Abstract

Controlled optical scattering within or around an optical fiber provides a potentially useful means for adjusting its transmission characteristics. This approach can complement conventional methods based on the establishment of well-defined variations in the index of refraction of the core or the cladding of the fiber. We describe the use of a highly scattering submonolayer of nanoparticles deposited onto the fiber surface for adjusting the resonance wavelength, depth, and width of an in-fiber long-period grating filter. We also introduce a polymer-dispersed liquid-crystal material that has a thermally tunable scattering cross section and can be incorporated into the channels of a microstructure optical fiber; this system may provide the means for a fiber-based scattering switch.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Kashyap, Fiber Bragg Gratings (Academic, San Diego, Calif., 1999).
  2. C. R. Giles, “Lightwave applications of fiber Bragg gratings,” J. Lightwave Technol. 15, 1391–1404 (1997).
    [CrossRef]
  3. P. F. Wysocki, J. B. Judkins, R. P. Espindola, M. Andrejco, A. M. Vengsarkar, “Broad-band erbium-doped fiber amplifier flattened beyond 40 nm using long-period grating filter,” IEEE Photon. Technol. Lett. 29, 1343–1345 (1993).
  4. H. Mavoori, S. Jin, R. P. Espindola, T. A. Strasser, “Enhanced thermal and magnetic actuations for broad-range tuning of fiber Bragg grating-based reconfigurable add-drop devices,” Opt. Lett. 24, 714–716 (1999).
    [CrossRef]
  5. V. Grubsky, J. Feinberg, “Long-period fiber gratings with variable coupling for real-time sensing applications,” Opt. Lett. 25, 203–205 (2000).
    [CrossRef]
  6. J. A. Rogers, B. J. Eggleton, J. R. Pedrazzani, T. A. Strasser, “Distributed on-fiber thin film heaters for Bragg gratings with adjustable chirp,” Appl. Phys. Lett. 74, 3131–3133 (1999).
    [CrossRef]
  7. B. J. Eggleton, P. S. Westbrook, C. A. White, C. Kerbage, R. S. Windeler, G. Burdge, “Cladding mode resonances in air-silica microstructure fiber,” J. Lightwave Technol. 18, 1084–1100 (2000).
    [CrossRef]
  8. C. E. Kerbage, B. J. Eggleton, P. S. Westbrook, R. S. Windeler, “Experimental and scalar beam propagation analysis of an air-silica microstructure fiber,” Opt. Exp. 7, 113–122 (2000); http://www.opticsexpress.org .
    [CrossRef]
  9. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, D. C. Allan, “Single-mode photonic bandgap guidance of light in air,” Science 285, 1537–1539 (1999).
    [CrossRef] [PubMed]
  10. J. C. Knight, J. Broeng, T. A. Birks, P. St. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476–1478 (1998).
    [CrossRef] [PubMed]
  11. P. Mach, M. Dolinski, K. W. Baldwin, J. A. Rogers, C. Kerbage, R. S. Windeler, B. J. Eggleton, “Tunable microfluidic optical fiber,” Appl. Phys. Lett. 80, 4294–4296 (2002).
    [CrossRef]
  12. A. A. Abramov, B. J. Eggleton, J. A. Rogers, R. P. Espindola, A. Hale, R. S. Windeler, T. A. Strasser, “Electrically tunable efficient broad-band fiber filter,” IEEE Photon. Technol. Lett. 12, 445–447 (1999).
    [CrossRef]
  13. P. S. Westbrook, B. J. Eggleton, R. S. Windeler, A. Hale, T. A. Strasser, G. L. Burdge, “Cladding-mode resonances in hybrid polymer-silica microstructured optical fiber gratings,” IEEE Photon. Technol. Lett. 12, 495–497 (2000).
    [CrossRef]
  14. A. Hale, B. J. Eggleton (OFS Laboratories, Murray Hill, N.J.), and S. Ramanathan (Lucent Technologies, Murray Hill, N.J.) (personal communication, 2001).
  15. A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996).
    [CrossRef]
  16. K. Amundson, A. van Blaaderen, P. Wiltzius, “Morphology and electro-optic properties of polymer-dispersed liquid crystal films,” Phys. Rev. E 55, 1646–1654 (1997).
    [CrossRef]
  17. S. A. Vasiliev, E. M. Dianov, D. Varelas, H. G. Limberger, R. P. Salathe, “Postfabrication resonance peak positioning of long-period cladding-mode-coupled gratings,” Opt. Lett. 21, 1830–1832 (1996).
    [CrossRef] [PubMed]
  18. S. C. Kim, Y. C. Jeong, S. W. Kim, J. J. Kwon, N. K. Park, B. H. Lee, “Control of the characteristics of a long-period grating by cladding etching,” Appl. Opt. 39, 2038–2042 (2000).
    [CrossRef]

