Abstract

We present a novel approach for the generation of highly frequency-stable, widely tunable, single-frequency cw UV light that is suitable for high-resolution spectroscopy. Sum-frequency generation (SFG) of two solid-state sources with a single cavity resonant for both fundamental waves is employed. Using a highly stable, narrow-linewidth frequency-doubled cw Nd:YAG laser as a master laser and slaving to it the SFG cavity and the other fundamental wave from a Ti:sapphire laser, we generate UV radiation of 33-mW output power around 313 nm. Alternatively, we use a diode laser instead of the Ti:sapphire laser and produce an output power of 2.1 mW at 313 nm. With both setups we obtain a continuous tunability of >15 GHz, short-term frequency fluctuations in the submegahertz range, a long-term frequency drift below 100 MHz/h, and stable operation for several hours. The theory of optimized doubly resonant SFG is also given.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription