Abstract

An investigation of relaxed alignment tolerance in monolithic ring lasers is presented. It was found that the relaxed alignment tolerance is strongly dependent on the out-of-plane angle. A preferred region for the out-of-plane angle is proposed. In this region the resonator has greatly relaxed alignment tolerances, and the unidirectional operation can be obtained under a much-lower magnetic field. Two lasers have been constructed in the region, and satisfactory performance was found, in good agreement with the theoretical analysis.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. J. Kane, R. L. Byer, B. K. Zhou, “Monolithic single-mode Nd:YAG ring laser,” in Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1984), pp. 114–116.
  2. T. J. Kane, R. L. Byer, “Monolithic, unidirectional single-mode Nd:YAG ring laser,” Opt. Lett. 10, 65–67 (1985).
    [CrossRef] [PubMed]
  3. E. A. P. Cheng, T. J. Kane, “High-power single-mode diode-pumped Nd:YAG laser using a monolithic nonplanar ring resonator,” Opt. Lett. 16, 478–480 (1991).
    [CrossRef] [PubMed]
  4. A. Arie, R. L. Byer, “Laser heterodyne spectroscopy of 127I2 hyperfine structure near 532 nm,” J. Opt. Soc. Am. B 10, 1990–1997 (1993).
    [CrossRef]
  5. F.-L. Hong, J. Ishikawa, “Hyperfine structures of the R(122)35-0 and P(84) 33-0 transitions of 127I2 near 532 nm,” Opt. Commun. 183, 101–108 (2000).
    [CrossRef]
  6. A. Arie, S. Schiller, E. K. Gustafson, R. L. Byer, “Absolute frequency stabilization of diode-laser-pumped Nd:YAG lasers to hyperfine transitions in molecular iodine,” Opt. Lett. 17, 1204–1206 (1992).
    [CrossRef] [PubMed]
  7. A. Arie, R. L. Byer, “Frequency stabilization of the 1064-nm Nd:YAG lasers to Doppler-broadened lines of iodine,” Appl. Opt. 32, 7382–7386 (1993).
    [CrossRef] [PubMed]
  8. M. L. Eickhoff, J. L. Hall, “Optical frequency standard at 532 nm,” IEEE Trans. Instrum. Meas. 44, 155–158 (1995).
    [CrossRef]
  9. F.-L. Hong, J. Ishikawa, “A compact I2-Stabilized Nd:YAG laser,” Jpn. J. Appl. Phys. 36, 196–198 (1997).
  10. A. C. Nilsson, E. K. Gustafson, R. L. Byer, “Eigenpolarization theory of monolithic nonplanar ring oscillators,” IEEE J. Quantum Electron. 25, 767–790 (1989).
    [CrossRef]
  11. I. Freitag, A. Tunnerman, H. Welling, “Powerscaling of diode-pumped monolithic Nd:YAG lasers to output powers of several watts,” Opt. Commun. 115, 511–515 (1995).
    [CrossRef]

2000 (1)

F.-L. Hong, J. Ishikawa, “Hyperfine structures of the R(122)35-0 and P(84) 33-0 transitions of 127I2 near 532 nm,” Opt. Commun. 183, 101–108 (2000).
[CrossRef]

1997 (1)

F.-L. Hong, J. Ishikawa, “A compact I2-Stabilized Nd:YAG laser,” Jpn. J. Appl. Phys. 36, 196–198 (1997).

1995 (2)

M. L. Eickhoff, J. L. Hall, “Optical frequency standard at 532 nm,” IEEE Trans. Instrum. Meas. 44, 155–158 (1995).
[CrossRef]

I. Freitag, A. Tunnerman, H. Welling, “Powerscaling of diode-pumped monolithic Nd:YAG lasers to output powers of several watts,” Opt. Commun. 115, 511–515 (1995).
[CrossRef]

1993 (2)

1992 (1)

1991 (1)

1989 (1)

A. C. Nilsson, E. K. Gustafson, R. L. Byer, “Eigenpolarization theory of monolithic nonplanar ring oscillators,” IEEE J. Quantum Electron. 25, 767–790 (1989).
[CrossRef]

1985 (1)

Arie, A.

Byer, R. L.

Cheng, E. A. P.

Eickhoff, M. L.

M. L. Eickhoff, J. L. Hall, “Optical frequency standard at 532 nm,” IEEE Trans. Instrum. Meas. 44, 155–158 (1995).
[CrossRef]

Freitag, I.

I. Freitag, A. Tunnerman, H. Welling, “Powerscaling of diode-pumped monolithic Nd:YAG lasers to output powers of several watts,” Opt. Commun. 115, 511–515 (1995).
[CrossRef]

Gustafson, E. K.

A. Arie, S. Schiller, E. K. Gustafson, R. L. Byer, “Absolute frequency stabilization of diode-laser-pumped Nd:YAG lasers to hyperfine transitions in molecular iodine,” Opt. Lett. 17, 1204–1206 (1992).
[CrossRef] [PubMed]

A. C. Nilsson, E. K. Gustafson, R. L. Byer, “Eigenpolarization theory of monolithic nonplanar ring oscillators,” IEEE J. Quantum Electron. 25, 767–790 (1989).
[CrossRef]

Hall, J. L.