2002 (1)

P. Mach, M. Dolinski, K. W. Baldwin, J. A. Rogers, C. Kerbage, R. S. Windeler, B. J. Eggleton, “Tunable microfluidic optical fiber,” Appl. Phys. Lett. 80, 4294–4296 (2002).
[CrossRef]

2000 (5)

C. E. Kerbage, B. J. Eggleton, P. S. Westbrook, R. S. Windeler, “Experimental and scalar beam propagation analysis of an air-silica microstructure fiber,” Opt. Exp. 7, 113–122 (2000); http://www.opticsexpress.org .
[CrossRef]

P. S. Westbrook, B. J. Eggleton, R. S. Windeler, A. Hale, T. A. Strasser, G. L. Burdge, “Cladding-mode resonances in hybrid polymer-silica microstructured optical fiber gratings,” IEEE Photon. Technol. Lett. 12, 495–497 (2000).
[CrossRef]

V. Grubsky, J. Feinberg, “Long-period fiber gratings with variable coupling for real-time sensing applications,” Opt. Lett. 25, 203–205 (2000).
[CrossRef]

S. C. Kim, Y. C. Jeong, S. W. Kim, J. J. Kwon, N. K. Park, B. H. Lee, “Control of the characteristics of a long-period grating by cladding etching,” Appl. Opt. 39, 2038–2042 (2000).
[CrossRef]

B. J. Eggleton, P. S. Westbrook, C. A. White, C. Kerbage, R. S. Windeler, G. Burdge, “Cladding mode resonances in air-silica microstructure fiber,” J. Lightwave Technol. 18, 1084–1100 (2000).
[CrossRef]

1999 (4)

J. A. Rogers, B. J. Eggleton, J. R. Pedrazzani, T. A. Strasser, “Distributed on-fiber thin film heaters for Bragg gratings with adjustable chirp,” Appl. Phys. Lett. 74, 3131–3133 (1999).
[CrossRef]

H. Mavoori, S. Jin, R. P. Espindola, T. A. Strasser, “Enhanced thermal and magnetic actuations for broad-range tuning of fiber Bragg grating-based reconfigurable add-drop devices,” Opt. Lett. 24, 714–716 (1999).
[CrossRef]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, D. C. Allan, “Single-mode photonic bandgap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

A. A. Abramov, B. J. Eggleton, J. A. Rogers, R. P. Espindola, A. Hale, R. S. Windeler, T. A. Strasser, “Electrically tunable efficient broad-band fiber filter,” IEEE Photon. Technol. Lett. 12, 445–447 (1999).
[CrossRef]

1998 (1)

J. C. Knight, J. Broeng, T. A. Birks, P. St. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476–1478 (1998).
[CrossRef] [PubMed]

1997 (2)

K. Amundson, A. van Blaaderen, P. Wiltzius, “Morphology and electro-optic properties of polymer-dispersed liquid crystal films,” Phys. Rev. E 55, 1646–1654 (1997).
[CrossRef]

C. R. Giles, “Lightwave applications of fiber Bragg gratings,” J. Lightwave Technol. 15, 1391–1404 (1997).
[CrossRef]

1996 (2)

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996).
[CrossRef]

S. A. Vasiliev, E. M. Dianov, D. Varelas, H. G. Limberger, R. P. Salathe, “Postfabrication resonance peak positioning of long-period cladding-mode-coupled gratings,” Opt. Lett. 21, 1830–1832 (1996).
[CrossRef] [PubMed]

1993 (1)

P. F. Wysocki, J. B. Judkins, R. P. Espindola, M. Andrejco, A. M. Vengsarkar, “Broad-band erbium-doped fiber amplifier flattened beyond 40 nm using long-period grating filter,” IEEE Photon. Technol. Lett. 29, 1343–1345 (1993).

Abramov, A. A.

