers,” doctoral dissertation (University of Central Florida and University Microfilms Incorporated, Ann Arbor, Michigan, 1998).

G. Armagan, B. DiBartolo, Tunable Solid State Lasers II (Springer-Verlag, Berlin, 1986).

W. Koechner, Solid-State Laser Engineering (Springer-Verlag, New York, 1999)

A. A. Kaminskii, Crystalline Lasers: Physical Processes and operating Schemes (CRC Press, Boca Raton, Fla., 1996).

A. A. Kaminskii, Laser Crystals: Their Physics and Properties (Springer-Verlag, New York, 1981).

R. C. Powell, Physics of Solid-State Laser Materials (AIP Press/Springer, New York, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Experimental setup for the measurement of the emission spectra of the Nd3+ ion 4F3/2 state at various temperatures.

Fig. 2
Fig. 2

Emission signal detected at 1.06 µm after excitation by a 5-ns pulse at 804 nm at room temperature for the 1% Nd:YAG sample. The experimental data are represented by a very thin curve. A fit to the Forster-Dexter model is plotted with a thick dashed curve. It overlays the data perfectly and yields τrad = 250 µs. An exponential decay with a lifetime of 230 µs is also plotted with a thin dotted curve. It fits the data at late times but not at early times.

Fig. 3
Fig. 3

Emission cross section of the transitions originating from the 4F3/2 level in 1% Nd3+:YAG at room temperature.

Fig. 4
Fig. 4

Energy-level diagram of Nd3+ in YAG taken from Ref. 3. Also indicated are the strongest transitions for ground-state absorption, and for emission at 1.064 µm.

Fig. 5
Fig. 5

Peak effective stimulated emission cross section at 1.064 µm of 1% Nd:YAG as a function of temperature. The dashed curve is a linear fit that gives σem = (2.35 – 3.7 × 10-3 T) × 10-19 cm2, with T in °C.

Fig. 6
Fig. 6

Emission signal detected at 1.06 µm after excitation by a 5-ns pulse at 804 nm at room temperature for the Nd:GSGG sample. The experimental data are represented by a very thin curve. A fit to the Forster-Dexter model is plotted with a thick dashed curve. It overlays the data perfectly and yields τrad = 265 µs. An exponential decay with lifetime 255 µs is also plotted with a thin dotted curve. It fits the data at late times but not at early times.

Fig. 7
Fig. 7

Emission cross section of the transitions originating from the 4F3/2 level in 1% Nd3+:GSGG at room temperature.

Fig. 8
Fig. 8

Peak effective stimulated emission cross section at 1.061 µm of 1% Nd:GSGG as a function of temperature. The dashed curve is a linear fit that gives σem = (1.66 – 3.3 × 10-3 T) × 10-19 cm2, with T in °C.

Tables (1)

Tables Icon

Table 1 Branching Ratio of Nd3+ in YAG and in GSGG Measured at Room Temperature

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

σIK, λ=18πλ5ηβIKn2cτIλIK Iλλdλ,

Metrics