Abstract

We study the response of a high-finesse optical cavity to a cw laser during the laser frequency passage through resonance. For a laser that is spectrally larger than the cavity resonance, laser-field phase fluctuations are converted into amplitude fluctuations, and cavity injection is intrinsically noisy. We develop a model based on Schawlow-Townes spontaneous-emission laser broadening and discuss in detail its effects on high-sensitivity spectroscopic techniques such as cavity-enhanced absorption or cavity ring-down spectroscopy. We present realistic simulations of cavity injection during a sweep through resonance and calculation of statistical quantities such as the average injection efficiency. Agreement with experimental observations is established.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Statz, T. Dorschner, M. Holtz, I. Smith, “The multioscillator ring laser gyroscope,” in Laser Handbook, M. L. Stitch, M. Bass, eds. (Elsevier, North Holland, Amsterdam, 1985), Vol. 4, pp. 231–310.
  2. D. Z. Anderson, J. C. Frisch, C. S. Masser, “Mirror reflectometer based on optical cavity decay time,” Appl. Opt. 23, 1238–1245 (1984).
    [CrossRef] [PubMed]
  3. C. Tanner, B. Masterson, C. Wieman, “Atomic beam collimation using a laser diode with a self-locking power-buildup cavity,” Opt. Lett. 13, 357–359 (1988).
    [CrossRef] [PubMed]
  4. C. E. Wieman, L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62, 1–20 (1991).
    [CrossRef]
  5. J. Ye, L. Ma, J. Hall, “Cavity-enhanced frequency modulation spectroscopy: advancing optical detection sensitivity and laser frequency stabilization,” in Methods for Ultrasensitive Detection, B. L. Fearey, ed., Proc. SPIE3270, 85–96 (1998).
  6. J. Ye, “Using FM methods with molecules in a high finesse cavity: a demonstrated path to 10-12 absorption sensitivity,” in Cavity-Ringdown Spectroscopy—An Ultratrace-Absorption Measurement Technique, K. W. Busch, M. A. Busch, eds. (American Chemical Society, Washington, D.C., 1999), pp. 233–252.
  7. K. Nakagawa, T. Katsuda, A. Shelkovnikov, M. de Labachelerie, M. Ohtsu, “Highly sensitive detection of molecular absorption using a high finesse optical cavity,” Opt. Commun. 107, 369–372 (1994).
    [CrossRef]
  8. R. Engeln, G. Berden, R. Peeters, G. Meijer, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum. 69, 3763–3769 (1998).
    [CrossRef]
  9. G. Berden, R. Peeters, G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19, 565–607 (2000).
    [CrossRef]
  10. K. Busch, M. Busch, Cavity-Ringdown Spectroscopy—An Ultratrace-Absorption Measurement Technique (American Chemical Society, Washington, D.C., 1999).
  11. L. Gianfrani, R. Fox, L. Hollberg, “Cavity-enhanced absorption spectroscopy of molecular oxygen,” J. Opt. Soc. Am. B 16, 2247–2254 (1999).
    [CrossRef]
  12. A. O’Keefe, J. J. Scherer, J. B. Paul, “CW integrated cavity output spectroscopy,” Chem. Phys. Lett. 307, 343–349 (1999).
    [CrossRef]
  13. J. B. Paul, L. Lapson, J. G. Anderson, “Ultrasensitive absorption spectroscopy with a high-finesse optical cavity and off-axis alignment,” Appl. Opt. 40, 4904–4910 (2001).
    [CrossRef]
  14. R. Peeters, G. Berden, A. Apituley, G. Meijer, “Open-path trace gas detection of ammonia based on cavity-enhanced absorption spectroscopy,” Appl. Phys. B 71, 231–236 (2000).
    [CrossRef]
  15. New Focus Inc., catalog, (New Focus, Santa Clara, Calif., 1999), p. 32.
  16. K. K. Lehmann, D. Romanini, “The superposition principle and cavity ring down spectroscopy,” J. Chem. Phys. 105, 10,263–10,277 (1996).
    [CrossRef]
  17. D. Romanini, A. A. Kachanov, N. Sadeghi, F. Stoeckel, “CW-cavity ring down spectroscopy,” Chem. Phys. Lett. 264, 316–322 (1997).
    [CrossRef]
  18. J. Poirson, F. Bretenaker, M. Vallet, A. L. Floch, “Analytical and experimental study of ringing effects in a Fabry-Perot cavity. Application to the measurement of high finesses,” J. Opt. Soc. Am. B 14, 2811–2817 (1997).
    [CrossRef]
  19. Z. Li, G. E. Stedman, H. R. Bilger, “Asymmetric response profile of a scanning Fabry-Perot interferometer,” Opt. Commun. 100, 240–246 (1993).
    [CrossRef]
  20. K. An, C. Yang, R. Dasari, M. Feld, “Cavity ring-down technique and its application to the measurement of ultraslow velocities,” Opt. Lett. 20, 1068–1070 (1995).
    [CrossRef] [PubMed]
  21. Z. Li, R. Bennett, G. Stedman, “Swept-frequency induced optical cavity ringing,” Opt. Commun. 86, 51–57 (1991).
    [CrossRef]
  22. M. Lawrence, B. Willke, M. Husman, E. Gustafson, R. Byer, “Dynamic response of a Fabry-Perot interferometer,” J. Opt. Soc. Am. B 16, 523–532 (1999).
    [CrossRef]
  23. J. W. Hahn, Y. S. Yoo, J. Y. Lee, J. W. Kim, H. W. Lee, “Cavity ringdown spectroscopy with a continuous-wave laser: calculation of coupling efficiency and a new spectrometer design,” Appl. Opt. 38, 1859–1865 (1999).
    [CrossRef]
  24. A. L. Schawlow, C. H. Townes, “Infrared and optical masers,” Phys. Rev. 112, 1940–1949 (1958).
    [CrossRef]
  25. K. Petermann, Laser Diode Modulation and Noise (Kluwer Scientific, Tokyo, 1991).
  26. K. Vahala, L. Chiu, S. Margalit, A. Yariv, “On the linewidth enhancement factor α in semiconductor injection lasers,” Appl. Phys. Lett. 42, 631–633 (1983).
    [CrossRef]
  27. L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, New York, 1995).
  28. W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes: The Art of Scientific Computing (Cambridge U. Press, Cambridge, 1988).
  29. Y. He, B. J. Orr, “Ringdown and cavity-enhanced absorption spectroscopy using a continuous-wave tunable diode laser and a rapidly swept optical cavity,” Chem. Phys. Lett. 319, 131–137 (2000).
    [CrossRef]
  30. J. Morville, “Injection des cavités optiques de haute finesse par laser à diode—application à la CW-CRDS et à la détection de traces atmosphériques,” Ph.D. dissertation (Université Joseph Fourier, Grenoble, France, 2001).

