Abstract

We have investigated laser action in a binary mixture of dyes, Rh-6G and DCM, resulting in tunable laser emission over an extended frequency region. The two dyes absorb the same pump radiation but fluoresce over frequency ranges that are shifted with respect to each other, thereby resulting in extended tunability. Following a time-dependent analysis of a rate-equation model that describes the operation of such a laser, theoretical estimates for optimum dye concentrations and the corresponding extension of the laser tuning range have been obtained.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Burlamacchi, H. F. R. Sandoval, “Characteristics of a multicolor dye laser,” Opt. Commun. 31, 185–188 (1979).
    [Crossref]
  2. Y. Saito, N. Nakai, A. Nomura, T. Kano, “Spectral characteristics of a short-pulse red-green-blue dye mixture laser,” Appl. Opt. 31, 4298–4304 (1992).
    [Crossref] [PubMed]
  3. Y. Yap, T. Tou, K. Kwek, “Measurements of time delays in superradiant laser emissions from binary dye mixtures,” Jpn. J. Appl. Phys. 35, 5718–5720 (1996).
    [Crossref]
  4. M. I. Savadatti, S. R. Inamdar, N. N. Math, A. D. Mulla, “Energy transfer dye lasers,” J. Chem. Soc. Faraday Trans. 82, 2417–2422 (1986).
  5. S. A. Ahmed, J. S. Gergely, D. Infante, “Energy transfer organic dye mixture lasers,” J. Chem. Phys. 61, 1584–1585 (1974).
    [Crossref]
  6. A. W. H. Mau, “Broadband tunability of dye lasers,” Opt. Commun. 11, 356–359 (1974).
    [Crossref]
  7. H. L. Berghout, F. F. Crim, M. Zyrianov, H. Reisler, “The electronic origin and vibrational levels of the first excited singlet state of isocyanic acid (HNCO),” J. Chem. Phys. 112, 6678–6687 (2000).
    [Crossref]
  8. R. T. Jongma, G. Berden, T. Rasing, H. Zacharias, G. Meijer, “State-to-state scattering of metastable CO molecules from a LiF(100) surface,” J. Chem. Phys. 107, 252–261 (1997).
    [Crossref]
  9. P. R. Hammond, “Laser dye DCM, its spectral properties, synthesis and comparison with other dyes in the red,” Opt. Commun. 29, 331–333 (1979).
    [Crossref]
  10. F. P. Schafer, Dye Lasers Vol. 1 of Springer Topics in Applied Physics (Springer, Berlin, 1977).
  11. W. Koechner, Solid State Laser Engineering, Vol. 1 of Springer Series in Optical Sciences, D. L. MacAdam, ed. (Springer-Verlag, Berlin, 1996).
  12. P. R. Hammond, “Spectra of the lowest excited singlet states of Rhodamine-6G and Rhodamine-B,” IEEE J. Quantum Electron QE-15, 624–631 (1979).
    [Crossref]
  13. R. S. Hargrove, T. Kan, “High power efficient Dye amplifier pumped by copper vapor lasers,” IEEE J Quantum Electron. QE-16, 1108–1113 (1980).
    [Crossref]

2000 (1)

H. L. Berghout, F. F. Crim, M. Zyrianov, H. Reisler, “The electronic origin and vibrational levels of the first excited singlet state of isocyanic acid (HNCO),” J. Chem. Phys. 112, 6678–6687 (2000).
[Crossref]

1997 (1)

R. T. Jongma, G. Berden, T. Rasing, H. Zacharias, G. Meijer, “State-to-state scattering of metastable CO molecules from a LiF(100) surface,” J. Chem. Phys. 107, 252–261 (1997).
[Crossref]

1996 (1)

Y. Yap, T. Tou, K. Kwek, “Measurements of time delays in superradiant laser emissions from binary dye mixtures,” Jpn. J. Appl. Phys. 35, 5718–5720 (1996).
[Crossref]

1992 (1)

1986 (1)

M. I. Savadatti, S. R. Inamdar, N. N. Math, A. D. Mulla, “Energy transfer dye lasers,” J. Chem. Soc. Faraday Trans. 82, 2417–2422 (1986).

