Abstract

Elimination of a back-reflected TE mode traveling in a TM-mode optical isolator was investigated. The optical isolator had a Mach-Zehnder interferometer that included a polarization-dependent reciprocal phase shifter in one of the arms. The reciprocal phase shift was achieved by an optical path difference between the two arms. By adjustment of the length of the reciprocal phase shifter, the interferometer prevented the back-reflected TE mode from coupling into an input port of the isolator. An extinction ratio of more than 18 dB was obtained against the back-reflected TE mode at a wavelength of 1.55 µm.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Mizumoto, S. Mashimo, T. Ida, Y. Naito, “In-plane magnetized rare earth iron garnet for a waveguide optical isolator employing nonreciprocal phase shift,” IEEE Trans. Magn. 29, 3417–3419 (1993).
    [CrossRef]
  2. J. P. Castéra, G. Hepner, “Isolator in integrated optics using the Faraday and Cotton-Mouton effects,” IEEE Trans. Magn. MAG-13, 1583–1585 (1977).
    [CrossRef]
  3. K. Ando, T. Okoshi, N. Koshizuka, “Waveguide magneto-optic isolator fabricated by laser annealing,” Appl. Phys. Lett. 53, 4–6 (1988).
    [CrossRef]
  4. H. Yokoi, T. Mizumoto, T. Takano, N. Shinjo, “Demonstration of an optical isolator by use of a nonreciprocal phase shift,” Appl. Opt. 38, 7409–7413 (1999).
    [CrossRef]
  5. J. Fujita, M. Levy, R. U. Ahmad, R. M. Osgood, L. Wilkens, H. Dötsch, “Waveguide optical isolator based on Mach-Zehnder interferometer,” Appl. Phys. Lett. 76, 2158–2160 (2000).
    [CrossRef]
  6. H. Yokoi, T. Mizumoto, N. Shinjo, N. Futakuchi, Y. Nakano, “Demonstration of an optical isolator with a semiconductor guiding layer that was obtained by use of a nonreciprocal phase shift,” Appl. Opt. 39, 6158–6164 (2000).
    [CrossRef]
  7. H. Yokoi, T. Mizumoto, M. Shimizu, T. Waniishi, N. Futakuchi, N. Kaida, Y. Nakano, “Analysis of GaInAsP surfaces by contact-angle measurement for wafer direct bonding with garnet crystals,” Jpn. J. Appl. Phys. 38, 4780–4783 (1999).
    [CrossRef]
  8. Y. Okamura, H. Inuzuka, T. Kikuchi, S. Yamamoto, “Nonreciprocal propagation in magnetooptic YIG rib waveguides,” J. Lightwave Technol. LT-4, 711–714 (1986).
    [CrossRef]
  9. T. Shintaku, T. Uno, “Preparation of Ce-substituted yttrium iron garnet films for magneto-optic waveguide devices,” Jpn. J. Appl. Phys. 35, 4689–4691 (1996).
    [CrossRef]
  10. N. Bahlmann, M. Lohmeyer, H. Dötsch, P. Hertel, “Integrated magneto-optic Mach-Zehnder interferometer isolator for TE modes,” Electron. Lett. 34, 2122–2123 (1998).
    [CrossRef]
  11. T. Mizumoto, H. Chihara, N. Tokui, Y. Naito, “Verification of waveguide-type optical circulator operation,” Electron. Lett. 26, 199–200 (1990).
    [CrossRef]

2000 (2)

J. Fujita, M. Levy, R. U. Ahmad, R. M. Osgood, L. Wilkens, H. Dötsch, “Waveguide optical isolator based on Mach-Zehnder interferometer,” Appl. Phys. Lett. 76, 2158–2160 (2000).
[CrossRef]

H. Yokoi, T. Mizumoto, N. Shinjo, N. Futakuchi, Y. Nakano, “Demonstration of an optical isolator with a semiconductor guiding layer that was obtained by use of a nonreciprocal phase shift,” Appl. Opt. 39, 6158–6164 (2000).
[CrossRef]

1999 (2)

H. Yokoi, T. Mizumoto, M. Shimizu, T. Waniishi, N. Futakuchi, N. Kaida, Y. Nakano, “Analysis of GaInAsP surfaces by contact-angle measurement for wafer direct bonding with garnet crystals,” Jpn. J. Appl. Phys. 38, 4780–4783 (1999).
[CrossRef]