A. A. Abramov, B. J. Eggleton, J. A. Rogers, R. P. Espindola, A. Hale, R. S. Windeler, T. A. Strasser, “Electrically tunable efficient broad-band fiber filter,” IEEE Photon. Technol. Lett. 12, 445–447 (1999).
[CrossRef]

Allan, D. C.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, D. C. Allan, “Single-mode photonic bandgap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

Amundson, K.

K. Amundson, A. van Blaaderen, P. Wiltzius, “Morphology and electro-optic properties of polymer-dispersed liquid crystal films,” Phys. Rev. E 55, 1646–1654 (1997).
[CrossRef]

Andrejco, M.

P. F. Wysocki, J. B. Judkins, R. P. Espindola, M. Andrejco, A. M. Vengsarkar, “Broad-band erbium-doped fiber amplifier flattened beyond 40 nm using long-period grating filter,” IEEE Photon. Technol. Lett. 29, 1343–1345 (1993).

Baldwin, K. W.

P. Mach, M. Dolinski, K. W. Baldwin, J. A. Rogers, C. Kerbage, R. S. Windeler, B. J. Eggleton, “Tunable microfluidic optical fiber,” Appl. Phys. Lett. 80, 4294–4296 (2002).
[CrossRef]

Bhatia, V.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996).
[CrossRef]

Birks, T. A.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, D. C. Allan, “Single-mode photonic bandgap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

J. C. Knight, J. Broeng, T. A. Birks, P. St. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476–1478 (1998).
[CrossRef] [PubMed]

Broeng, J.

J. C. Knight, J. Broeng, T. A. Birks, P. St. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476–1478 (1998).
[CrossRef] [PubMed]

Burdge, G.

Burdge, G. L.

P. S. Westbrook, B. J. Eggleton, R. S. Windeler, A. Hale, T. A. Strasser, G. L. Burdge, “Cladding-mode resonances in hybrid polymer-silica microstructured optical fiber gratings,” IEEE Photon. Technol. Lett. 12, 495–497 (2000).
[CrossRef]

Cregan, R. F.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, D. C. Allan, “Single-mode photonic bandgap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

Dianov, E. M.

Dolinski, M.

P. Mach, M. Dolinski, K. W. Baldwin, J. A. Rogers, C. Kerbage, R. S. Windeler, B. J. Eggleton, “Tunable microfluidic optical fiber,” Appl. Phys. Lett. 80, 4294–4296 (2002).
[CrossRef]

Eggleton, B. J.

P. Mach, M. Dolinski, K. W. Baldwin, J. A. Rogers, C. Kerbage, R. S. Windeler, B. J. Eggleton, “Tunable microfluidic optical fiber,” Appl. Phys. Lett. 80, 4294–4296 (2002).
[CrossRef]

C. E. Kerbage, B. J. Eggleton, P. S. Westbrook, R. S. Windeler, “Experimental and scalar beam propagation analysis of an air-silica microstructure fiber,” Opt. Exp. 7, 113–122 (2000); http://www.opticsexpress.org .
[CrossRef]

B. J. Eggleton, P. S. Westbrook, C. A. White, C. Kerbage, R. S. Windeler, G. Burdge, “Cladding mode resonances in air-silica microstructure fiber,” J. Lightwave Technol. 18, 1084–1100 (2000).
[CrossRef]

P. S. Westbrook, B. J. Eggleton, R. S. Windeler, A. Hale, T. A. Strasser, G. L. Burdge, “Cladding-mode resonances in hybrid polymer-silica microstructured optical fiber gratings,” IEEE Photon. Technol. Lett. 12, 495–497 (2000).
[CrossRef]

J. A. Rogers, B. J. Eggleton, J. R. Pedrazzani, T. A. Strasser, “Distributed on-fiber thin film heaters for Bragg gratings with adjustable chirp,” Appl. Phys. Lett. 74, 3131–3133 (1999).
[CrossRef]

A. A. Abramov, B. J. Eggleton, J. A. Rogers, R. P. Espindola, A. Hale, R. S. Windeler, T. A. Strasser, “Electrically tunable efficient broad-band fiber filter,” IEEE Photon. Technol. Lett. 12, 445–447 (1999).
[CrossRef]

A. Hale, B. J. Eggleton (OFS Laboratories, Murray Hill, N.J.), and S. Ramanathan (Lucent Technologies, Murray Hill, N.J.) (personal communication, 2001).

Erdogan, T.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996).
[CrossRef]

Espindola, R. P.

A. A. Abramov, B. J. Eggleton, J. A. Rogers, R. P. Espindola, A. Hale, R. S. Windeler, T. A. Strasser, “Electrically tunable efficient broad-band fiber filter,” IEEE Photon. Technol. Lett. 12, 445–447 (1999).
[CrossRef]

H. Mavoori, S. Jin, R. P. Espindola, T. A. Strasser, “Enhanced thermal and magnetic actuations for broad-range tuning of fiber Bragg grating-based reconfigurable add-drop devices,” Opt. Lett. 24, 714–716 (1999).
[CrossRef]

P. F. Wysocki, J. B. Judkins, R. P. Espindola, M. Andrejco, A. M. Vengsarkar, “Broad-band erbium-doped fiber amplifier flattened beyond 40 nm using long-period grating filter,” IEEE Photon. Technol. Lett. 29, 1343–1345 (1993).

Feinberg, J.

Giles, C. R.

C. R. Giles, “Lightwave applications of fiber Bragg gratings,” J. Lightwave Technol. 15, 1391–1404 (1997).
[CrossRef]

Grubsky, V.

Hale, A.

P. S. Westbrook, B. J. Eggleton, R. S. Windeler, A. Hale, T. A. Strasser, G. L. Burdge, “Cladding-mode resonances in hybrid polymer-silica microstructured optical fiber gratings,” IEEE Photon. Technol. Lett. 12, 495–497 (2000).
[CrossRef]

A. A. Abramov, B. J. Eggleton, J. A. Rogers, R. P. Espindola, A. Hale, R. S. Windeler, T. A. Strasser, “Electrically tunable efficient broad-band fiber filter,” IEEE Photon. Technol. Lett. 12, 445–447 (1999).
[CrossRef]

A. Hale, B. J. Eggleton (OFS Laboratories, Murray Hill, N.J.), and S. Ramanathan (Lucent Technologies, Murray Hill, N.J.) (personal communication, 2001).

Jeong, Y. C.

Jin, S.

Judkins, J. B.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996).
[CrossRef]

P. F. Wysocki, J. B. Judkins, R. P. Espindola, M. Andrejco, A. M. Vengsarkar, “Broad-band erbium-doped fiber amplifier flattened beyond 40 nm using long-period grating filter,” IEEE Photon. Technol. Lett. 29, 1343–1345 (1993).

Kashyap, R.

R. Kashyap, Fiber Bragg Gratings (Academic, San Diego, Calif., 1999).

Kerbage, C.

P. Mach, M. Dolinski, K. W. Baldwin, J. A. Rogers, C. Kerbage, R. S. Windeler, B. J. Eggleton, “Tunable microfluidic optical fiber,” Appl. Phys. Lett. 80, 4294–4296 (2002).
[CrossRef]

B. J. Eggleton, P. S. Westbrook, C. A. White, C. Kerbage, R. S. Windeler, G. Burdge, “Cladding mode resonances in air-silica microstructure fiber,” J. Lightwave Technol. 18, 1084–1100 (2000).
[CrossRef]

Kerbage, C. E.

C. E. Kerbage, B. J. Eggleton, P. S. Westbrook, R. S. Windeler, “Experimental and scalar beam propagation analysis of an air-silica microstructure fiber,” Opt. Exp. 7, 113–122 (2000); http://www.opticsexpress.org .
[CrossRef]

Kim, S. C.

Kim, S. W.

Knight, J. C.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, D. C. Allan, “Single-mode photonic bandgap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

J. C. Knight, J. Broeng, T. A. Birks, P. St. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476–1478 (1998).
[CrossRef] [PubMed]

Kwon, J. J.

Lee, B. H.

Lemaire, P. J.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996).
[CrossRef]

Limberger, H. G.

Mach, P.

P. Mach, M. Dolinski, K. W. Baldwin, J. A. Rogers, C. Kerbage, R. S. Windeler, B. J. Eggleton, “Tunable microfluidic optical fiber,” Appl. Phys. Lett. 80, 4294–4296 (2002).
[CrossRef]

Mangan, B. J.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, D. C. Allan, “Single-mode photonic bandgap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

Mavoori, H.

Park, N. K.

Pedrazzani, J. R.

J. A. Rogers, B. J. Eggleton, J. R. Pedrazzani, T. A. Strasser, “Distributed on-fiber thin film heaters for Bragg gratings with adjustable chirp,” Appl. Phys. Lett. 74, 3131–3133 (1999).
[CrossRef]

Roberts, P. J.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, D. C. Allan, “Single-mode photonic bandgap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

Rogers, J. A.

P. Mach, M. Dolinski, K. W. Baldwin, J. A. Rogers, C. Kerbage, R. S. Windeler, B. J. Eggleton, “Tunable microfluidic optical fiber,” Appl. Phys. Lett. 80, 4294–4296 (2002).
[CrossRef]

A. A. Abramov, B. J. Eggleton, J. A. Rogers, R. P. Espindola, A. Hale, R. S. Windeler, T. A. Strasser, “Electrically tunable efficient broad-band fiber filter,” IEEE Photon. Technol. Lett. 12, 445–447 (1999).
[CrossRef]

J. A. Rogers, B. J. Eggleton, J. R. Pedrazzani, T. A. Strasser, “Distributed on-fiber thin film heaters for Bragg gratings with adjustable chirp,” Appl. Phys. Lett. 74, 3131–3133 (1999).
[CrossRef]

Salathe, R. P.

Sipe, J. E.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996).
[CrossRef]

St. J. Russell, P.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, D. C. Allan, “Single-mode photonic bandgap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

J. C. Knight, J. Broeng, T. A. Birks, P. St. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476–1478 (1998).
[CrossRef] [PubMed]

Strasser, T. A.

P. S. Westbrook, B. J. Eggleton, R. S. Windeler, A. Hale, T. A. Strasser, G. L. Burdge, “Cladding-mode resonances in hybrid polymer-silica microstructured optical fiber gratings,” IEEE Photon. Technol. Lett. 12, 495–497 (2000).
[CrossRef]

J. A. Rogers, B. J. Eggleton, J. R. Pedrazzani, T. A. Strasser, “Distributed on-fiber thin film heaters for Bragg gratings with adjustable chirp,” Appl. Phys. Lett. 74, 3131–3133 (1999).
[CrossRef]

H. Mavoori, S. Jin, R. P. Espindola, T. A. Strasser, “Enhanced thermal and magnetic actuations for broad-range tuning of fiber Bragg grating-based reconfigurable add-drop devices,” Opt. Lett. 24, 714–716 (1999).
[CrossRef]

A. A. Abramov, B. J. Eggleton, J. A. Rogers, R. P. Espindola, A. Hale, R. S. Windeler, T. A. Strasser, “Electrically tunable efficient broad-band fiber filter,” IEEE Photon. Technol. Lett. 12, 445–447 (1999).
[CrossRef]

van Blaaderen, A.

K. Amundson, A. van Blaaderen, P. Wiltzius, “Morphology and electro-optic properties of polymer-dispersed liquid crystal films,” Phys. Rev. E 55, 1646–1654 (1997).
[CrossRef]

Varelas, D.

Vasiliev, S. A.

Vengsarkar, A. M.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996).
[CrossRef]

P. F. Wysocki, J. B. Judkins, R. P. Espindola, M. Andrejco, A. M. Vengsarkar, “Broad-band erbium-doped fiber amplifier flattened beyond 40 nm using long-period grating filter,” IEEE Photon. Technol. Lett. 29, 1343–1345 (1993).

Westbrook, P. S.

B. J. Eggleton, P. S. Westbrook, C. A. White, C. Kerbage, R. S. Windeler, G. Burdge, “Cladding mode resonances in air-silica microstructure fiber,” J. Lightwave Technol. 18, 1084–1100 (2000).
[CrossRef]

C. E. Kerbage, B. J. Eggleton, P. S. Westbrook, R. S. Windeler, “Experimental and scalar beam propagation analysis of an air-silica microstructure fiber,” Opt. Exp. 7, 113–122 (2000); http://www.opticsexpress.org .
[CrossRef]

P. S. Westbrook, B. J. Eggleton, R. S. Windeler, A. Hale, T. A. Strasser, G. L. Burdge, “Cladding-mode resonances in hybrid polymer-silica microstructured optical fiber gratings,” IEEE Photon. Technol. Lett. 12, 495–497 (2000).
[CrossRef]

White, C. A.

Wiltzius, P.

K. Amundson, A. van Blaaderen, P. Wiltzius, “Morphology and electro-optic properties of polymer-dispersed liquid crystal films,” Phys. Rev. E 55, 1646–1654 (1997).
[CrossRef]

Windeler, R. S.