1980 (1)

R. S. Hargrove, T. Kan, “High power efficient Dye amplifier pumped by copper vapor lasers,” IEEE J Quantum Electron. QE-16, 1108–1113 (1980).
[Crossref]

1979 (3)

P. Burlamacchi, H. F. R. Sandoval, “Characteristics of a multicolor dye laser,” Opt. Commun. 31, 185–188 (1979).
[Crossref]

P. R. Hammond, “Laser dye DCM, its spectral properties, synthesis and comparison with other dyes in the red,” Opt. Commun. 29, 331–333 (1979).
[Crossref]

P. R. Hammond, “Spectra of the lowest excited singlet states of Rhodamine-6G and Rhodamine-B,” IEEE J. Quantum Electron QE-15, 624–631 (1979).
[Crossref]

1974 (2)

S. A. Ahmed, J. S. Gergely, D. Infante, “Energy transfer organic dye mixture lasers,” J. Chem. Phys. 61, 1584–1585 (1974).
[Crossref]

A. W. H. Mau, “Broadband tunability of dye lasers,” Opt. Commun. 11, 356–359 (1974).
[Crossref]

Ahmed, S. A.

S. A. Ahmed, J. S. Gergely, D. Infante, “Energy transfer organic dye mixture lasers,” J. Chem. Phys. 61, 1584–1585 (1974).
[Crossref]

Berden, G.

R. T. Jongma, G. Berden, T. Rasing, H. Zacharias, G. Meijer, “State-to-state scattering of metastable CO molecules from a LiF(100) surface,” J. Chem. Phys. 107, 252–261 (1997).
[Crossref]

Berghout, H. L.

H. L. Berghout, F. F. Crim, M. Zyrianov, H. Reisler, “The electronic origin and vibrational levels of the first excited singlet state of isocyanic acid (HNCO),” J. Chem. Phys. 112, 6678–6687 (2000).
[Crossref]

Burlamacchi, P.

P. Burlamacchi, H. F. R. Sandoval, “Characteristics of a multicolor dye laser,” Opt. Commun. 31, 185–188 (1979).
[Crossref]

Crim, F. F.

H. L. Berghout, F. F. Crim, M. Zyrianov, H. Reisler, “The electronic origin and vibrational levels of the first excited singlet state of isocyanic acid (HNCO),” J. Chem. Phys. 112, 6678–6687 (2000).
[Crossref]

Gergely, J. S.

S. A. Ahmed, J. S. Gergely, D. Infante, “Energy transfer organic dye mixture lasers,” J. Chem. Phys. 61, 1584–1585 (1974).
[Crossref]

Hammond, P. R.

P. R. Hammond, “Spectra of the lowest excited singlet states of Rhodamine-6G and Rhodamine-B,” IEEE J. Quantum Electron QE-15, 624–631 (1979).
[Crossref]

P. R. Hammond, “Laser dye DCM, its spectral properties, synthesis and comparison with other dyes in the red,” Opt. Commun. 29, 331–333 (1979).
[Crossref]

Hargrove, R. S.

R. S. Hargrove, T. Kan, “High power efficient Dye amplifier pumped by copper vapor lasers,” IEEE J Quantum Electron. QE-16, 1108–1113 (1980).
[Crossref]

Inamdar, S. R.

M. I. Savadatti, S. R. Inamdar, N. N. Math, A. D. Mulla, “Energy transfer dye lasers,” J. Chem. Soc. Faraday Trans. 82, 2417–2422 (1986).

Infante, D.

S. A. Ahmed, J. S. Gergely, D. Infante, “Energy transfer organic dye mixture lasers,” J. Chem. Phys. 61, 1584–1585 (1974).
[Crossref]

Jongma, R. T.

R. T. Jongma, G. Berden, T. Rasing, H. Zacharias, G. Meijer, “State-to-state scattering of metastable CO molecules from a LiF(100) surface,” J. Chem. Phys. 107, 252–261 (1997).
[Crossref]

Kan, T.

R. S. Hargrove, T. Kan, “High power efficient Dye amplifier pumped by copper vapor lasers,” IEEE J Quantum Electron. QE-16, 1108–1113 (1980).
[Crossref]

Kano, T.

Koechner, W.

W. Koechner, Solid State Laser Engineering, Vol. 1 of Springer Series in Optical Sciences, D. L. MacAdam, ed. (Springer-Verlag, Berlin, 1996).

Kwek, K.

Y. Yap, T. Tou, K. Kwek, “Measurements of time delays in superradiant laser emissions from binary dye mixtures,” Jpn. J. Appl. Phys. 35, 5718–5720 (1996).
[Crossref]

Math, N. N.