H. Yokoi, T. Mizumoto, T. Takano, N. Shinjo, “Demonstration of an optical isolator by use of a nonreciprocal phase shift,” Appl. Opt. 38, 7409–7413 (1999).
[CrossRef]

1998 (1)

N. Bahlmann, M. Lohmeyer, H. Dötsch, P. Hertel, “Integrated magneto-optic Mach-Zehnder interferometer isolator for TE modes,” Electron. Lett. 34, 2122–2123 (1998).
[CrossRef]

1996 (1)

T. Shintaku, T. Uno, “Preparation of Ce-substituted yttrium iron garnet films for magneto-optic waveguide devices,” Jpn. J. Appl. Phys. 35, 4689–4691 (1996).
[CrossRef]

1993 (1)

T. Mizumoto, S. Mashimo, T. Ida, Y. Naito, “In-plane magnetized rare earth iron garnet for a waveguide optical isolator employing nonreciprocal phase shift,” IEEE Trans. Magn. 29, 3417–3419 (1993).
[CrossRef]

1990 (1)

T. Mizumoto, H. Chihara, N. Tokui, Y. Naito, “Verification of waveguide-type optical circulator operation,” Electron. Lett. 26, 199–200 (1990).
[CrossRef]

1988 (1)

K. Ando, T. Okoshi, N. Koshizuka, “Waveguide magneto-optic isolator fabricated by laser annealing,” Appl. Phys. Lett. 53, 4–6 (1988).
[CrossRef]

1986 (1)

Y. Okamura, H. Inuzuka, T. Kikuchi, S. Yamamoto, “Nonreciprocal propagation in magnetooptic YIG rib waveguides,” J. Lightwave Technol. LT-4, 711–714 (1986).
[CrossRef]

1977 (1)

J. P. Castéra, G. Hepner, “Isolator in integrated optics using the Faraday and Cotton-Mouton effects,” IEEE Trans. Magn. MAG-13, 1583–1585 (1977).
[CrossRef]

Ahmad, R. U.

J. Fujita, M. Levy, R. U. Ahmad, R. M. Osgood, L. Wilkens, H. Dötsch, “Waveguide optical isolator based on Mach-Zehnder interferometer,” Appl. Phys. Lett. 76, 2158–2160 (2000).
[CrossRef]

Ando, K.

K. Ando, T. Okoshi, N. Koshizuka, “Waveguide magneto-optic isolator fabricated by laser annealing,” Appl. Phys. Lett. 53, 4–6 (1988).
[CrossRef]

Bahlmann, N.

N. Bahlmann, M. Lohmeyer, H. Dötsch, P. Hertel, “Integrated magneto-optic Mach-Zehnder interferometer isolator for TE modes,” Electron. Lett. 34, 2122–2123 (1998).
[CrossRef]

Castéra, J. P.

J. P. Castéra, G. Hepner, “Isolator in integrated optics using the Faraday and Cotton-Mouton effects,” IEEE Trans. Magn. MAG-13, 1583–1585 (1977).
[CrossRef]

Chihara, H.

T. Mizumoto, H. Chihara, N. Tokui, Y. Naito, “Verification of waveguide-type optical circulator operation,” Electron. Lett. 26, 199–200 (1990).
[CrossRef]

Dötsch, H.

J. Fujita, M. Levy, R. U. Ahmad, R. M. Osgood, L. Wilkens, H. Dötsch, “Waveguide optical isolator based on Mach-Zehnder interferometer,” Appl. Phys. Lett. 76, 2158–2160 (2000).
[CrossRef]

N. Bahlmann, M. Lohmeyer, H. Dötsch, P. Hertel, “Integrated magneto-optic Mach-Zehnder interferometer isolator for TE modes,” Electron. Lett. 34, 2122–2123 (1998).
[CrossRef]

Fujita, J.

J. Fujita, M. Levy, R. U. Ahmad, R. M. Osgood, L. Wilkens, H. Dötsch, “Waveguide optical isolator based on Mach-Zehnder interferometer,” Appl. Phys. Lett. 76, 2158–2160 (2000).
[CrossRef]

Futakuchi, N.

H. Yokoi, T. Mizumoto, N. Shinjo, N. Futakuchi, Y. Nakano, “Demonstration of an optical isolator with a semiconductor guiding layer that was obtained by use of a nonreciprocal phase shift,” Appl. Opt. 39, 6158–6164 (2000).
[CrossRef]

H. Yokoi, T. Mizumoto, M. Shimizu, T. Waniishi, N. Futakuchi, N. Kaida, Y. Nakano, “Analysis of GaInAsP surfaces by contact-angle measurement for wafer direct bonding with garnet crystals,” Jpn. J. Appl. Phys. 38, 4780–4783 (1999).
[CrossRef]

Hepner, G.

