Abstract

Routine observations of atmospheric NO2 at concentrations ranging from 0.1 to 100 parts per billion are needed for air quality monitoring and for the evaluation of photochemical models. We have designed, constructed, and field tested a relatively inexpensive and specific NO2 sensor using laser-induced fluorescence. The instrument combines a commercial cw external-cavity tunable diode laser (640 nm) and a continuous supersonic expansion. The total package is completely automated, has a modest size of 0.5 m3 and 118 kg, and could be manufactured at competitive prices with the current generation of instruments. The sensitivity of the instrument is 145 parts per trillion by volume min-1 (signal-to-noise ratio of 2), which is more than adequate for monitoring purposes.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. S. Tonnesen, R. L. Dennis, “Analysis of radical propagation efficiency to assess ozone sensitivity to hydrocarbons and NOx. 1. Local indicators of instantaneous odd oxygen production sensitivity,” J. Geophys. Res. 105, 9213–9225 (2000).
    [CrossRef]
  2. W. A. McClenny, E. J. Williams, R. C. Cohen, J. Stutz, “Preparing to measure the effects of the NOx SIP call—methods for ambient air monitoring of NO, NO2, NOy and individual NOz species,” J. Air. Waste Manage. 52, 542–562 (2002).
    [CrossRef]
  3. J. A. Thornton, P. J. Wooldridge, R. C. Cohen, M. Martinez, H. Harder, W. H. Brune, E. J. Williams, J. M. Roberts, F. C. Fehsenfeld, S. R. Hall, R. E. Shetter, B. P. Wert, A. Fried, “Ozone production rates as a function of NOx abundances and HOx production rates in the Nashville urban plume,” J. Geophys. Res. 107, 10.1029/2001JD000932 (2002).
  4. T. B. Ryerson, E. J. Williams, F. C. Fehsenfeld, “An efficient photolysis system for fast-response NO2 measurements,” J. Geophys. Res. 105, 26447–26461 (2000).
    [CrossRef]
  5. R. S. Gao, E. R. Keim, E. L. Woodbridge, S. J. Ciciora, M. H. Proffitt, T. L. Thompson, R. J. McLaughlin, D. W. Fahey, “New photolysis system for NO2 measurements in the lower stratosphere,” J. Geophys. Res. 99, 20673–20681 (1994).
    [CrossRef]
  6. J. Bradshaw, D. Davis, J. Crawford, G. Chen, R. Shetter, M. Muller, G. Gregory, G. Sachse, D. Blake, B. Heikes, H. Singh, J. Mastromarino, S. Sandholm, “Photofragmentation two-photon laser-induced fluorescence detection of NO2 and NO: comparison of measurements with model results based on airborne observations during PEM-Tropics A,” Geophys. Res. Lett. 26, 471–474 (1999).
    [CrossRef]
  7. J. L. Jimenez, G. J. McRae, D. D. Nelson, M. S. Zahniser, C. E. Kolb, “Remote sensing of NO and NO2 emissions from heavy-duty diesel trucks using tunable diode lasers,” Environ. Sci. Technol. 34, 2380–2387 (2000).
    [CrossRef]
  8. C. Fong, W. H. Brune, “A laser induced fluorescence instrument for measuring tropospheric NO2,” Rev. Sci. Instrum. 68, 4253–4262 (1997).
    [CrossRef]
  9. Y. Matsumi, S. Murakami, M. Kono, K. Takahashi, M. Koike, Y. Kondo, “High-sensitivity instrument for measuring atmospheric NO2,” Anal. Chem. 73, 5485–5493 (2001).
    [CrossRef]
  10. J. Matsumoto, J. Hirokawa, H. Akimoto, Y. Kajii, “Direct measurement of NO2 in the marine atmosphere by laser-induced fluorescence technique,” Atmos. Environ. 35, 2803–2814 (2001).
    [CrossRef]
  11. J. A. Thornton, P. J. Wooldridge, R. C. Cohen, “Atmospheric NO2: in situ laser-induced fluorescence detection at parts per trillion mixing ratios,” Anal. Chem. 72, 528–539 (2000).
    [CrossRef] [PubMed]
  12. K. K. Perkins, T. F. Hanisco, R. C. Cohen, L. C. Koch, R. M. Stimpfle, P. B. Voss, G. P. Bonne, E. J. Lanzendorf, J. G. Anderson, P. O. Wennberg, R. S. Gao, L. A. Del Negro, R. J. Salawitch, C. T. McElroy, E. J. Hintsa, M. Loewenstein, T. P. Bui, “The NOx-HNO3 system in the lower stratosphere: insights from in situ measurements and implications of the J(HNO3)-[OH] relationship,” J. Phys. Chem. A 105, 1521–1534 (2001).
    [CrossRef]
  13. J. P. Burrows, A. Dehn, B. Deters, S. Himmelmann, A. Richter, S. Voigt, J. Orphal, “Atmospheric remote-sensing reference data from GOME: Part I. Temperature-dependent absorption cross-sections of NO2 in the 231–794 nm range,” J. Quan. Spectros. Radiat. Transfer 60, 1025–1031 (1998).
    [CrossRef]
  14. J. C. D. Brand, K. J. Cross, A. R. Hoy, “Resonance fluorescence intensities and vibrational assignments in the A2B2 state of NO2,” Can. J. Phys. 60, 1081–1087 (1982).
    [CrossRef]
  15. D. Herriott, R. Kompfner, H. Kogelnik, “Off-axis paths in spherical mirror interferometers,” Appl. Opt. 3, 523–526 (1964).
    [CrossRef]
  16. D. R. Miller, “Free jet sources,” in Atomic and Molecular Beam Methods, G. Scoles, ed. (Oxford U. Press, New York, 1988), pp. 14–53.
  17. J. A. Thornton, “Nitrogen dioxide, peroxynitrates and the chemistry of tropospheric ozone production: new insights from in situ measurements,” Ph.D. dissertation (University of California, Berkeley, Berkeley, Calif., (2002).
  18. R. E. Smalley, L. Wharton, D. H. Levy, “Fluorescence excitation spectrum of rotationally cooled NO2,” J. Chem. Phys. 63, 4977–4989 (1975).
    [CrossRef]
  19. A. Delon, R. Jost, M. Jacon, “Laser induced dispersed fluorescence spectroscopy of 107 vibronic levels of NO2 ranging from 12000 to 17600 cm-1,” J. Chem. Phys. 114, 331–344 (2001).
    [CrossRef]
  20. D. A. Day, P. J. Wooldridge, M. B. Dillon, J. A. Thornton, R. C. Cohen, “A thermal dissociation laser-induced fluorescence instrument for in situ detection of NO2, peroxy nitrates, alkyl nitrates, and HNO3,” J. Geophys. Res. 107, 10.129/2001JD000779 (2002).