2001

2000

R. Peeters, G. Berden, A. Apituley, G. Meijer, “Open-path trace gas detection of ammonia based on cavity-enhanced absorption spectroscopy,” Appl. Phys. B 71, 231–236 (2000).
[CrossRef]

G. Berden, R. Peeters, G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19, 565–607 (2000).
[CrossRef]

Y. He, B. J. Orr, “Ringdown and cavity-enhanced absorption spectroscopy using a continuous-wave tunable diode laser and a rapidly swept optical cavity,” Chem. Phys. Lett. 319, 131–137 (2000).
[CrossRef]

1999

1998

R. Engeln, G. Berden, R. Peeters, G. Meijer, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum. 69, 3763–3769 (1998).
[CrossRef]

1997

1996

K. K. Lehmann, D. Romanini, “The superposition principle and cavity ring down spectroscopy,” J. Chem. Phys. 105, 10,263–10,277 (1996).
[CrossRef]

1995

1994

K. Nakagawa, T. Katsuda, A. Shelkovnikov, M. de Labachelerie, M. Ohtsu, “Highly sensitive detection of molecular absorption using a high finesse optical cavity,” Opt. Commun. 107, 369–372 (1994).
[CrossRef]

1993

Z. Li, G. E. Stedman, H. R. Bilger, “Asymmetric response profile of a scanning Fabry-Perot interferometer,” Opt. Commun. 100, 240–246 (1993).
[CrossRef]

1991

Z. Li, R. Bennett, G. Stedman, “Swept-frequency induced optical cavity ringing,” Opt. Commun. 86, 51–57 (1991).
[CrossRef]

C. E. Wieman, L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62, 1–20 (1991).
[CrossRef]

1988

1984

1983

K. Vahala, L. Chiu, S. Margalit, A. Yariv, “On the linewidth enhancement factor α in semiconductor injection lasers,” Appl. Phys. Lett. 42, 631–633 (1983).
[CrossRef]

1958

A. L. Schawlow, C. H. Townes, “Infrared and optical masers,” Phys. Rev. 112, 1940–1949 (1958).
[CrossRef]

An, K.

Anderson, D. Z.

Anderson, J. G.

Apituley, A.

R. Peeters, G. Berden, A. Apituley, G. Meijer, “Open-path trace gas detection of ammonia based on cavity-enhanced absorption spectroscopy,” Appl. Phys. B 71, 231–236 (2000).
[CrossRef]

Bennett, R.

Z. Li, R. Bennett, G. Stedman, “Swept-frequency induced optical cavity ringing,” Opt. Commun. 86, 51–57 (1991).
[CrossRef]

Berden, G.

R. Peeters, G. Berden, A. Apituley, G. Meijer, “Open-path trace gas detection of ammonia based on cavity-enhanced absorption spectroscopy,” Appl. Phys. B 71, 231–236 (2000).
[CrossRef]

G. Berden, R. Peeters, G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19, 565–607 (2000).
[CrossRef]

R. Engeln, G. Berden, R. Peeters, G. Meijer, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum. 69, 3763–3769 (1998).
[CrossRef]

Bilger, H. R.

Z. Li, G. E. Stedman, H. R. Bilger, “Asymmetric response profile of a scanning Fabry-Perot interferometer,” Opt. Commun. 100, 240–246 (1993).
[CrossRef]

Bretenaker, F.

Busch, K.

K. Busch, M. Busch, Cavity-Ringdown Spectroscopy—An Ultratrace-Absorption Measurement Technique (American Chemical Society, Washington, D.C., 1999).

Busch, M.

K. Busch, M. Busch, Cavity-Ringdown Spectroscopy—An Ultratrace-Absorption Measurement Technique (American Chemical Society, Washington, D.C., 1999).

Byer, R.

Chiu, L.

K. Vahala, L. Chiu, S. Margalit, A. Yariv, “On the linewidth enhancement factor α in semiconductor injection lasers,” Appl. Phys. Lett. 42, 631–633 (1983).
[CrossRef]

Dasari, R.

de Labachelerie, M.

K. Nakagawa, T. Katsuda, A. Shelkovnikov, M. de Labachelerie, M. Ohtsu, “Highly sensitive detection of molecular absorption using a high finesse optical cavity,” Opt. Commun. 107, 369–372 (1994).
[CrossRef]

Dorschner, T.

H. Statz, T. Dorschner, M. Holtz, I. Smith, “The multioscillator ring laser gyroscope,” in Laser Handbook, M. L. Stitch, M. Bass, eds. (Elsevier, North Holland, Amsterdam, 1985), Vol. 4, pp. 231–310.

Engeln, R.

R. Engeln, G. Berden, R. Peeters, G. Meijer, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum. 69, 3763–3769 (1998).
[CrossRef]

Feld, M.

Flannery, B. P.

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes: The Art of Scientific Computing (Cambridge U. Press, Cambridge, 1988).

Floch, A. L.

Fox, R.

Frisch, J. C.

Gianfrani, L.

Gustafson, E.

Hahn, J. W.

Hall, J.

J. Ye, L. Ma, J. Hall, “Cavity-enhanced frequency modulation spectroscopy: advancing optical detection sensitivity and laser frequency stabilization,” in Methods for Ultrasensitive Detection, B. L. Fearey, ed., Proc. SPIE3270, 85–96 (1998).

He, Y.

Y. He, B. J. Orr, “Ringdown and cavity-enhanced absorption spectroscopy using a continuous-wave tunable diode laser and a rapidly swept optical cavity,” Chem. Phys. Lett. 319, 131–137 (2000).
[CrossRef]

Hollberg, L.

L. Gianfrani, R. Fox, L. Hollberg, “Cavity-enhanced absorption spectroscopy of molecular oxygen,” J. Opt. Soc. Am. B 16, 2247–2254 (1999).
[CrossRef]

C. E. Wieman, L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62, 1–20 (1991).
[CrossRef]

Holtz, M.