J. P. Castéra, G. Hepner, “Isolator in integrated optics using the Faraday and Cotton-Mouton effects,” IEEE Trans. Magn. MAG-13, 1583–1585 (1977).
[CrossRef]

Hertel, P.

N. Bahlmann, M. Lohmeyer, H. Dötsch, P. Hertel, “Integrated magneto-optic Mach-Zehnder interferometer isolator for TE modes,” Electron. Lett. 34, 2122–2123 (1998).
[CrossRef]

Ida, T.

T. Mizumoto, S. Mashimo, T. Ida, Y. Naito, “In-plane magnetized rare earth iron garnet for a waveguide optical isolator employing nonreciprocal phase shift,” IEEE Trans. Magn. 29, 3417–3419 (1993).
[CrossRef]

Inuzuka, H.

Y. Okamura, H. Inuzuka, T. Kikuchi, S. Yamamoto, “Nonreciprocal propagation in magnetooptic YIG rib waveguides,” J. Lightwave Technol. LT-4, 711–714 (1986).
[CrossRef]

Kaida, N.

H. Yokoi, T. Mizumoto, M. Shimizu, T. Waniishi, N. Futakuchi, N. Kaida, Y. Nakano, “Analysis of GaInAsP surfaces by contact-angle measurement for wafer direct bonding with garnet crystals,” Jpn. J. Appl. Phys. 38, 4780–4783 (1999).
[CrossRef]

Kikuchi, T.

Y. Okamura, H. Inuzuka, T. Kikuchi, S. Yamamoto, “Nonreciprocal propagation in magnetooptic YIG rib waveguides,” J. Lightwave Technol. LT-4, 711–714 (1986).
[CrossRef]

Koshizuka, N.

K. Ando, T. Okoshi, N. Koshizuka, “Waveguide magneto-optic isolator fabricated by laser annealing,” Appl. Phys. Lett. 53, 4–6 (1988).
[CrossRef]

Levy, M.

J. Fujita, M. Levy, R. U. Ahmad, R. M. Osgood, L. Wilkens, H. Dötsch, “Waveguide optical isolator based on Mach-Zehnder interferometer,” Appl. Phys. Lett. 76, 2158–2160 (2000).
[CrossRef]

Lohmeyer, M.

N. Bahlmann, M. Lohmeyer, H. Dötsch, P. Hertel, “Integrated magneto-optic Mach-Zehnder interferometer isolator for TE modes,” Electron. Lett. 34, 2122–2123 (1998).
[CrossRef]

Mashimo, S.

T. Mizumoto, S. Mashimo, T. Ida, Y. Naito, “In-plane magnetized rare earth iron garnet for a waveguide optical isolator employing nonreciprocal phase shift,” IEEE Trans. Magn. 29, 3417–3419 (1993).
[CrossRef]

Mizumoto, T.

H. Yokoi, T. Mizumoto, N. Shinjo, N. Futakuchi, Y. Nakano, “Demonstration of an optical isolator with a semiconductor guiding layer that was obtained by use of a nonreciprocal phase shift,” Appl. Opt. 39, 6158–6164 (2000).
[CrossRef]

H. Yokoi, T. Mizumoto, M. Shimizu, T. Waniishi, N. Futakuchi, N. Kaida, Y. Nakano, “Analysis of GaInAsP surfaces by contact-angle measurement for wafer direct bonding with garnet crystals,” Jpn. J. Appl. Phys. 38, 4780–4783 (1999).
[CrossRef]

H. Yokoi, T. Mizumoto, T. Takano, N. Shinjo, “Demonstration of an optical isolator by use of a nonreciprocal phase shift,” Appl. Opt. 38, 7409–7413 (1999).
[CrossRef]

T. Mizumoto, S. Mashimo, T. Ida, Y. Naito, “In-plane magnetized rare earth iron garnet for a waveguide optical isolator employing nonreciprocal phase shift,” IEEE Trans. Magn. 29, 3417–3419 (1993).
[CrossRef]

T. Mizumoto, H. Chihara, N. Tokui, Y. Naito, “Verification of waveguide-type optical circulator operation,” Electron. Lett. 26, 199–200 (1990).
[CrossRef]

Naito, Y.

T. Mizumoto, S. Mashimo, T. Ida, Y. Naito, “In-plane magnetized rare earth iron garnet for a waveguide optical isolator employing nonreciprocal phase shift,” IEEE Trans. Magn. 29, 3417–3419 (1993).
[CrossRef]

T. Mizumoto, H. Chihara, N. Tokui, Y. Naito, “Verification of waveguide-type optical circulator operation,” Electron. Lett. 26, 199–200 (1990).
[CrossRef]

Nakano, Y.

H. Yokoi, T. Mizumoto, N. Shinjo, N. Futakuchi, Y. Nakano, “Demonstration of an optical isolator with a semiconductor guiding layer that was obtained by use of a nonreciprocal phase shift,” Appl. Opt. 39, 6158–6164 (2000).
[CrossRef]

H. Yokoi, T. Mizumoto, M. Shimizu, T. Waniishi, N. Futakuchi, N. Kaida, Y. Nakano, “Analysis of GaInAsP surfaces by contact-angle measurement for wafer direct bonding with garnet crystals,” Jpn. J. Appl. Phys. 38, 4780–4783 (1999).
[CrossRef]

Okamura, Y.

Y. Okamura, H. Inuzuka, T. Kikuchi, S. Yamamoto, “Nonreciprocal propagation in magnetooptic YIG rib waveguides,” J. Lightwave Technol. LT-4, 711–714 (1986).
[CrossRef]

Okoshi, T.

K. Ando, T. Okoshi, N. Koshizuka, “Waveguide magneto-optic isolator fabricated by laser annealing,” Appl. Phys. Lett. 53, 4–6 (1988).
[CrossRef]

Osgood, R. M.

J. Fujita, M. Levy, R. U. Ahmad, R. M. Osgood, L. Wilkens, H. Dötsch, “Waveguide optical isolator based on Mach-Zehnder interferometer,” Appl. Phys. Lett. 76, 2158–2160 (2000).
[CrossRef]

Shimizu, M.

H. Yokoi, T. Mizumoto, M. Shimizu, T. Waniishi, N. Futakuchi, N. Kaida, Y. Nakano, “Analysis of GaInAsP surfaces by contact-angle measurement for wafer direct bonding with garnet crystals,” Jpn. J. Appl. Phys. 38, 4780–4783 (1999).
[CrossRef]

Shinjo, N.

Shintaku, T.

T. Shintaku, T. Uno, “Preparation of Ce-substituted yttrium iron garnet films for magneto-optic waveguide devices,” Jpn. J. Appl. Phys. 35, 4689–4691 (1996).
[CrossRef]

Takano, T.

Tokui, N.

T. Mizumoto, H. Chihara, N. Tokui, Y. Naito, “Verification of waveguide-type optical circulator operation,” Electron. Lett. 26, 199–200 (1990).
[CrossRef]

Uno, T.

T. Shintaku, T. Uno, “Preparation of Ce-substituted yttrium iron garnet films for magneto-optic waveguide devices,” Jpn. J. Appl. Phys. 35, 4689–4691 (1996).
[CrossRef]

Waniishi, T.

H. Yokoi, T. Mizumoto, M. Shimizu, T. Waniishi, N. Futakuchi, N. Kaida, Y. Nakano, “Analysis of GaInAsP surfaces by contact-angle measurement for wafer direct bonding with garnet crystals,” Jpn. J. Appl. Phys. 38, 4780–4783 (1999).
[CrossRef]

Wilkens, L.

J. Fujita, M. Levy, R. U. Ahmad, R. M. Osgood, L. Wilkens, H. Dötsch, “Waveguide optical isolator based on Mach-Zehnder interferometer,” Appl. Phys. Lett. 76, 2158–2160 (2000).
[CrossRef]

Yamamoto, S.

Y. Okamura, H. Inuzuka, T. Kikuchi, S. Yamamoto, “Nonreciprocal propagation in magnetooptic YIG rib waveguides,” J. Lightwave Technol. LT-4, 711–714 (1986).
[CrossRef]

Yokoi, H.