2002 (3)

W. A. McClenny, E. J. Williams, R. C. Cohen, J. Stutz, “Preparing to measure the effects of the NOx SIP call—methods for ambient air monitoring of NO, NO2, NOy and individual NOz species,” J. Air. Waste Manage. 52, 542–562 (2002).
[CrossRef]

J. A. Thornton, P. J. Wooldridge, R. C. Cohen, M. Martinez, H. Harder, W. H. Brune, E. J. Williams, J. M. Roberts, F. C. Fehsenfeld, S. R. Hall, R. E. Shetter, B. P. Wert, A. Fried, “Ozone production rates as a function of NOx abundances and HOx production rates in the Nashville urban plume,” J. Geophys. Res. 107, 10.1029/2001JD000932 (2002).

D. A. Day, P. J. Wooldridge, M. B. Dillon, J. A. Thornton, R. C. Cohen, “A thermal dissociation laser-induced fluorescence instrument for in situ detection of NO2, peroxy nitrates, alkyl nitrates, and HNO3,” J. Geophys. Res. 107, 10.129/2001JD000779 (2002).

2001 (4)

K. K. Perkins, T. F. Hanisco, R. C. Cohen, L. C. Koch, R. M. Stimpfle, P. B. Voss, G. P. Bonne, E. J. Lanzendorf, J. G. Anderson, P. O. Wennberg, R. S. Gao, L. A. Del Negro, R. J. Salawitch, C. T. McElroy, E. J. Hintsa, M. Loewenstein, T. P. Bui, “The NOx-HNO3 system in the lower stratosphere: insights from in situ measurements and implications of the J(HNO3)-[OH] relationship,” J. Phys. Chem. A 105, 1521–1534 (2001).
[CrossRef]

Y. Matsumi, S. Murakami, M. Kono, K. Takahashi, M. Koike, Y. Kondo, “High-sensitivity instrument for measuring atmospheric NO2,” Anal. Chem. 73, 5485–5493 (2001).
[CrossRef]

J. Matsumoto, J. Hirokawa, H. Akimoto, Y. Kajii, “Direct measurement of NO2 in the marine atmosphere by laser-induced fluorescence technique,” Atmos. Environ. 35, 2803–2814 (2001).
[CrossRef]

A. Delon, R. Jost, M. Jacon, “Laser induced dispersed fluorescence spectroscopy of 107 vibronic levels of NO2 ranging from 12000 to 17600 cm-1,” J. Chem. Phys. 114, 331–344 (2001).
[CrossRef]

2000 (4)

J. A. Thornton, P. J. Wooldridge, R. C. Cohen, “Atmospheric NO2: in situ laser-induced fluorescence detection at parts per trillion mixing ratios,” Anal. Chem. 72, 528–539 (2000).
[CrossRef] [PubMed]

T. B. Ryerson, E. J. Williams, F. C. Fehsenfeld, “An efficient photolysis system for fast-response NO2 measurements,” J. Geophys. Res. 105, 26447–26461 (2000).
[CrossRef]

G. S. Tonnesen, R. L. Dennis, “Analysis of radical propagation efficiency to assess ozone sensitivity to hydrocarbons and NOx. 1. Local indicators of instantaneous odd oxygen production sensitivity,” J. Geophys. Res. 105, 9213–9225 (2000).
[CrossRef]

J. L. Jimenez, G. J. McRae, D. D. Nelson, M. S. Zahniser, C. E. Kolb, “Remote sensing of NO and NO2 emissions from heavy-duty diesel trucks using tunable diode lasers,” Environ. Sci. Technol. 34, 2380–2387 (2000).
[CrossRef]

1999 (1)

J. Bradshaw, D. Davis, J. Crawford, G. Chen, R. Shetter, M. Muller, G. Gregory, G. Sachse, D. Blake, B. Heikes, H. Singh, J. Mastromarino, S. Sandholm, “Photofragmentation two-photon laser-induced fluorescence detection of NO2 and NO: comparison of measurements with model results based on airborne observations during PEM-Tropics A,” Geophys. Res. Lett. 26, 471–474 (1999).
[CrossRef]

1998 (1)

J. P. Burrows, A. Dehn, B. Deters, S. Himmelmann, A. Richter, S. Voigt, J. Orphal, “Atmospheric remote-sensing reference data from GOME: Part I. Temperature-dependent absorption cross-sections of NO2 in the 231–794 nm range,” J. Quan. Spectros. Radiat. Transfer 60, 1025–1031 (1998).
[CrossRef]

1997 (1)

C. Fong, W. H. Brune, “A laser induced fluorescence instrument for measuring tropospheric NO2,” Rev. Sci. Instrum. 68, 4253–4262 (1997).
[CrossRef]

1994 (1)

R. S. Gao, E. R. Keim, E. L. Woodbridge, S. J. Ciciora, M. H. Proffitt, T. L. Thompson, R. J. McLaughlin, D. W. Fahey, “New photolysis system for NO2 measurements in the lower stratosphere,” J. Geophys. Res. 99, 20673–20681 (1994).
[CrossRef]

1982 (1)

J. C. D. Brand, K. J. Cross, A. R. Hoy, “Resonance fluorescence intensities and vibrational assignments in the A2B2 state of NO2,” Can. J. Phys. 60, 1081–1087 (1982).
[CrossRef]

1975 (1)

R. E. Smalley, L. Wharton, D. H. Levy, “Fluorescence excitation spectrum of rotationally cooled NO2,” J. Chem. Phys. 63, 4977–4989 (1975).
[CrossRef]

1964 (1)

Akimoto, H.

J. Matsumoto, J. Hirokawa, H. Akimoto, Y. Kajii, “Direct measurement of NO2 in the marine atmosphere by laser-induced fluorescence technique,” Atmos. Environ. 35, 2803–2814 (2001).
[CrossRef]

Anderson, J. G.

K. K. Perkins, T. F. Hanisco, R. C. Cohen, L. C. Koch, R. M. Stimpfle, P. B. Voss, G. P. Bonne, E. J. Lanzendorf, J. G. Anderson, P. O. Wennberg, R. S. Gao, L. A. Del Negro, R. J. Salawitch, C. T. McElroy, E. J. Hintsa, M. Loewenstein, T. P. Bui, “The NOx-HNO3 system in the lower stratosphere: insights from in situ measurements and implications of the J(HNO3)-[OH] relationship,” J. Phys. Chem. A 105, 1521–1534 (2001).
[CrossRef]

Blake, D.

J. Bradshaw, D. Davis, J. Crawford, G. Chen, R. Shetter, M. Muller, G. Gregory, G. Sachse, D. Blake, B. Heikes, H. Singh, J. Mastromarino, S. Sandholm, “Photofragmentation two-photon laser-induced fluorescence detection of NO2 and NO: comparison of measurements with model results based on airborne observations during PEM-Tropics A,” Geophys. Res. Lett. 26, 471–474 (1999).
[CrossRef]

Bonne, G. P.

