Abstract

We present a novel approach for the generation of highly frequency-stable, widely tunable, single-frequency cw UV light that is suitable for high-resolution spectroscopy. Sum-frequency generation (SFG) of two solid-state sources with a single cavity resonant for both fundamental waves is employed. Using a highly stable, narrow-linewidth frequency-doubled cw Nd:YAG laser as a master laser and slaving to it the SFG cavity and the other fundamental wave from a Ti:sapphire laser, we generate UV radiation of 33-mW output power around 313 nm. Alternatively, we use a diode laser instead of the Ti:sapphire laser and produce an output power of 2.1 mW at 313 nm. With both setups we obtain a continuous tunability of >15 GHz, short-term frequency fluctuations in the submegahertz range, a long-term frequency drift below 100 MHz/h, and stable operation for several hours. The theory of optimized doubly resonant SFG is also given.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. E. Wagstaff, M. H. Dunn, “A second-harmonic, ring dye laser for the generation of continuous-wave, single-frequency UV radiation,” J. Phys. D 12, 355–368 (1979).
    [CrossRef]
  2. J. J. Bollinger, J. S. Wells, D. J. Wineland, W. M. Itano, “Hyperfine structure of the 2p2P1/2 state in 9Be+,” Phys. Rev. A 31, 2711–2714 (1985).
    [CrossRef] [PubMed]
  3. H. Imajo, K. Hayasaka, R. Ohmukai, M. Watanabe, S. Urabe, “Observation of laser cooled Be+-ion clouds in a Penning trap,” Appl. Phys. B 61, 285–289 (1995).
    [CrossRef]
  4. K. Kondo, M. Oka, H. Wada, G. Fukui, N. Umezu, K. Tatsuki, S. Kubota, “Demonstration of long-term reliability of a 266-nm, continuous-wave, frequency-quadrupled solid-state laser using β BaB2O4,” Opt. Lett. 23, 195–197 (1998).
    [CrossRef]
  5. Y. Kaneda, S. Kubota, “Theoretical treatment, simulation, and experiments of doubly resonant sum-frequency mixing in an external resonator,” Appl. Opt. 36, 7766–7775 (1997).
    [CrossRef]
  6. J. D. Vance, C.-Y. She, H. Moosmüller, “Continuous-wave, all-solid-state, single-frequency 400-mW source at 589 nm based on doubly resonant sum-frequency mixing in a monolithic lithium niobate resonator,” Appl. Opt. 37, 4891–4896 (1998).
    [CrossRef]
  7. T. Fujii, H. Kumagai, K. Midorikawa, M. Obara, “Development of a high-power deep-ultraviolet continuous-wave coherent light source for laser cooling of silicon atoms,” Opt. Lett. 25, 1457–1459 (2000).
    [CrossRef]
  8. K. Schneider, S. Schiller, J. Mlynek, M. Bode, I. Freitag, “1.1-W single-frequency 532-nm radiation from a miniature Nd:YAG ring laser,” Opt. Lett. 21, 1999–2001 (1996).
    [CrossRef] [PubMed]
  9. M. Bode, I. Freitag, A. Tünnermann, H. Welling, “Frequency-tunable 500-mW continuous-wave all-solid-state single-frequency source in the blue spectral region,” Opt. Lett. 22, 1220–1222 (1997).
    [CrossRef] [PubMed]
  10. G. D. Boyd, D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1968).
    [CrossRef]
  11. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
    [CrossRef]
  12. C.-C. Chen, M. Z. Win, “Noise measurement of diode-pumped Nd:YAG ring lasers,” IEEE Photon. Technol. Lett. 2, 772–774 (1990).
    [CrossRef]

2000

1998

1997

1996

1995

H. Imajo, K. Hayasaka, R. Ohmukai, M. Watanabe, S. Urabe, “Observation of laser cooled Be+-ion clouds in a Penning trap,” Appl. Phys. B 61, 285–289 (1995).
[CrossRef]

1990

C.-C. Chen, M. Z. Win, “Noise measurement of diode-pumped Nd:YAG ring lasers,” IEEE Photon. Technol. Lett. 2, 772–774 (1990).
[CrossRef]

1985

J. J. Bollinger, J. S. Wells, D. J. Wineland, W. M. Itano, “Hyperfine structure of the 2p2P1/2 state in 9Be+,” Phys. Rev. A 31, 2711–2714 (1985).
[CrossRef] [PubMed]

1983

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

1979

C. E. Wagstaff, M. H. Dunn, “A second-harmonic, ring dye laser for the generation of continuous-wave, single-frequency UV radiation,” J. Phys. D 12, 355–368 (1979).
[CrossRef]

1968

G. D. Boyd, D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1968).
[CrossRef]

Bode, M.

Bollinger, J. J.

J. J. Bollinger, J. S. Wells, D. J. Wineland, W. M. Itano, “Hyperfine structure of the 2p2P1/2 state in 9Be+,” Phys. Rev. A 31, 2711–2714 (1985).
[CrossRef] [PubMed]

Boyd, G. D.

G. D. Boyd, D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1968).
[CrossRef]

Chen, C.-C.

C.-C. Chen, M. Z. Win, “Noise measurement of diode-pumped Nd:YAG ring lasers,” IEEE Photon. Technol. Lett. 2, 772–774 (1990).
[CrossRef]

Drever, R. W. P.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Dunn, M. H.

C. E. Wagstaff, M. H. Dunn, “A second-harmonic, ring dye laser for the generation of continuous-wave, single-frequency UV radiation,” J. Phys. D 12, 355–368 (1979).
[CrossRef]

Ford, G. M.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Freitag, I.