H. Statz, T. Dorschner, M. Holtz, I. Smith, “The multioscillator ring laser gyroscope,” in Laser Handbook, M. L. Stitch, M. Bass, eds. (Elsevier, North Holland, Amsterdam, 1985), Vol. 4, pp. 231–310.

Husman, M.

Kachanov, A. A.

D. Romanini, A. A. Kachanov, N. Sadeghi, F. Stoeckel, “CW-cavity ring down spectroscopy,” Chem. Phys. Lett. 264, 316–322 (1997).
[CrossRef]

Katsuda, T.

K. Nakagawa, T. Katsuda, A. Shelkovnikov, M. de Labachelerie, M. Ohtsu, “Highly sensitive detection of molecular absorption using a high finesse optical cavity,” Opt. Commun. 107, 369–372 (1994).
[CrossRef]

Kim, J. W.

Lapson, L.

Lawrence, M.

Lee, H. W.

Lee, J. Y.

Lehmann, K. K.

K. K. Lehmann, D. Romanini, “The superposition principle and cavity ring down spectroscopy,” J. Chem. Phys. 105, 10,263–10,277 (1996).
[CrossRef]

Li, Z.

Z. Li, G. E. Stedman, H. R. Bilger, “Asymmetric response profile of a scanning Fabry-Perot interferometer,” Opt. Commun. 100, 240–246 (1993).
[CrossRef]

Z. Li, R. Bennett, G. Stedman, “Swept-frequency induced optical cavity ringing,” Opt. Commun. 86, 51–57 (1991).
[CrossRef]

Ma, L.

J. Ye, L. Ma, J. Hall, “Cavity-enhanced frequency modulation spectroscopy: advancing optical detection sensitivity and laser frequency stabilization,” in Methods for Ultrasensitive Detection, B. L. Fearey, ed., Proc. SPIE3270, 85–96 (1998).

Mandel, L.

L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, New York, 1995).

Margalit, S.

K. Vahala, L. Chiu, S. Margalit, A. Yariv, “On the linewidth enhancement factor α in semiconductor injection lasers,” Appl. Phys. Lett. 42, 631–633 (1983).
[CrossRef]

Masser, C. S.

Masterson, B.

Meijer, G.

G. Berden, R. Peeters, G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19, 565–607 (2000).
[CrossRef]

R. Peeters, G. Berden, A. Apituley, G. Meijer, “Open-path trace gas detection of ammonia based on cavity-enhanced absorption spectroscopy,” Appl. Phys. B 71, 231–236 (2000).
[CrossRef]

R. Engeln, G. Berden, R. Peeters, G. Meijer, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum. 69, 3763–3769 (1998).
[CrossRef]

Morville, J.

J. Morville, “Injection des cavités optiques de haute finesse par laser à diode—application à la CW-CRDS et à la détection de traces atmosphériques,” Ph.D. dissertation (Université Joseph Fourier, Grenoble, France, 2001).

Nakagawa, K.

K. Nakagawa, T. Katsuda, A. Shelkovnikov, M. de Labachelerie, M. Ohtsu, “Highly sensitive detection of molecular absorption using a high finesse optical cavity,” Opt. Commun. 107, 369–372 (1994).
[CrossRef]

O’Keefe, A.

A. O’Keefe, J. J. Scherer, J. B. Paul, “CW integrated cavity output spectroscopy,” Chem. Phys. Lett. 307, 343–349 (1999).
[CrossRef]

Ohtsu, M.

K. Nakagawa, T. Katsuda, A. Shelkovnikov, M. de Labachelerie, M. Ohtsu, “Highly sensitive detection of molecular absorption using a high finesse optical cavity,” Opt. Commun. 107, 369–372 (1994).
[CrossRef]

Orr, B. J.

Y. He, B. J. Orr, “Ringdown and cavity-enhanced absorption spectroscopy using a continuous-wave tunable diode laser and a rapidly swept optical cavity,” Chem. Phys. Lett. 319, 131–137 (2000).
[CrossRef]

Paul, J. B.

Peeters, R.

R. Peeters, G. Berden, A. Apituley, G. Meijer, “Open-path trace gas detection of ammonia based on cavity-enhanced absorption spectroscopy,” Appl. Phys. B 71, 231–236 (2000).
[CrossRef]

G. Berden, R. Peeters, G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19, 565–607 (2000).
[CrossRef]

R. Engeln, G. Berden, R. Peeters, G. Meijer, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum. 69, 3763–3769 (1998).
[CrossRef]

Petermann, K.

K. Petermann, Laser Diode Modulation and Noise (Kluwer Scientific, Tokyo, 1991).

Poirson, J.

Press, W. H.

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes: The Art of Scientific Computing (Cambridge U. Press, Cambridge, 1988).

Romanini, D.

D. Romanini, A. A. Kachanov, N. Sadeghi, F. Stoeckel, “CW-cavity ring down spectroscopy,” Chem. Phys. Lett. 264, 316–322 (1997).
[CrossRef]

K. K. Lehmann, D. Romanini, “The superposition principle and cavity ring down spectroscopy,” J. Chem. Phys. 105, 10,263–10,277 (1996).
[CrossRef]

Sadeghi, N.

D. Romanini, A. A. Kachanov, N. Sadeghi, F. Stoeckel, “CW-cavity ring down spectroscopy,” Chem. Phys. Lett. 264, 316–322 (1997).
[CrossRef]

Schawlow, A. L.

A. L. Schawlow, C. H. Townes, “Infrared and optical masers,” Phys. Rev. 112, 1940–1949 (1958).
[CrossRef]

Scherer, J. J.

A. O’Keefe, J. J. Scherer, J. B. Paul, “CW integrated cavity output spectroscopy,” Chem. Phys. Lett. 307, 343–349 (1999).
[CrossRef]

Shelkovnikov, A.

K. Nakagawa, T. Katsuda, A. Shelkovnikov, M. de Labachelerie, M. Ohtsu, “Highly sensitive detection of molecular absorption using a high finesse optical cavity,” Opt. Commun. 107, 369–372 (1994).
[CrossRef]

Smith, I.

H. Statz, T. Dorschner, M. Holtz, I. Smith, “The multioscillator ring laser gyroscope,” in Laser Handbook, M. L. Stitch, M. Bass, eds. (Elsevier, North Holland, Amsterdam, 1985), Vol. 4, pp. 231–310.

Statz, H.

H. Statz, T. Dorschner, M. Holtz, I. Smith, “The multioscillator ring laser gyroscope,” in Laser Handbook, M. L. Stitch, M. Bass, eds. (Elsevier, North Holland, Amsterdam, 1985), Vol. 4, pp. 231–310.

Stedman, G.

Z. Li, R. Bennett, G. Stedman, “Swept-frequency induced optical cavity ringing,” Opt. Commun. 86, 51–57 (1991).
[CrossRef]

Stedman, G. E.

Z. Li, G. E. Stedman, H. R. Bilger, “Asymmetric response profile of a scanning Fabry-Perot interferometer,” Opt. Commun. 100, 240–246 (1993).
[CrossRef]

Stoeckel, F.

D. Romanini, A. A. Kachanov, N. Sadeghi, F. Stoeckel, “CW-cavity ring down spectroscopy,” Chem. Phys. Lett. 264, 316–322 (1997).
[CrossRef]

Tanner, C.

Teukolsky, S. A.

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes: The Art of Scientific Computing (Cambridge U. Press, Cambridge, 1988).

Townes, C. H.

A. L. Schawlow, C. H. Townes, “Infrared and optical masers,” Phys. Rev. 112, 1940–1949 (1958).
[CrossRef]

Vahala, K.

K. Vahala, L. Chiu, S. Margalit, A. Yariv, “On the linewidth enhancement factor α in semiconductor injection lasers,” Appl. Phys. Lett. 42, 631–633 (1983).
[CrossRef]

Vallet, M.

Vetterling, W. T.

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes: The Art of Scientific Computing (Cambridge U. Press, Cambridge, 1988).

Wieman, C.

Wieman, C. E.

C. E. Wieman, L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62, 1–20 (1991).
[CrossRef]

Willke, B.

Wolf, E.

L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, New York, 1995).

Yang, C.

Yariv, A.

K. Vahala, L. Chiu, S. Margalit, A. Yariv, “On the linewidth enhancement factor α in semiconductor injection lasers,” Appl. Phys. Lett. 42, 631–633 (1983).
[CrossRef]

Ye, J.

J. Ye, L. Ma, J. Hall, “Cavity-enhanced frequency modulation spectroscopy: advancing optical detection sensitivity and laser frequency stabilization,” in Methods for Ultrasensitive Detection, B. L. Fearey, ed., Proc. SPIE3270, 85–96 (1998).

J. Ye, “Using FM methods with molecules in a high finesse cavity: a demonstrated path to 10-12 absorption sensitivity,” in Cavity-Ringdown Spectroscopy—An Ultratrace-Absorption Measurement Technique, K. W. Busch, M. A. Busch, eds. (American Chemical Society, Washington, D.C., 1999), pp. 233–252.

Yoo, Y. S.

Appl. Opt.

Appl. Phys. B

R. Peeters, G. Berden, A. Apituley, G. Meijer, “Open-path trace gas detection of ammonia based on cavity-enhanced absorption spectroscopy,” Appl. Phys. B 71, 231–236 (2000).
[CrossRef]

Appl. Phys. Lett.

K. Vahala, L. Chiu, S. Margalit, A. Yariv, “On the linewidth enhancement factor α in semiconductor injection lasers,” Appl. Phys. Lett. 42, 631–633 (1983).
[CrossRef]

Chem. Phys. Lett.

A. O’Keefe, J. J. Scherer, J. B. Paul, “CW integrated cavity output spectroscopy,” Chem. Phys. Lett. 307, 343–349 (1999).
[CrossRef]

Y. He, B. J. Orr, “Ringdown and cavity-enhanced absorption spectroscopy using a continuous-wave tunable diode laser and a rapidly swept optical cavity,” Chem. Phys. Lett. 319, 131–137 (2000).
[CrossRef]

D. Romanini, A. A. Kachanov, N. Sadeghi, F. Stoeckel, “CW-cavity ring down spectroscopy,” Chem. Phys. Lett. 264, 316–322 (1997).
[CrossRef]

Int. Rev. Phys. Chem.

G. Berden, R. Peeters, G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19, 565–607 (2000).
[CrossRef]

J. Chem. Phys.

K. K. Lehmann, D. Romanini, “The superposition principle and cavity ring down spectroscopy,” J. Chem. Phys. 105, 10,263–10,277 (1996).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Commun.

Z. Li, G. E. Stedman, H. R. Bilger, “Asymmetric response profile of a scanning Fabry-Perot interferometer,” Opt. Commun. 100, 240–246 (1993).
[CrossRef]

K. Nakagawa, T. Katsuda, A. Shelkovnikov, M. de Labachelerie, M. Ohtsu, “Highly sensitive detection of molecular absorption using a high finesse optical cavity,” Opt. Commun. 107, 369–372 (1994).
[CrossRef]

Z. Li, R. Bennett, G. Stedman, “Swept-frequency induced optical cavity ringing,” Opt. Commun. 86, 51–57 (1991).
[CrossRef]

Opt. Lett.

Phys. Rev.

A. L. Schawlow, C. H. Townes, “Infrared and optical masers,” Phys. Rev. 112, 1940–1949 (1958).
[CrossRef]

Rev. Sci. Instrum.

C. E. Wieman, L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62, 1–20 (1991).
[CrossRef]

R. Engeln, G. Berden, R. Peeters, G. Meijer, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum. 69, 3763–3769 (1998).
[CrossRef]

Other

K. Busch, M. Busch, Cavity-Ringdown Spectroscopy—An Ultratrace-Absorption Measurement Technique (American Chemical Society, Washington, D.C., 1999).

J. Ye, L. Ma, J. Hall, “Cavity-enhanced frequency modulation spectroscopy: advancing optical detection sensitivity and laser frequency stabilization,” in Methods for Ultrasensitive Detection, B. L. Fearey, ed., Proc. SPIE3270, 85–96 (1998).

J. Ye, “Using FM methods with molecules in a high finesse cavity: a demonstrated path to 10-12 absorption sensitivity,” in Cavity-Ringdown Spectroscopy—An Ultratrace-Absorption Measurement Technique, K. W. Busch, M. A. Busch, eds. (American Chemical Society, Washington, D.C., 1999), pp. 233–252.