K. K. Perkins, T. F. Hanisco, R. C. Cohen, L. C. Koch, R. M. Stimpfle, P. B. Voss, G. P. Bonne, E. J. Lanzendorf, J. G. Anderson, P. O. Wennberg, R. S. Gao, L. A. Del Negro, R. J. Salawitch, C. T. McElroy, E. J. Hintsa, M. Loewenstein, T. P. Bui, “The NOx-HNO3 system in the lower stratosphere: insights from in situ measurements and implications of the J(HNO3)-[OH] relationship,” J. Phys. Chem. A 105, 1521–1534 (2001).
[CrossRef]

Bradshaw, J.

J. Bradshaw, D. Davis, J. Crawford, G. Chen, R. Shetter, M. Muller, G. Gregory, G. Sachse, D. Blake, B. Heikes, H. Singh, J. Mastromarino, S. Sandholm, “Photofragmentation two-photon laser-induced fluorescence detection of NO2 and NO: comparison of measurements with model results based on airborne observations during PEM-Tropics A,” Geophys. Res. Lett. 26, 471–474 (1999).
[CrossRef]

Brand, J. C. D.

J. C. D. Brand, K. J. Cross, A. R. Hoy, “Resonance fluorescence intensities and vibrational assignments in the A2B2 state of NO2,” Can. J. Phys. 60, 1081–1087 (1982).
[CrossRef]

Brune, W. H.

J. A. Thornton, P. J. Wooldridge, R. C. Cohen, M. Martinez, H. Harder, W. H. Brune, E. J. Williams, J. M. Roberts, F. C. Fehsenfeld, S. R. Hall, R. E. Shetter, B. P. Wert, A. Fried, “Ozone production rates as a function of NOx abundances and HOx production rates in the Nashville urban plume,” J. Geophys. Res. 107, 10.1029/2001JD000932 (2002).

C. Fong, W. H. Brune, “A laser induced fluorescence instrument for measuring tropospheric NO2,” Rev. Sci. Instrum. 68, 4253–4262 (1997).
[CrossRef]

Bui, T. P.

K. K. Perkins, T. F. Hanisco, R. C. Cohen, L. C. Koch, R. M. Stimpfle, P. B. Voss, G. P. Bonne, E. J. Lanzendorf, J. G. Anderson, P. O. Wennberg, R. S. Gao, L. A. Del Negro, R. J. Salawitch, C. T. McElroy, E. J. Hintsa, M. Loewenstein, T. P. Bui, “The NOx-HNO3 system in the lower stratosphere: insights from in situ measurements and implications of the J(HNO3)-[OH] relationship,” J. Phys. Chem. A 105, 1521–1534 (2001).
[CrossRef]

Burrows, J. P.

J. P. Burrows, A. Dehn, B. Deters, S. Himmelmann, A. Richter, S. Voigt, J. Orphal, “Atmospheric remote-sensing reference data from GOME: Part I. Temperature-dependent absorption cross-sections of NO2 in the 231–794 nm range,” J. Quan. Spectros. Radiat. Transfer 60, 1025–1031 (1998).
[CrossRef]

Chen, G.

J. Bradshaw, D. Davis, J. Crawford, G. Chen, R. Shetter, M. Muller, G. Gregory, G. Sachse, D. Blake, B. Heikes, H. Singh, J. Mastromarino, S. Sandholm, “Photofragmentation two-photon laser-induced fluorescence detection of NO2 and NO: comparison of measurements with model results based on airborne observations during PEM-Tropics A,” Geophys. Res. Lett. 26, 471–474 (1999).
[CrossRef]

Ciciora, S. J.

R. S. Gao, E. R. Keim, E. L. Woodbridge, S. J. Ciciora, M. H. Proffitt, T. L. Thompson, R. J. McLaughlin, D. W. Fahey, “New photolysis system for NO2 measurements in the lower stratosphere,” J. Geophys. Res. 99, 20673–20681 (1994).
[CrossRef]

Cohen, R. C.

W. A. McClenny, E. J. Williams, R. C. Cohen, J. Stutz, “Preparing to measure the effects of the NOx SIP call—methods for ambient air monitoring of NO, NO2, NOy and individual NOz species,” J. Air. Waste Manage. 52, 542–562 (2002).
[CrossRef]

J. A. Thornton, P. J. Wooldridge, R. C. Cohen, M. Martinez, H. Harder, W. H. Brune, E. J. Williams, J. M. Roberts, F. C. Fehsenfeld, S. R. Hall, R. E. Shetter, B. P. Wert, A. Fried, “Ozone production rates as a function of NOx abundances and HOx production rates in the Nashville urban plume,” J. Geophys. Res. 107, 10.1029/2001JD000932 (2002).

D. A. Day, P. J. Wooldridge, M. B. Dillon, J. A. Thornton, R. C. Cohen, “A thermal dissociation laser-induced fluorescence instrument for in situ detection of NO2, peroxy nitrates, alkyl nitrates, and HNO3,” J. Geophys. Res. 107, 10.129/2001JD000779 (2002).

K. K. Perkins, T. F. Hanisco, R. C. Cohen, L. C. Koch, R. M. Stimpfle, P. B. Voss, G. P. Bonne, E. J. Lanzendorf, J. G. Anderson, P. O. Wennberg, R. S. Gao, L. A. Del Negro, R. J. Salawitch, C. T. McElroy, E. J. Hintsa, M. Loewenstein, T. P. Bui, “The NOx-HNO3 system in the lower stratosphere: insights from in situ measurements and implications of the J(HNO3)-[OH] relationship,” J. Phys. Chem. A 105, 1521–1534 (2001).
[CrossRef]

J. A. Thornton, P. J. Wooldridge, R. C. Cohen, “Atmospheric NO2: in situ laser-induced fluorescence detection at parts per trillion mixing ratios,” Anal. Chem. 72, 528–539 (2000).
[CrossRef] [PubMed]

Crawford, J.

J. Bradshaw, D. Davis, J. Crawford, G. Chen, R. Shetter, M. Muller, G. Gregory, G. Sachse, D. Blake, B. Heikes, H. Singh, J. Mastromarino, S. Sandholm, “Photofragmentation two-photon laser-induced fluorescence detection of NO2 and NO: comparison of measurements with model results based on airborne observations during PEM-Tropics A,” Geophys. Res. Lett. 26, 471–474 (1999).
[CrossRef]

Cross, K. J.

J. C. D. Brand, K. J. Cross, A. R. Hoy, “Resonance fluorescence intensities and vibrational assignments in the A2B2 state of NO2,” Can. J. Phys. 60, 1081–1087 (1982).
[CrossRef]

Davis, D.

J. Bradshaw, D. Davis, J. Crawford, G. Chen, R. Shetter, M. Muller, G. Gregory, G. Sachse, D. Blake, B. Heikes, H. Singh, J. Mastromarino, S. Sandholm, “Photofragmentation two-photon laser-induced fluorescence detection of NO2 and NO: comparison of measurements with model results based on airborne observations during PEM-Tropics A,” Geophys. Res. Lett. 26, 471–474 (1999).
[CrossRef]

Day, D. A.