M. L. Eickhoff, J. L. Hall, “Optical frequency standard at 532 nm,” IEEE Trans. Instrum. Meas. 44, 155–158 (1995).
[CrossRef]

Hong, F.-L.

F.-L. Hong, J. Ishikawa, “Hyperfine structures of the R(122)35-0 and P(84) 33-0 transitions of 127I2 near 532 nm,” Opt. Commun. 183, 101–108 (2000).
[CrossRef]

F.-L. Hong, J. Ishikawa, “A compact I2-Stabilized Nd:YAG laser,” Jpn. J. Appl. Phys. 36, 196–198 (1997).

Ishikawa, J.

F.-L. Hong, J. Ishikawa, “Hyperfine structures of the R(122)35-0 and P(84) 33-0 transitions of 127I2 near 532 nm,” Opt. Commun. 183, 101–108 (2000).
[CrossRef]

F.-L. Hong, J. Ishikawa, “A compact I2-Stabilized Nd:YAG laser,” Jpn. J. Appl. Phys. 36, 196–198 (1997).

Kane, T. J.

Nilsson, A. C.

A. C. Nilsson, E. K. Gustafson, R. L. Byer, “Eigenpolarization theory of monolithic nonplanar ring oscillators,” IEEE J. Quantum Electron. 25, 767–790 (1989).
[CrossRef]

Schiller, S.

Tunnerman, A.

I. Freitag, A. Tunnerman, H. Welling, “Powerscaling of diode-pumped monolithic Nd:YAG lasers to output powers of several watts,” Opt. Commun. 115, 511–515 (1995).
[CrossRef]

Welling, H.

I. Freitag, A. Tunnerman, H. Welling, “Powerscaling of diode-pumped monolithic Nd:YAG lasers to output powers of several watts,” Opt. Commun. 115, 511–515 (1995).
[CrossRef]

Zhou, B. K.

T. J. Kane, R. L. Byer, B. K. Zhou, “Monolithic single-mode Nd:YAG ring laser,” in Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1984), pp. 114–116.

Appl. Opt. (1)

IEEE J. Quantum Electron. (1)

A. C. Nilsson, E. K. Gustafson, R. L. Byer, “Eigenpolarization theory of monolithic nonplanar ring oscillators,” IEEE J. Quantum Electron. 25, 767–790 (1989).
[CrossRef]

IEEE Trans. Instrum. Meas. (1)

M. L. Eickhoff, J. L. Hall, “Optical frequency standard at 532 nm,” IEEE Trans. Instrum. Meas. 44, 155–158 (1995).
[CrossRef]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (1)

F.-L. Hong, J. Ishikawa, “A compact I2-Stabilized Nd:YAG laser,” Jpn. J. Appl. Phys. 36, 196–198 (1997).

Opt. Commun. (2)

I. Freitag, A. Tunnerman, H. Welling, “Powerscaling of diode-pumped monolithic Nd:YAG lasers to output powers of several watts,” Opt. Commun. 115, 511–515 (1995).
[CrossRef]

F.-L. Hong, J. Ishikawa, “Hyperfine structures of the R(122)35-0 and P(84) 33-0 transitions of 127I2 near 532 nm,” Opt. Commun. 183, 101–108 (2000).
[CrossRef]

Opt. Lett. (3)

Other (1)

T. J. Kane, R. L. Byer, B. K. Zhou, “Monolithic single-mode Nd:YAG ring laser,” in Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1984), pp. 114–116.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Scheme of a monolithic ring laser.

Fig. 2
Fig. 2

Reference frames used in the numerical calculations.

Fig. 3
Fig. 3

Angle difference and position alignment capability as a function of the angle β. At β = β p the r p reaches the peak. (a) L 1 = 5 and 10 mm, L 2 = 1.06 mm and α = 45°. (b) L 2 = 0.5, 1.06, and 1.5 mm; L 1 = 10 mm and α = 45°. (c) α = 15°, 30°, and 45°; L 1 = 10 mm and L 2 = 1.06 mm.

Fig. 4
Fig. 4

Longitude angle difference Δϕ4 - Δϕ1 and angle alignment capability as a function of β. At β = β a the r a reaches the peak. (a) L 1 = 2.5, 5, and 10 mm; L 2 = 1.06 mm and α = 45°. (b) L 2 = 0.5, 1.06, and 1.5 mm; L 1 = 10 mm and α = 45°. (c) α = 15°, 30°, and 45°; L 1 = 10 mm and L 2 = 1.06 mm.

Fig. 5
Fig. 5

Differential loss as a function of β for some L 1 and magnetic field values. At β = β d the differential loss reaches the peak. Here L 2 = 1.06 mm and α = 45°.

Fig. 6
Fig. 6

Relation of rays inside and outside the crystal.

Fig. 7
Fig. 7

Scheme of the angle alignment capability measurement.

Fig. 8
Fig. 8

Output powers of L 1 = 5 mm and L 1 = 10 mm monolithic lasers; L 2 = 1.06 mm and α = β = 45°.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ϕp=arctany/x-arctany/x.
rp=12x-x2+y-y2x2+y21/2.
ra=Δθ/Δθ1.

Metrics