M. I. Savadatti, S. R. Inamdar, N. N. Math, A. D. Mulla, “Energy transfer dye lasers,” J. Chem. Soc. Faraday Trans. 82, 2417–2422 (1986).

Mau, A. W. H.

A. W. H. Mau, “Broadband tunability of dye lasers,” Opt. Commun. 11, 356–359 (1974).
[Crossref]

Meijer, G.

R. T. Jongma, G. Berden, T. Rasing, H. Zacharias, G. Meijer, “State-to-state scattering of metastable CO molecules from a LiF(100) surface,” J. Chem. Phys. 107, 252–261 (1997).
[Crossref]

Mulla, A. D.

M. I. Savadatti, S. R. Inamdar, N. N. Math, A. D. Mulla, “Energy transfer dye lasers,” J. Chem. Soc. Faraday Trans. 82, 2417–2422 (1986).

Nakai, N.

Nomura, A.

Rasing, T.

R. T. Jongma, G. Berden, T. Rasing, H. Zacharias, G. Meijer, “State-to-state scattering of metastable CO molecules from a LiF(100) surface,” J. Chem. Phys. 107, 252–261 (1997).
[Crossref]

Reisler, H.

H. L. Berghout, F. F. Crim, M. Zyrianov, H. Reisler, “The electronic origin and vibrational levels of the first excited singlet state of isocyanic acid (HNCO),” J. Chem. Phys. 112, 6678–6687 (2000).
[Crossref]

Saito, Y.

Sandoval, H. F. R.

P. Burlamacchi, H. F. R. Sandoval, “Characteristics of a multicolor dye laser,” Opt. Commun. 31, 185–188 (1979).
[Crossref]

Savadatti, M. I.

M. I. Savadatti, S. R. Inamdar, N. N. Math, A. D. Mulla, “Energy transfer dye lasers,” J. Chem. Soc. Faraday Trans. 82, 2417–2422 (1986).

Schafer, F. P.

F. P. Schafer, Dye Lasers Vol. 1 of Springer Topics in Applied Physics (Springer, Berlin, 1977).

Tou, T.

Y. Yap, T. Tou, K. Kwek, “Measurements of time delays in superradiant laser emissions from binary dye mixtures,” Jpn. J. Appl. Phys. 35, 5718–5720 (1996).
[Crossref]

Yap, Y.

Y. Yap, T. Tou, K. Kwek, “Measurements of time delays in superradiant laser emissions from binary dye mixtures,” Jpn. J. Appl. Phys. 35, 5718–5720 (1996).
[Crossref]

Zacharias, H.

R. T. Jongma, G. Berden, T. Rasing, H. Zacharias, G. Meijer, “State-to-state scattering of metastable CO molecules from a LiF(100) surface,” J. Chem. Phys. 107, 252–261 (1997).
[Crossref]

Zyrianov, M.

H. L. Berghout, F. F. Crim, M. Zyrianov, H. Reisler, “The electronic origin and vibrational levels of the first excited singlet state of isocyanic acid (HNCO),” J. Chem. Phys. 112, 6678–6687 (2000).
[Crossref]

Appl. Opt. (1)

IEEE J Quantum Electron. (1)

R. S. Hargrove, T. Kan, “High power efficient Dye amplifier pumped by copper vapor lasers,” IEEE J Quantum Electron. QE-16, 1108–1113 (1980).
[Crossref]

IEEE J. Quantum Electron (1)

P. R. Hammond, “Spectra of the lowest excited singlet states of Rhodamine-6G and Rhodamine-B,” IEEE J. Quantum Electron QE-15, 624–631 (1979).
[Crossref]

J. Chem. Phys. (3)

S. A. Ahmed, J. S. Gergely, D. Infante, “Energy transfer organic dye mixture lasers,” J. Chem. Phys. 61, 1584–1585 (1974).
[Crossref]

H. L. Berghout, F. F. Crim, M. Zyrianov, H. Reisler, “The electronic origin and vibrational levels of the first excited singlet state of isocyanic acid (HNCO),” J. Chem. Phys. 112, 6678–6687 (2000).
[Crossref]

R. T. Jongma, G. Berden, T. Rasing, H. Zacharias, G. Meijer, “State-to-state scattering of metastable CO molecules from a LiF(100) surface,” J. Chem. Phys. 107, 252–261 (1997).
[Crossref]

J. Chem. Soc. Faraday Trans. (1)

M. I. Savadatti, S. R. Inamdar, N. N. Math, A. D. Mulla, “Energy transfer dye lasers,” J. Chem. Soc. Faraday Trans. 82, 2417–2422 (1986).

Jpn. J. Appl. Phys. (1)

Y. Yap, T. Tou, K. Kwek, “Measurements of time delays in superradiant laser emissions from binary dye mixtures,” Jpn. J. Appl. Phys. 35, 5718–5720 (1996).
[Crossref]

Opt. Commun. (3)

A. W. H. Mau, “Broadband tunability of dye lasers,” Opt. Commun. 11, 356–359 (1974).
[Crossref]

P. R. Hammond, “Laser dye DCM, its spectral properties, synthesis and comparison with other dyes in the red,” Opt. Commun. 29, 331–333 (1979).
[Crossref]

P. Burlamacchi, H. F. R. Sandoval, “Characteristics of a multicolor dye laser,” Opt. Commun. 31, 185–188 (1979).
[Crossref]

Other (2)

F. P. Schafer, Dye Lasers Vol. 1 of Springer Topics in Applied Physics (Springer, Berlin, 1977).

W. Koechner, Solid State Laser Engineering, Vol. 1 of Springer Series in Optical Sciences, D. L. MacAdam, ed. (Springer-Verlag, Berlin, 1996).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic diagram of the experimental setup of a transversely pumped, grazing incidence grating, narrow-band dye laser.

Fig. 2
Fig. 2

Experimentally measured tuning curves depicting laser efficiency versus oscillation wavelength for individual dyes Rh-6G, 0.31 mM (squares); DCM, 1.5 mM (circles); and a mixture of the two dyes Rh-6G, 0.28 mM and DCM, 1.025 mM (triangles).

Fig. 3
Fig. 3

Tuning range for laser emission from dye mixture for varying concentrations of the constituent dyes in the mixture: Rh-6G, 0.51 mM and DCM, 0.85 mM (triangles); Rh-6G, 0.28 mM and DCM, 1.025 mM (crosses); Rh-6G, 0.21 mM and DCM, 0.782 mM (circles); and Rh-6G, 0.179 mM and DCM, 1.044 mM (squares).

Fig. 4
Fig. 4

Absorption and fluorescence spectra of the individual dyes, Rh-6G and DCM.

Fig. 5
Fig. 5

Absorption and fluorescence spectra of a mixture of the two dyes Rh-6G and DCM.

Fig. 6
Fig. 6

Tuning curve for a dye-mixture-based laser, showing laser efficiency versus wavelength (squares) near the long wavelength end. Triangles denote the measured value of spectrally integrated Amplified Spontaneous emission from Rh-6G as the laser oscillation wavelength is tuned on the red end of DCM.

Fig. 7
Fig. 7

Calculated tuning curves for the individual dyes Rh-6G at 0.31 mm (solid curve), DCM at 1.5 mM (dashed curve), and a mixture of Rh-6G at 0.33 mM and DCM at 1.025 mM (dashed-dotted curve).

Fig. 8
Fig. 8

Theoretical dependence of laser tuning curve on the concentration of the individual dyes computed for the following mixtures: Rh-6G, 0.51 mM and DCM, 0.85 mM (dashed curve); Rh-6G, 0.28 mM and DCM, 1.025 mM (dashed-double-dotted curve); Rh-6G, 0.21 mM and DCM, 0.782 mM (solid curve); and Rh-6G, 0.179 mM and DCM, 1.044 mM (dotted curve).

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

dn1R/dt=QpRσ01RλpN1Rc- n1R/τRf-QLλLσeRλLn1R-N1Rc,
dn1D/dt=QpDσ01DλpN1Dc- n1D/τDf-QLλLσeDλLn1D-N1Dc,
dQL/dt= σeRλLn1R-N1Rc+σeDλLn1D-N1DcQL+f n1R/τR+ n1D/τD-QL/τC- σ01RλLN1R-n1Rc+σ01DλLN1D-n1DcQL,
QpR= Qpσ01RλpN1R/ σ01RλpN1R+σ01DλpN1D,
QpD= Qpσ01DλpN1D/ σ01RλpN1R+σ01DλpN1D,
NR=N1R+n1R,ND=N1D+n1D.
Qpt=Qp01-exp-t/τ1exp-t/τ2;τ1=5 ns, τ2=23 ns.

Metrics