D. A. Day, P. J. Wooldridge, M. B. Dillon, J. A. Thornton, R. C. Cohen, “A thermal dissociation laser-induced fluorescence instrument for in situ detection of NO2, peroxy nitrates, alkyl nitrates, and HNO3,” J. Geophys. Res. 107, 10.129/2001JD000779 (2002).

Dehn, A.

J. P. Burrows, A. Dehn, B. Deters, S. Himmelmann, A. Richter, S. Voigt, J. Orphal, “Atmospheric remote-sensing reference data from GOME: Part I. Temperature-dependent absorption cross-sections of NO2 in the 231–794 nm range,” J. Quan. Spectros. Radiat. Transfer 60, 1025–1031 (1998).
[CrossRef]

Del Negro, L. A.

K. K. Perkins, T. F. Hanisco, R. C. Cohen, L. C. Koch, R. M. Stimpfle, P. B. Voss, G. P. Bonne, E. J. Lanzendorf, J. G. Anderson, P. O. Wennberg, R. S. Gao, L. A. Del Negro, R. J. Salawitch, C. T. McElroy, E. J. Hintsa, M. Loewenstein, T. P. Bui, “The NOx-HNO3 system in the lower stratosphere: insights from in situ measurements and implications of the J(HNO3)-[OH] relationship,” J. Phys. Chem. A 105, 1521–1534 (2001).
[CrossRef]

Delon, A.

A. Delon, R. Jost, M. Jacon, “Laser induced dispersed fluorescence spectroscopy of 107 vibronic levels of NO2 ranging from 12000 to 17600 cm-1,” J. Chem. Phys. 114, 331–344 (2001).
[CrossRef]

Dennis, R. L.

G. S. Tonnesen, R. L. Dennis, “Analysis of radical propagation efficiency to assess ozone sensitivity to hydrocarbons and NOx. 1. Local indicators of instantaneous odd oxygen production sensitivity,” J. Geophys. Res. 105, 9213–9225 (2000).
[CrossRef]

Deters, B.

J. P. Burrows, A. Dehn, B. Deters, S. Himmelmann, A. Richter, S. Voigt, J. Orphal, “Atmospheric remote-sensing reference data from GOME: Part I. Temperature-dependent absorption cross-sections of NO2 in the 231–794 nm range,” J. Quan. Spectros. Radiat. Transfer 60, 1025–1031 (1998).
[CrossRef]

Dillon, M. B.

D. A. Day, P. J. Wooldridge, M. B. Dillon, J. A. Thornton, R. C. Cohen, “A thermal dissociation laser-induced fluorescence instrument for in situ detection of NO2, peroxy nitrates, alkyl nitrates, and HNO3,” J. Geophys. Res. 107, 10.129/2001JD000779 (2002).

Fahey, D. W.

R. S. Gao, E. R. Keim, E. L. Woodbridge, S. J. Ciciora, M. H. Proffitt, T. L. Thompson, R. J. McLaughlin, D. W. Fahey, “New photolysis system for NO2 measurements in the lower stratosphere,” J. Geophys. Res. 99, 20673–20681 (1994).
[CrossRef]

Fehsenfeld, F. C.

J. A. Thornton, P. J. Wooldridge, R. C. Cohen, M. Martinez, H. Harder, W. H. Brune, E. J. Williams, J. M. Roberts, F. C. Fehsenfeld, S. R. Hall, R. E. Shetter, B. P. Wert, A. Fried, “Ozone production rates as a function of NOx abundances and HOx production rates in the Nashville urban plume,” J. Geophys. Res. 107, 10.1029/2001JD000932 (2002).

T. B. Ryerson, E. J. Williams, F. C. Fehsenfeld, “An efficient photolysis system for fast-response NO2 measurements,” J. Geophys. Res. 105, 26447–26461 (2000).
[CrossRef]

Fong, C.

C. Fong, W. H. Brune, “A laser induced fluorescence instrument for measuring tropospheric NO2,” Rev. Sci. Instrum. 68, 4253–4262 (1997).
[CrossRef]

Fried, A.

J. A. Thornton, P. J. Wooldridge, R. C. Cohen, M. Martinez, H. Harder, W. H. Brune, E. J. Williams, J. M. Roberts, F. C. Fehsenfeld, S. R. Hall, R. E. Shetter, B. P. Wert, A. Fried, “Ozone production rates as a function of NOx abundances and HOx production rates in the Nashville urban plume,” J. Geophys. Res. 107, 10.1029/2001JD000932 (2002).

Gao, R. S.

K. K. Perkins, T. F. Hanisco, R. C. Cohen, L. C. Koch, R. M. Stimpfle, P. B. Voss, G. P. Bonne, E. J. Lanzendorf, J. G. Anderson, P. O. Wennberg, R. S. Gao, L. A. Del Negro, R. J. Salawitch, C. T. McElroy, E. J. Hintsa, M. Loewenstein, T. P. Bui, “The NOx-HNO3 system in the lower stratosphere: insights from in situ measurements and implications of the J(HNO3)-[OH] relationship,” J. Phys. Chem. A 105, 1521–1534 (2001).
[CrossRef]

R. S. Gao, E. R. Keim, E. L. Woodbridge, S. J. Ciciora, M. H. Proffitt, T. L. Thompson, R. J. McLaughlin, D. W. Fahey, “New photolysis system for NO2 measurements in the lower stratosphere,” J. Geophys. Res. 99, 20673–20681 (1994).
[CrossRef]

Gregory, G.

J. Bradshaw, D. Davis, J. Crawford, G. Chen, R. Shetter, M. Muller, G. Gregory, G. Sachse, D. Blake, B. Heikes, H. Singh, J. Mastromarino, S. Sandholm, “Photofragmentation two-photon laser-induced fluorescence detection of NO2 and NO: comparison of measurements with model results based on airborne observations during PEM-Tropics A,” Geophys. Res. Lett. 26, 471–474 (1999).
[CrossRef]

Hall, S. R.

J. A. Thornton, P. J. Wooldridge, R. C. Cohen, M. Martinez, H. Harder, W. H. Brune, E. J. Williams, J. M. Roberts, F. C. Fehsenfeld, S. R. Hall, R. E. Shetter, B. P. Wert, A. Fried, “Ozone production rates as a function of NOx abundances and HOx production rates in the Nashville urban plume,” J. Geophys. Res. 107, 10.1029/2001JD000932 (2002).

Hanisco, T. F.

K. K. Perkins, T. F. Hanisco, R. C. Cohen, L. C. Koch, R. M. Stimpfle, P. B. Voss, G. P. Bonne, E. J. Lanzendorf, J. G. Anderson, P. O. Wennberg, R. S. Gao, L. A. Del Negro, R. J. Salawitch, C. T. McElroy, E. J. Hintsa, M. Loewenstein, T. P. Bui, “The NOx-HNO3 system in the lower stratosphere: insights from in situ measurements and implications of the J(HNO3)-[OH] relationship,” J. Phys. Chem. A 105, 1521–1534 (2001).
[CrossRef]

Harder, H.