H. Statz, T. Dorschner, M. Holtz, I. Smith, “The multioscillator ring laser gyroscope,” in Laser Handbook, M. L. Stitch, M. Bass, eds. (Elsevier, North Holland, Amsterdam, 1985), Vol. 4, pp. 231–310.

New Focus Inc., catalog, (New Focus, Santa Clara, Calif., 1999), p. 32.

K. Petermann, Laser Diode Modulation and Noise (Kluwer Scientific, Tokyo, 1991).

L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, New York, 1995).

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes: The Art of Scientific Computing (Cambridge U. Press, Cambridge, 1988).

J. Morville, “Injection des cavités optiques de haute finesse par laser à diode—application à la CW-CRDS et à la détection de traces atmosphériques,” Ph.D. dissertation (Université Joseph Fourier, Grenoble, France, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Field E 0 at time t and position x inside the cavity comes directly from the source, whereas E 1 is emitted at a previous time t - Δt and reflected by the moving mirror at the instant t - τ.

Fig. 2
Fig. 2

Transmitted intensity profiles as a function of relative laser-cavity scanning speed for the monochromatic injection.

Fig. 3
Fig. 3

Fresnel rotating-frame representation for the laser field with N photons plus the vector for an additional spontaneous photon emission event.

Fig. 4
Fig. 4

Examples of laser phase diffusion dynamics together with the evolution of the associated probability distribution.

Fig. 5
Fig. 5

Transmitted intensity profiles as a function of relative laser-cavity scanning speed for laser linewidth κ = 10. Averaged profiles (200 times) are plotted with thicker curves (the η = 1000 profile is shifted for clarity).

Fig. 6
Fig. 6

Three measured and simulated transmitted intensity profiles for η = 8.5 and η = 420. Experimental parameters (used also for the simulations) are T = 6.3 × 10-5, ℒ = 4.7 × 10-5, Lcav = 50 cm, τcav = 15 µs, Δν cav = 10 kHz, and Δν las = 5 MHz.

Fig. 7
Fig. 7

Normalized injection efficiency of an optical cavity as a function of the laser cavity’s relative frequency tuning-speed for three laser linewidths (κ = 10, 100, 1000). Open symbols, maxima of averaged profiles; filled symbols, averaged maxima of single-event profiles. Crosses and pluses, experimental values obtained by tuning of the laser and the cavity, respectively. (ℛ = 0.99989, L cav = 50 cm, Δν cav = 10 kHz, Δν las ∼ 5 MHz.)

Fig. 8
Fig. 8

Histograms and 67% error bar (N) obtained with 200 single events and fitted Poissonian probability densities for cavity transmission I max, for six values of frequency-tuning speed η, and κ = 10. The filled rectangles mark the positions of the maxima of the averaged profiles.

Tables (1)

Tables Icon

Table 1 Values of Fit Parameters for Curves in Fig. 8 for κ = 10

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

E1=TA expiω1t-xc-i 2L0cω01+v/c,
E0x, t=TEinx, t=TA expiω0t-xc,E1x, t=E0x, t-Δt1,E2x, t=E1x, t-Δt2=2E0x, t-Δt1-Δt2,  Enx, t=TnA expiωnt-xc-i 2L0cp=0n-1 ωp1+v/c,
Ecavx, t=TEinx, tn=0 n expi 2ω0cL0+vt-x-L0cn-vc L0n2.
w=ω˙q=dωqdLdLdt=-ωqL v-ω0L0 v.
Einwx, t=expiω0+w2t-xct-xc=expiφt.
Ecavx, t=Tn=0 nEinwx, t-ntrt.
Ecavx, t=TEinwx, tn=0 n expi 2ω0cL0+vt-xcn-vc L0n2,
dΦ=sin φ/Nph.
pΦ, t=12πσΦ2t1/2exp-Φ22σΦ2t.
σΦ2t=Dt=Rsp2Nph t=tτlas,
ΔνlasS-T=1πτlas=Rsp2πNph.
Eoutx, l+1trt= expi2ω0L0v/c22l+1-x/cEoutx, ltrt+TEinx, l+1trt.
Pi, η, κ=bSη,κΓμη,κ+1iSη,κμη,κ exp-iSη,κ,

Metrics