Fujii, T.

Fukui, G.

Hall, J. L.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Hayasaka, K.

H. Imajo, K. Hayasaka, R. Ohmukai, M. Watanabe, S. Urabe, “Observation of laser cooled Be+-ion clouds in a Penning trap,” Appl. Phys. B 61, 285–289 (1995).
[CrossRef]

Hough, J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Imajo, H.

H. Imajo, K. Hayasaka, R. Ohmukai, M. Watanabe, S. Urabe, “Observation of laser cooled Be+-ion clouds in a Penning trap,” Appl. Phys. B 61, 285–289 (1995).
[CrossRef]

Itano, W. M.

J. J. Bollinger, J. S. Wells, D. J. Wineland, W. M. Itano, “Hyperfine structure of the 2p2P1/2 state in 9Be+,” Phys. Rev. A 31, 2711–2714 (1985).
[CrossRef] [PubMed]

Kaneda, Y.

Kleinman, D. A.

G. D. Boyd, D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1968).
[CrossRef]

Kondo, K.

Kowalski, F. V.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Kubota, S.

Kumagai, H.

Midorikawa, K.

Mlynek, J.

Moosmüller, H.

Munley, A. J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Obara, M.

Ohmukai, R.

H. Imajo, K. Hayasaka, R. Ohmukai, M. Watanabe, S. Urabe, “Observation of laser cooled Be+-ion clouds in a Penning trap,” Appl. Phys. B 61, 285–289 (1995).
[CrossRef]

Oka, M.

Schiller, S.

Schneider, K.

She, C.-Y.

Tatsuki, K.

Tünnermann, A.

Umezu, N.

Urabe, S.

H. Imajo, K. Hayasaka, R. Ohmukai, M. Watanabe, S. Urabe, “Observation of laser cooled Be+-ion clouds in a Penning trap,” Appl. Phys. B 61, 285–289 (1995).
[CrossRef]

Vance, J. D.

Wada, H.

Wagstaff, C. E.

C. E. Wagstaff, M. H. Dunn, “A second-harmonic, ring dye laser for the generation of continuous-wave, single-frequency UV radiation,” J. Phys. D 12, 355–368 (1979).
[CrossRef]

Ward, H.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Watanabe, M.

H. Imajo, K. Hayasaka, R. Ohmukai, M. Watanabe, S. Urabe, “Observation of laser cooled Be+-ion clouds in a Penning trap,” Appl. Phys. B 61, 285–289 (1995).
[CrossRef]

Welling, H.

Wells, J. S.

J. J. Bollinger, J. S. Wells, D. J. Wineland, W. M. Itano, “Hyperfine structure of the 2p2P1/2 state in 9Be+,” Phys. Rev. A 31, 2711–2714 (1985).
[CrossRef] [PubMed]

Win, M. Z.

C.-C. Chen, M. Z. Win, “Noise measurement of diode-pumped Nd:YAG ring lasers,” IEEE Photon. Technol. Lett. 2, 772–774 (1990).
[CrossRef]

Wineland, D. J.

J. J. Bollinger, J. S. Wells, D. J. Wineland, W. M. Itano, “Hyperfine structure of the 2p2P1/2 state in 9Be+,” Phys. Rev. A 31, 2711–2714 (1985).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. B

H. Imajo, K. Hayasaka, R. Ohmukai, M. Watanabe, S. Urabe, “Observation of laser cooled Be+-ion clouds in a Penning trap,” Appl. Phys. B 61, 285–289 (1995).
[CrossRef]

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

IEEE Photon. Technol. Lett.

C.-C. Chen, M. Z. Win, “Noise measurement of diode-pumped Nd:YAG ring lasers,” IEEE Photon. Technol. Lett. 2, 772–774 (1990).
[CrossRef]

J. Appl. Phys.

G. D. Boyd, D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1968).
[CrossRef]

J. Phys. D

C. E. Wagstaff, M. H. Dunn, “A second-harmonic, ring dye laser for the generation of continuous-wave, single-frequency UV radiation,” J. Phys. D 12, 355–368 (1979).
[CrossRef]

Opt. Lett.

Phys. Rev. A

J. J. Bollinger, J. S. Wells, D. J. Wineland, W. M. Itano, “Hyperfine structure of the 2p2P1/2 state in 9Be+,” Phys. Rev. A 31, 2711–2714 (1985).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the doubly resonant SFG setup. PD, rf photodetector.

Fig. 2
Fig. 2

Input fundamental and output SFG powers during stable long-term operation.

Fig. 3
Fig. 3

Frequency drifts of the 532- and 313-nm light.

Fig. 4
Fig. 4

Frequency tuning of the UV light. Frequencies of the 532-nm light and the slaved 760-nm light were measured simultaneously with wavemeters.

Fig. 5
Fig. 5

Spectral frequency noise densities of the cavity lock error signals. 532-nm Nd:YAG laser (left) and 760-nm Ti:sapphire laser (right).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

EΣ := 4 μ0d2πc02ω1ω2ω3nω32 hL,
T1P1inP1circ1/2=1- R11-EΣω1ω3 P2circ1/2,
1 := ω2ω3EΣP1inS1S2,2 := ω1ω3EΣP2inS1S2,
f := 1+1+2+1+1+22-4121/2,
P3max= ω32ω1ω2S1S2EΣ12f/2,
δν313t= 1+532760δν532MLt- 532760×δν532cavt+δν760cavt.

Metrics