Appl. Opt. (2)

Appl. Phys. Lett. (2)

J. Fujita, M. Levy, R. U. Ahmad, R. M. Osgood, L. Wilkens, H. Dötsch, “Waveguide optical isolator based on Mach-Zehnder interferometer,” Appl. Phys. Lett. 76, 2158–2160 (2000).
[CrossRef]

K. Ando, T. Okoshi, N. Koshizuka, “Waveguide magneto-optic isolator fabricated by laser annealing,” Appl. Phys. Lett. 53, 4–6 (1988).
[CrossRef]

Electron. Lett. (2)

N. Bahlmann, M. Lohmeyer, H. Dötsch, P. Hertel, “Integrated magneto-optic Mach-Zehnder interferometer isolator for TE modes,” Electron. Lett. 34, 2122–2123 (1998).
[CrossRef]

T. Mizumoto, H. Chihara, N. Tokui, Y. Naito, “Verification of waveguide-type optical circulator operation,” Electron. Lett. 26, 199–200 (1990).
[CrossRef]

IEEE Trans. Magn. (2)

T. Mizumoto, S. Mashimo, T. Ida, Y. Naito, “In-plane magnetized rare earth iron garnet for a waveguide optical isolator employing nonreciprocal phase shift,” IEEE Trans. Magn. 29, 3417–3419 (1993).
[CrossRef]

J. P. Castéra, G. Hepner, “Isolator in integrated optics using the Faraday and Cotton-Mouton effects,” IEEE Trans. Magn. MAG-13, 1583–1585 (1977).
[CrossRef]

J. Lightwave Technol. (1)

Y. Okamura, H. Inuzuka, T. Kikuchi, S. Yamamoto, “Nonreciprocal propagation in magnetooptic YIG rib waveguides,” J. Lightwave Technol. LT-4, 711–714 (1986).
[CrossRef]

Jpn. J. Appl. Phys. (2)

T. Shintaku, T. Uno, “Preparation of Ce-substituted yttrium iron garnet films for magneto-optic waveguide devices,” Jpn. J. Appl. Phys. 35, 4689–4691 (1996).
[CrossRef]

H. Yokoi, T. Mizumoto, M. Shimizu, T. Waniishi, N. Futakuchi, N. Kaida, Y. Nakano, “Analysis of GaInAsP surfaces by contact-angle measurement for wafer direct bonding with garnet crystals,” Jpn. J. Appl. Phys. 38, 4780–4783 (1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Optical isolator employing a nonreciprocal phase shift. A reciprocal phase shifter and a nonreciprocal phase shifter are included in an optical interferometer.

Fig. 2
Fig. 2

Schematic diagram of an optical interferometer with L 0-long reciprocal phase shifter for (a) the TM mode and (b) the TE mode. rps and nrps indicate the reciprocal phase shift and the nonreciprocal phase shift, respectively.

Fig. 3
Fig. 3

Cross-sectional view of a waveguide in the optical interferometer.

Fig. 4
Fig. 4

Reciprocal phase shift of the TE mode and the extinction ratio at the central port of the coupler depending on integer m.

Fig. 5
Fig. 5

Reciprocal phase shifts of the TE mode and the TM mode depending on the rib height. The extinction ratio of the TE mode is also shown.

Fig. 6
Fig. 6

Reciprocal phase shifts and the extinction ratio depending on the rib width.

Fig. 7
Fig. 7

Reciprocal phase shifts and the extinction ratio depending on the GaInAsP thickness.

Fig. 8
Fig. 8

Schematic diagram of an optical interferometer with 2L 0-long reciprocal phase shifter for (a) the TM mode and (b) the TE mode. rps indicates the reciprocal phase shift.

Fig. 9
Fig. 9

Near-field patterns from the output facet of the interferometer with a L 0-long reciprocal phase shifter for (a) the TM mode and (b) the TE mode.

Fig. 10
Fig. 10

Near-field patterns from the output facet of the interferometer with 2L 0-long reciprocal phase shifter for (a) the TM mode and (b) the TE mode.

Fig. 11
Fig. 11

Optical circulator employing a nonreciprocal phase shift. A reciprocal phase shifter and a nonreciprocal phase shifter are included in an optical interferometer.

Tables (2)

Tables Icon

Table 1 Output Power of the Light Waves at Three Ports Measured by an Optical Power Meter

Tables Icon

Table 2 Output Power of the Light Waves at Three Ports of the Polarization Splitter

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

βTM=k0neTM,
LRPS=1βTMπ2+2mπ=λneTM14+m,
ΔϕTE=k0neTELRPS=π2neTEneTM,
II0=cos2ΔϕTE2.
k0neTMLRPS=π2+2mπ,
k0neTELRPS=π+2nπ,
1+4m2+4n=neTMneTE.
Δφrad=k0neTMMOΔL-k0neTMΔL=0.029 ΔL [μm].
k0neTELRPS=π2+2mπ,
k0neTMLRPS=π+2nπ,

Metrics