J. A. Thornton, P. J. Wooldridge, R. C. Cohen, M. Martinez, H. Harder, W. H. Brune, E. J. Williams, J. M. Roberts, F. C. Fehsenfeld, S. R. Hall, R. E. Shetter, B. P. Wert, A. Fried, “Ozone production rates as a function of NOx abundances and HOx production rates in the Nashville urban plume,” J. Geophys. Res. 107, 10.1029/2001JD000932 (2002).

Heikes, B.

J. Bradshaw, D. Davis, J. Crawford, G. Chen, R. Shetter, M. Muller, G. Gregory, G. Sachse, D. Blake, B. Heikes, H. Singh, J. Mastromarino, S. Sandholm, “Photofragmentation two-photon laser-induced fluorescence detection of NO2 and NO: comparison of measurements with model results based on airborne observations during PEM-Tropics A,” Geophys. Res. Lett. 26, 471–474 (1999).
[CrossRef]

Herriott, D.

Himmelmann, S.

J. P. Burrows, A. Dehn, B. Deters, S. Himmelmann, A. Richter, S. Voigt, J. Orphal, “Atmospheric remote-sensing reference data from GOME: Part I. Temperature-dependent absorption cross-sections of NO2 in the 231–794 nm range,” J. Quan. Spectros. Radiat. Transfer 60, 1025–1031 (1998).
[CrossRef]

Hintsa, E. J.

K. K. Perkins, T. F. Hanisco, R. C. Cohen, L. C. Koch, R. M. Stimpfle, P. B. Voss, G. P. Bonne, E. J. Lanzendorf, J. G. Anderson, P. O. Wennberg, R. S. Gao, L. A. Del Negro, R. J. Salawitch, C. T. McElroy, E. J. Hintsa, M. Loewenstein, T. P. Bui, “The NOx-HNO3 system in the lower stratosphere: insights from in situ measurements and implications of the J(HNO3)-[OH] relationship,” J. Phys. Chem. A 105, 1521–1534 (2001).
[CrossRef]

Hirokawa, J.

J. Matsumoto, J. Hirokawa, H. Akimoto, Y. Kajii, “Direct measurement of NO2 in the marine atmosphere by laser-induced fluorescence technique,” Atmos. Environ. 35, 2803–2814 (2001).
[CrossRef]

Hoy, A. R.

J. C. D. Brand, K. J. Cross, A. R. Hoy, “Resonance fluorescence intensities and vibrational assignments in the A2B2 state of NO2,” Can. J. Phys. 60, 1081–1087 (1982).
[CrossRef]

Jacon, M.

A. Delon, R. Jost, M. Jacon, “Laser induced dispersed fluorescence spectroscopy of 107 vibronic levels of NO2 ranging from 12000 to 17600 cm-1,” J. Chem. Phys. 114, 331–344 (2001).
[CrossRef]

Jimenez, J. L.

J. L. Jimenez, G. J. McRae, D. D. Nelson, M. S. Zahniser, C. E. Kolb, “Remote sensing of NO and NO2 emissions from heavy-duty diesel trucks using tunable diode lasers,” Environ. Sci. Technol. 34, 2380–2387 (2000).
[CrossRef]

Jost, R.

A. Delon, R. Jost, M. Jacon, “Laser induced dispersed fluorescence spectroscopy of 107 vibronic levels of NO2 ranging from 12000 to 17600 cm-1,” J. Chem. Phys. 114, 331–344 (2001).
[CrossRef]

Kajii, Y.

J. Matsumoto, J. Hirokawa, H. Akimoto, Y. Kajii, “Direct measurement of NO2 in the marine atmosphere by laser-induced fluorescence technique,” Atmos. Environ. 35, 2803–2814 (2001).
[CrossRef]

Keim, E. R.

R. S. Gao, E. R. Keim, E. L. Woodbridge, S. J. Ciciora, M. H. Proffitt, T. L. Thompson, R. J. McLaughlin, D. W. Fahey, “New photolysis system for NO2 measurements in the lower stratosphere,” J. Geophys. Res. 99, 20673–20681 (1994).
[CrossRef]

Koch, L. C.

K. K. Perkins, T. F. Hanisco, R. C. Cohen, L. C. Koch, R. M. Stimpfle, P. B. Voss, G. P. Bonne, E. J. Lanzendorf, J. G. Anderson, P. O. Wennberg, R. S. Gao, L. A. Del Negro, R. J. Salawitch, C. T. McElroy, E. J. Hintsa, M. Loewenstein, T. P. Bui, “The NOx-HNO3 system in the lower stratosphere: insights from in situ measurements and implications of the J(HNO3)-[OH] relationship,” J. Phys. Chem. A 105, 1521–1534 (2001).
[CrossRef]

Kogelnik, H.

Koike, M.

Y. Matsumi, S. Murakami, M. Kono, K. Takahashi, M. Koike, Y. Kondo, “High-sensitivity instrument for measuring atmospheric NO2,” Anal. Chem. 73, 5485–5493 (2001).
[CrossRef]

Kolb, C. E.

J. L. Jimenez, G. J. McRae, D. D. Nelson, M. S. Zahniser, C. E. Kolb, “Remote sensing of NO and NO2 emissions from heavy-duty diesel trucks using tunable diode lasers,” Environ. Sci. Technol. 34, 2380–2387 (2000).
[CrossRef]

Kompfner, R.

Kondo, Y.

Y. Matsumi, S. Murakami, M. Kono, K. Takahashi, M. Koike, Y. Kondo, “High-sensitivity instrument for measuring atmospheric NO2,” Anal. Chem. 73, 5485–5493 (2001).
[CrossRef]

Kono, M.

Y. Matsumi, S. Murakami, M. Kono, K. Takahashi, M. Koike, Y. Kondo, “High-sensitivity instrument for measuring atmospheric NO2,” Anal. Chem. 73, 5485–5493 (2001).
[CrossRef]

Lanzendorf, E. J.

K. K. Perkins, T. F. Hanisco, R. C. Cohen, L. C. Koch, R. M. Stimpfle, P. B. Voss, G. P. Bonne, E. J. Lanzendorf, J. G. Anderson, P. O. Wennberg, R. S. Gao, L. A. Del Negro, R. J. Salawitch, C. T. McElroy, E. J. Hintsa, M. Loewenstein, T. P. Bui, “The NOx-HNO3 system in the lower stratosphere: insights from in situ measurements and implications of the J(HNO3)-[OH] relationship,” J. Phys. Chem. A 105, 1521–1534 (2001).
[CrossRef]

Levy, D. H.

R. E. Smalley, L. Wharton, D. H. Levy, “Fluorescence excitation spectrum of rotationally cooled NO2,” J. Chem. Phys. 63, 4977–4989 (1975).
[CrossRef]

Loewenstein, M.

K. K. Perkins, T. F. Hanisco, R. C. Cohen, L. C. Koch, R. M. Stimpfle, P. B. Voss, G. P. Bonne, E. J. Lanzendorf, J. G. Anderson, P. O. Wennberg, R. S. Gao, L. A. Del Negro, R. J. Salawitch, C. T. McElroy, E. J. Hintsa, M. Loewenstein, T. P. Bui, “The NOx-HNO3 system in the lower stratosphere: insights from in situ measurements and implications of the J(HNO3)-[OH] relationship,” J. Phys. Chem. A 105, 1521–1534 (2001).
[CrossRef]

Martinez, M.

J. A. Thornton, P. J. Wooldridge, R. C. Cohen, M. Martinez, H. Harder, W. H. Brune, E. J. Williams, J. M. Roberts, F. C. Fehsenfeld, S. R. Hall, R. E. Shetter, B. P. Wert, A. Fried, “Ozone production rates as a function of NOx abundances and HOx production rates in the Nashville urban plume,” J. Geophys. Res. 107, 10.1029/2001JD000932 (2002).

Mastromarino, J.

J. Bradshaw, D. Davis, J. Crawford, G. Chen, R. Shetter, M. Muller, G. Gregory, G. Sachse, D. Blake, B. Heikes, H. Singh, J. Mastromarino, S. Sandholm, “Photofragmentation two-photon laser-induced fluorescence detection of NO2 and NO: comparison of measurements with model results based on airborne observations during PEM-Tropics A,” Geophys. Res. Lett. 26, 471–474 (1999).
[CrossRef]

Matsumi, Y.

Y. Matsumi, S. Murakami, M. Kono, K. Takahashi, M. Koike, Y. Kondo, “High-sensitivity instrument for measuring atmospheric NO2,” Anal. Chem. 73, 5485–5493 (2001).
[CrossRef]

Matsumoto, J.

J. Matsumoto, J. Hirokawa, H. Akimoto, Y. Kajii, “Direct measurement of NO2 in the marine atmosphere by laser-induced fluorescence technique,” Atmos. Environ. 35, 2803–2814 (2001).
[CrossRef]

McClenny, W. A.

W. A. McClenny, E. J. Williams, R. C. Cohen, J. Stutz, “Preparing to measure the effects of the NOx SIP call—methods for ambient air monitoring of NO, NO2, NOy and individual NOz species,” J. Air. Waste Manage. 52, 542–562 (2002).
[CrossRef]

McElroy, C. T.

K. K. Perkins, T. F. Hanisco, R. C. Cohen, L. C. Koch, R. M. Stimpfle, P. B. Voss, G. P. Bonne, E. J. Lanzendorf, J. G. Anderson, P. O. Wennberg, R. S. Gao, L. A. Del Negro, R. J. Salawitch, C. T. McElroy, E. J. Hintsa, M. Loewenstein, T. P. Bui, “The NOx-HNO3 system in the lower stratosphere: insights from in situ measurements and implications of the J(HNO3)-[OH] relationship,” J. Phys. Chem. A 105, 1521–1534 (2001).
[CrossRef]

McLaughlin, R. J.

R. S. Gao, E. R. Keim, E. L. Woodbridge, S. J. Ciciora, M. H. Proffitt, T. L. Thompson, R. J. McLaughlin, D. W. Fahey, “New photolysis system for NO2 measurements in the lower stratosphere,” J. Geophys. Res. 99, 20673–20681 (1994).
[CrossRef]

McRae, G. J.

J. L. Jimenez, G. J. McRae, D. D. Nelson, M. S. Zahniser, C. E. Kolb, “Remote sensing of NO and NO2 emissions from heavy-duty diesel trucks using tunable diode lasers,” Environ. Sci. Technol. 34, 2380–2387 (2000).
[CrossRef]

Miller, D. R.

D. R. Miller, “Free jet sources,” in Atomic and Molecular Beam Methods, G. Scoles, ed. (Oxford U. Press, New York, 1988), pp. 14–53.

Muller, M.

J. Bradshaw, D. Davis, J. Crawford, G. Chen, R. Shetter, M. Muller, G. Gregory, G. Sachse, D. Blake, B. Heikes, H. Singh, J. Mastromarino, S. Sandholm, “Photofragmentation two-photon laser-induced fluorescence detection of NO2 and NO: comparison of measurements with model results based on airborne observations during PEM-Tropics A,” Geophys. Res. Lett. 26, 471–474 (1999).
[CrossRef]

Murakami, S.

Y. Matsumi, S. Murakami, M. Kono, K. Takahashi, M. Koike, Y. Kondo, “High-sensitivity instrument for measuring atmospheric NO2,” Anal. Chem. 73, 5485–5493 (2001).
[CrossRef]

Nelson, D. D.

J. L. Jimenez, G. J. McRae, D. D. Nelson, M. S. Zahniser, C. E. Kolb, “Remote sensing of NO and NO2 emissions from heavy-duty diesel trucks using tunable diode lasers,” Environ. Sci. Technol. 34, 2380–2387 (2000).
[CrossRef]

Orphal, J.

J. P. Burrows, A. Dehn, B. Deters, S. Himmelmann, A. Richter, S. Voigt, J. Orphal, “Atmospheric remote-sensing reference data from GOME: Part I. Temperature-dependent absorption cross-sections of NO2 in the 231–794 nm range,” J. Quan. Spectros. Radiat. Transfer 60, 1025–1031 (1998).
[CrossRef]

Perkins, K. K.

K. K. Perkins, T. F. Hanisco, R. C. Cohen, L. C. Koch, R. M. Stimpfle, P. B. Voss, G. P. Bonne, E. J. Lanzendorf, J. G. Anderson, P. O. Wennberg, R. S. Gao, L. A. Del Negro, R. J. Salawitch, C. T. McElroy, E. J. Hintsa, M. Loewenstein, T. P. Bui, “The NOx-HNO3 system in the lower stratosphere: insights from in situ measurements and implications of the J(HNO3)-[OH] relationship,” J. Phys. Chem. A 105, 1521–1534 (2001).
[CrossRef]

Proffitt, M. H.

R. S. Gao, E. R. Keim, E. L. Woodbridge, S. J. Ciciora, M. H. Proffitt, T. L. Thompson, R. J. McLaughlin, D. W. Fahey, “New photolysis system for NO2 measurements in the lower stratosphere,” J. Geophys. Res. 99, 20673–20681 (1994).
[CrossRef]

Richter, A.

J. P. Burrows, A. Dehn, B. Deters, S. Himmelmann, A. Richter, S. Voigt, J. Orphal, “Atmospheric remote-sensing reference data from GOME: Part I. Temperature-dependent absorption cross-sections of NO2 in the 231–794 nm range,” J. Quan. Spectros. Radiat. Transfer 60, 1025–1031 (1998).
[CrossRef]

Roberts, J. M.

J. A. Thornton, P. J. Wooldridge, R. C. Cohen, M. Martinez, H. Harder, W. H. Brune, E. J. Williams, J. M. Roberts, F. C. Fehsenfeld, S. R. Hall, R. E. Shetter, B. P. Wert, A. Fried, “Ozone production rates as a function of NOx abundances and HOx production rates in the Nashville urban plume,” J. Geophys. Res. 107, 10.1029/2001JD000932 (2002).

Ryerson, T. B.

T. B. Ryerson, E. J. Williams, F. C. Fehsenfeld, “An efficient photolysis system for fast-response NO2 measurements,” J. Geophys. Res. 105, 26447–26461 (2000).
[CrossRef]

Sachse, G.

J. Bradshaw, D. Davis, J. Crawford, G. Chen, R. Shetter, M. Muller, G. Gregory, G. Sachse, D. Blake, B. Heikes, H. Singh, J. Mastromarino, S. Sandholm, “Photofragmentation two-photon laser-induced fluorescence detection of NO2 and NO: comparison of measurements with model results based on airborne observations during PEM-Tropics A,” Geophys. Res. Lett. 26, 471–474 (1999).
[CrossRef]

Salawitch, R. J.

K. K. Perkins, T. F. Hanisco, R. C. Cohen, L. C. Koch, R. M. Stimpfle, P. B. Voss, G. P. Bonne, E. J. Lanzendorf, J. G. Anderson, P. O. Wennberg, R. S. Gao, L. A. Del Negro, R. J. Salawitch, C. T. McElroy, E. J. Hintsa, M. Loewenstein, T. P. Bui, “The NOx-HNO3 system in the lower stratosphere: insights from in situ measurements and implications of the J(HNO3)-[OH] relationship,” J. Phys. Chem. A 105, 1521–1534 (2001).
[CrossRef]

Sandholm, S.

J. Bradshaw, D. Davis, J. Crawford, G. Chen, R. Shetter, M. Muller, G. Gregory, G. Sachse, D. Blake, B. Heikes, H. Singh, J. Mastromarino, S. Sandholm, “Photofragmentation two-photon laser-induced fluorescence detection of NO2 and NO: comparison of measurements with model results based on airborne observations during PEM-Tropics A,” Geophys. Res. Lett. 26, 471–474 (1999).
[CrossRef]

Shetter, R.

J. Bradshaw, D. Davis, J. Crawford, G. Chen, R. Shetter, M. Muller, G. Gregory, G. Sachse, D. Blake, B. Heikes, H. Singh, J. Mastromarino, S. Sandholm, “Photofragmentation two-photon laser-induced fluorescence detection of NO2 and NO: comparison of measurements with model results based on airborne observations during PEM-Tropics A,” Geophys. Res. Lett. 26, 471–474 (1999).
[CrossRef]

Shetter, R. E.

J. A. Thornton, P. J. Wooldridge, R. C. Cohen, M. Martinez, H. Harder, W. H. Brune, E. J. Williams, J. M. Roberts, F. C. Fehsenfeld, S. R. Hall, R. E. Shetter, B. P. Wert, A. Fried, “Ozone production rates as a function of NOx abundances and HOx production rates in the Nashville urban plume,” J. Geophys. Res. 107, 10.1029/2001JD000932 (2002).

Singh, H.

J. Bradshaw, D. Davis, J. Crawford, G. Chen, R. Shetter, M. Muller, G. Gregory, G. Sachse, D. Blake, B. Heikes, H. Singh, J. Mastromarino, S. Sandholm, “Photofragmentation two-photon laser-induced fluorescence detection of NO2 and NO: comparison of measurements with model results based on airborne observations during PEM-Tropics A,” Geophys. Res. Lett. 26, 471–474 (1999).
[CrossRef]

Smalley, R. E.

R. E. Smalley, L. Wharton, D. H. Levy, “Fluorescence excitation spectrum of rotationally cooled NO2,” J. Chem. Phys. 63, 4977–4989 (1975).
[CrossRef]

Stimpfle, R. M.

K. K. Perkins, T. F. Hanisco, R. C. Cohen, L. C. Koch, R. M. Stimpfle, P. B. Voss, G. P. Bonne, E. J. Lanzendorf, J. G. Anderson, P. O. Wennberg, R. S. Gao, L. A. Del Negro, R. J. Salawitch, C. T. McElroy, E. J. Hintsa, M. Loewenstein, T. P. Bui, “The NOx-HNO3 system in the lower stratosphere: insights from in situ measurements and implications of the J(HNO3)-[OH] relationship,” J. Phys. Chem. A 105, 1521–1534 (2001).
[CrossRef]

Stutz, J.

W. A. McClenny, E. J. Williams, R. C. Cohen, J. Stutz, “Preparing to measure the effects of the NOx SIP call—methods for ambient air monitoring of NO, NO2, NOy and individual NOz species,” J. Air. Waste Manage. 52, 542–562 (2002).
[CrossRef]

Takahashi, K.

Y. Matsumi, S. Murakami, M. Kono, K. Takahashi, M. Koike, Y. Kondo, “High-sensitivity instrument for measuring atmospheric NO2,” Anal. Chem. 73, 5485–5493 (2001).
[CrossRef]

Thompson, T. L.

R. S. Gao, E. R. Keim, E. L. Woodbridge, S. J. Ciciora, M. H. Proffitt, T. L. Thompson, R. J. McLaughlin, D. W. Fahey, “New photolysis system for NO2 measurements in the lower stratosphere,” J. Geophys. Res. 99, 20673–20681 (1994).
[CrossRef]

Thornton, J. A.

J. A. Thornton, P. J. Wooldridge, R. C. Cohen, M. Martinez, H. Harder, W. H. Brune, E. J. Williams, J. M. Roberts, F. C. Fehsenfeld, S. R. Hall, R. E. Shetter, B. P. Wert, A. Fried, “Ozone production rates as a function of NOx abundances and HOx production rates in the Nashville urban plume,” J. Geophys. Res. 107, 10.1029/2001JD000932 (2002).

D. A. Day, P. J. Wooldridge, M. B. Dillon, J. A. Thornton, R. C. Cohen, “A thermal dissociation laser-induced fluorescence instrument for in situ detection of NO2, peroxy nitrates, alkyl nitrates, and HNO3,” J. Geophys. Res. 107, 10.129/2001JD000779 (2002).

J. A. Thornton, P. J. Wooldridge, R. C. Cohen, “Atmospheric NO2: in situ laser-induced fluorescence detection at parts per trillion mixing ratios,” Anal. Chem. 72, 528–539 (2000).
[CrossRef] [PubMed]

J. A. Thornton, “Nitrogen dioxide, peroxynitrates and the chemistry of tropospheric ozone production: new insights from in situ measurements,” Ph.D. dissertation (University of California, Berkeley, Berkeley, Calif., (2002).

Tonnesen, G. S.

G. S. Tonnesen, R. L. Dennis, “Analysis of radical propagation efficiency to assess ozone sensitivity to hydrocarbons and NOx. 1. Local indicators of instantaneous odd oxygen production sensitivity,” J. Geophys. Res. 105, 9213–9225 (2000).
[CrossRef]

Voigt, S.