P. Mach, M. Dolinski, K. W. Baldwin, J. A. Rogers, C. Kerbage, R. S. Windeler, B. J. Eggleton, “Tunable microfluidic optical fiber,” Appl. Phys. Lett. 80, 4294–4296 (2002).
[CrossRef]

C. E. Kerbage, B. J. Eggleton, P. S. Westbrook, R. S. Windeler, “Experimental and scalar beam propagation analysis of an air-silica microstructure fiber,” Opt. Exp. 7, 113–122 (2000); http://www.opticsexpress.org .
[CrossRef]

B. J. Eggleton, P. S. Westbrook, C. A. White, C. Kerbage, R. S. Windeler, G. Burdge, “Cladding mode resonances in air-silica microstructure fiber,” J. Lightwave Technol. 18, 1084–1100 (2000).
[CrossRef]

P. S. Westbrook, B. J. Eggleton, R. S. Windeler, A. Hale, T. A. Strasser, G. L. Burdge, “Cladding-mode resonances in hybrid polymer-silica microstructured optical fiber gratings,” IEEE Photon. Technol. Lett. 12, 495–497 (2000).
[CrossRef]

A. A. Abramov, B. J. Eggleton, J. A. Rogers, R. P. Espindola, A. Hale, R. S. Windeler, T. A. Strasser, “Electrically tunable efficient broad-band fiber filter,” IEEE Photon. Technol. Lett. 12, 445–447 (1999).
[CrossRef]

Wysocki, P. F.

P. F. Wysocki, J. B. Judkins, R. P. Espindola, M. Andrejco, A. M. Vengsarkar, “Broad-band erbium-doped fiber amplifier flattened beyond 40 nm using long-period grating filter,” IEEE Photon. Technol. Lett. 29, 1343–1345 (1993).

Appl. Opt. (1)

Appl. Phys. Lett. (2)

J. A. Rogers, B. J. Eggleton, J. R. Pedrazzani, T. A. Strasser, “Distributed on-fiber thin film heaters for Bragg gratings with adjustable chirp,” Appl. Phys. Lett. 74, 3131–3133 (1999).
[CrossRef]

P. Mach, M. Dolinski, K. W. Baldwin, J. A. Rogers, C. Kerbage, R. S. Windeler, B. J. Eggleton, “Tunable microfluidic optical fiber,” Appl. Phys. Lett. 80, 4294–4296 (2002).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

A. A. Abramov, B. J. Eggleton, J. A. Rogers, R. P. Espindola, A. Hale, R. S. Windeler, T. A. Strasser, “Electrically tunable efficient broad-band fiber filter,” IEEE Photon. Technol. Lett. 12, 445–447 (1999).
[CrossRef]

P. S. Westbrook, B. J. Eggleton, R. S. Windeler, A. Hale, T. A. Strasser, G. L. Burdge, “Cladding-mode resonances in hybrid polymer-silica microstructured optical fiber gratings,” IEEE Photon. Technol. Lett. 12, 495–497 (2000).
[CrossRef]

P. F. Wysocki, J. B. Judkins, R. P. Espindola, M. Andrejco, A. M. Vengsarkar, “Broad-band erbium-doped fiber amplifier flattened beyond 40 nm using long-period grating filter,” IEEE Photon. Technol. Lett. 29, 1343–1345 (1993).

J. Lightwave Technol. (3)

C. R. Giles, “Lightwave applications of fiber Bragg gratings,” J. Lightwave Technol. 15, 1391–1404 (1997).
[CrossRef]

B. J. Eggleton, P. S. Westbrook, C. A. White, C. Kerbage, R. S. Windeler, G. Burdge, “Cladding mode resonances in air-silica microstructure fiber,” J. Lightwave Technol. 18, 1084–1100 (2000).
[CrossRef]

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996).
[CrossRef]

Opt. Exp. (1)

C. E. Kerbage, B. J. Eggleton, P. S. Westbrook, R. S. Windeler, “Experimental and scalar beam propagation analysis of an air-silica microstructure fiber,” Opt. Exp. 7, 113–122 (2000); http://www.opticsexpress.org .
[CrossRef]

Opt. Lett. (3)

Phys. Rev. E (1)

K. Amundson, A. van Blaaderen, P. Wiltzius, “Morphology and electro-optic properties of polymer-dispersed liquid crystal films,” Phys. Rev. E 55, 1646–1654 (1997).
[CrossRef]

Science (2)

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, D. C. Allan, “Single-mode photonic bandgap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

J. C. Knight, J. Broeng, T. A. Birks, P. St. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476–1478 (1998).
[CrossRef] [PubMed]

Other (2)

R. Kashyap, Fiber Bragg Gratings (Academic, San Diego, Calif., 1999).

A. Hale, B. J. Eggleton (OFS Laboratories, Murray Hill, N.J.), and S. Ramanathan (Lucent Technologies, Murray Hill, N.J.) (personal communication, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Scanning electron micrographs of a submonolayer of titania nanoparticles (diameter ∼200 nm) on the outer surface of a fiber. This layer was formed when we dip coated the fiber in a suspension, as described in the text. These particles produce scattering in guided modes whose evanescent tails extend outside of the fiber.

Fig. 2
Fig. 2

Predicted evolution of the dimensionless resonance wavelength position λres0 n c /c) as a function of the index ratio η, according to the scalar field model described in the text.

Fig. 3
Fig. 3

Transmission spectra of a fiber with a long-period index grating in its core (grating period is 130 µm, length is ∼6 cm). A narrowband attenuation feature occurs at a wavelength where the grating causes phase-matched coupling of the core mode to a cladding mode. This position depends on the effective index of the cladding mode that, in turn, depends on the index of the material that surrounds the fiber (n surround). Three different cases are shown: air (n surround ∼ 1.00), water (n surround ∼ 1.33), and isopropyl (iso) alcohol (n surround ∼ 1.37).

Fig. 4
Fig. 4

Predicted evolution of dimensionless LPG cladding-mode resonance width Δk (c0 n c ) as a function of index ratio η̅, according to the scalar field model described in the text and where Δk = (δk 2) [see Eq. (11)], here the quantity Δξ (ω0 n c /c) = 0.01.

Fig. 5
Fig. 5

Transmission spectra of a fiber with a long-period index grating in its core (grating period is 130 µm, length is ∼6 cm). The section of the fiber that contains the grating also has a submonolayer of titania nanoparticles (diameter ∼200 nm) on its surface. The spectra were collected when the fiber was in air and when it was immersed in water and isopropyl (iso) alcohol. Changing the index of the surroundings in this manner changes the degree of overlap of the cladding mode with the titania. The result is a shifting of the wavelength position and an associated broadening of the attenuation feature.

Fig. 6
Fig. 6

(a) Plot of LPG resonance wavelength λres versus index of fiber surround, for both bare and titania-coated fibers. (b) Characteristic width (solid symbols) and overall grating resonance area (open symbols) versus fiber surround index for both bare and titania-coated fibers; here the widths are taken as full width at half-maximum of the attenuation dips plotted in Figs. 3 and 5. The experimental trends as a function of fiber surround index in (a) and (b) compare favorably with the qualitative behavior according to the model discussed in the text and whose corresponding predictions are given in Figs. 2 and 4, respectively.

Fig. 7
Fig. 7

(a) Optical micrograph and index profile of a microstructure fiber. The fiber supports a single core mode whose evanescent tail extends slightly into the air channels. n 1 is the index of the Ge-doped core region, and n 2 is the index of the silica. (b) Optical micrograph of a microstructure fiber cleaved in a section filled with PDLC material. The liquid-crystal content of the PDLC is ∼65% by weight.

Fig. 8
Fig. 8

Transmission as a function of temperature for single-mode light at 1550 nm through a microstructure fiber that is filled with PDLC. The data show a sharp transition at the temperature where the scattering cross section of the PDLC is expected to change abruptly (i.e., near the nematic-to-isotropic phase transition point of the liquid crystal, T NI = 87 °C).

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

λres=nco-ñcladΛ,
d2ψdr2+1rdψdr+1r2d2ψdθ2+d2ψdz2=1-ηΘ1-r+ηc2 nc2d2ψdt2,
ψ=ρrexpikz-iω0t,
d2ρdr2+1rdρdr+1-ηΘ1-r+ηc2 ω02nc2ρ=k2ρ.
nsz=ns+δnsz.
δηzδηz=Δexp-z-z2ξ2,
ψ=ρrexpiuz-iω0t.
d2ρdr2+1rdρdr+1-ηzΘ1-r+ηzc2 ω02nc2ρ=k2ηzρ,
i d2udz2-dudz2+k2ηz=0.
u= dzkη¯+ dz dkdη¯ δηz+Oη2.
δk21/2=dkdη¯2 Δξ.

Metrics