J. P. Burrows, A. Dehn, B. Deters, S. Himmelmann, A. Richter, S. Voigt, J. Orphal, “Atmospheric remote-sensing reference data from GOME: Part I. Temperature-dependent absorption cross-sections of NO2 in the 231–794 nm range,” J. Quan. Spectros. Radiat. Transfer 60, 1025–1031 (1998).
[CrossRef]

Voss, P. B.

K. K. Perkins, T. F. Hanisco, R. C. Cohen, L. C. Koch, R. M. Stimpfle, P. B. Voss, G. P. Bonne, E. J. Lanzendorf, J. G. Anderson, P. O. Wennberg, R. S. Gao, L. A. Del Negro, R. J. Salawitch, C. T. McElroy, E. J. Hintsa, M. Loewenstein, T. P. Bui, “The NOx-HNO3 system in the lower stratosphere: insights from in situ measurements and implications of the J(HNO3)-[OH] relationship,” J. Phys. Chem. A 105, 1521–1534 (2001).
[CrossRef]

Wennberg, P. O.

K. K. Perkins, T. F. Hanisco, R. C. Cohen, L. C. Koch, R. M. Stimpfle, P. B. Voss, G. P. Bonne, E. J. Lanzendorf, J. G. Anderson, P. O. Wennberg, R. S. Gao, L. A. Del Negro, R. J. Salawitch, C. T. McElroy, E. J. Hintsa, M. Loewenstein, T. P. Bui, “The NOx-HNO3 system in the lower stratosphere: insights from in situ measurements and implications of the J(HNO3)-[OH] relationship,” J. Phys. Chem. A 105, 1521–1534 (2001).
[CrossRef]

Wert, B. P.

J. A. Thornton, P. J. Wooldridge, R. C. Cohen, M. Martinez, H. Harder, W. H. Brune, E. J. Williams, J. M. Roberts, F. C. Fehsenfeld, S. R. Hall, R. E. Shetter, B. P. Wert, A. Fried, “Ozone production rates as a function of NOx abundances and HOx production rates in the Nashville urban plume,” J. Geophys. Res. 107, 10.1029/2001JD000932 (2002).

Wharton, L.

R. E. Smalley, L. Wharton, D. H. Levy, “Fluorescence excitation spectrum of rotationally cooled NO2,” J. Chem. Phys. 63, 4977–4989 (1975).
[CrossRef]

Williams, E. J.

J. A. Thornton, P. J. Wooldridge, R. C. Cohen, M. Martinez, H. Harder, W. H. Brune, E. J. Williams, J. M. Roberts, F. C. Fehsenfeld, S. R. Hall, R. E. Shetter, B. P. Wert, A. Fried, “Ozone production rates as a function of NOx abundances and HOx production rates in the Nashville urban plume,” J. Geophys. Res. 107, 10.1029/2001JD000932 (2002).

W. A. McClenny, E. J. Williams, R. C. Cohen, J. Stutz, “Preparing to measure the effects of the NOx SIP call—methods for ambient air monitoring of NO, NO2, NOy and individual NOz species,” J. Air. Waste Manage. 52, 542–562 (2002).
[CrossRef]

T. B. Ryerson, E. J. Williams, F. C. Fehsenfeld, “An efficient photolysis system for fast-response NO2 measurements,” J. Geophys. Res. 105, 26447–26461 (2000).
[CrossRef]

Woodbridge, E. L.

R. S. Gao, E. R. Keim, E. L. Woodbridge, S. J. Ciciora, M. H. Proffitt, T. L. Thompson, R. J. McLaughlin, D. W. Fahey, “New photolysis system for NO2 measurements in the lower stratosphere,” J. Geophys. Res. 99, 20673–20681 (1994).
[CrossRef]

Wooldridge, P. J.

J. A. Thornton, P. J. Wooldridge, R. C. Cohen, M. Martinez, H. Harder, W. H. Brune, E. J. Williams, J. M. Roberts, F. C. Fehsenfeld, S. R. Hall, R. E. Shetter, B. P. Wert, A. Fried, “Ozone production rates as a function of NOx abundances and HOx production rates in the Nashville urban plume,” J. Geophys. Res. 107, 10.1029/2001JD000932 (2002).

D. A. Day, P. J. Wooldridge, M. B. Dillon, J. A. Thornton, R. C. Cohen, “A thermal dissociation laser-induced fluorescence instrument for in situ detection of NO2, peroxy nitrates, alkyl nitrates, and HNO3,” J. Geophys. Res. 107, 10.129/2001JD000779 (2002).

J. A. Thornton, P. J. Wooldridge, R. C. Cohen, “Atmospheric NO2: in situ laser-induced fluorescence detection at parts per trillion mixing ratios,” Anal. Chem. 72, 528–539 (2000).
[CrossRef] [PubMed]

Zahniser, M. S.

J. L. Jimenez, G. J. McRae, D. D. Nelson, M. S. Zahniser, C. E. Kolb, “Remote sensing of NO and NO2 emissions from heavy-duty diesel trucks using tunable diode lasers,” Environ. Sci. Technol. 34, 2380–2387 (2000).
[CrossRef]

Anal. Chem. (2)

Y. Matsumi, S. Murakami, M. Kono, K. Takahashi, M. Koike, Y. Kondo, “High-sensitivity instrument for measuring atmospheric NO2,” Anal. Chem. 73, 5485–5493 (2001).
[CrossRef]

J. A. Thornton, P. J. Wooldridge, R. C. Cohen, “Atmospheric NO2: in situ laser-induced fluorescence detection at parts per trillion mixing ratios,” Anal. Chem. 72, 528–539 (2000).
[CrossRef] [PubMed]

Appl. Opt. (1)

Atmos. Environ. (1)

J. Matsumoto, J. Hirokawa, H. Akimoto, Y. Kajii, “Direct measurement of NO2 in the marine atmosphere by laser-induced fluorescence technique,” Atmos. Environ. 35, 2803–2814 (2001).
[CrossRef]

Can. J. Phys. (1)

J. C. D. Brand, K. J. Cross, A. R. Hoy, “Resonance fluorescence intensities and vibrational assignments in the A2B2 state of NO2,” Can. J. Phys. 60, 1081–1087 (1982).
[CrossRef]

Environ. Sci. Technol. (1)

J. L. Jimenez, G. J. McRae, D. D. Nelson, M. S. Zahniser, C. E. Kolb, “Remote sensing of NO and NO2 emissions from heavy-duty diesel trucks using tunable diode lasers,” Environ. Sci. Technol. 34, 2380–2387 (2000).
[CrossRef]

Geophys. Res. Lett. (1)

J. Bradshaw, D. Davis, J. Crawford, G. Chen, R. Shetter, M. Muller, G. Gregory, G. Sachse, D. Blake, B. Heikes, H. Singh, J. Mastromarino, S. Sandholm, “Photofragmentation two-photon laser-induced fluorescence detection of NO2 and NO: comparison of measurements with model results based on airborne observations during PEM-Tropics A,” Geophys. Res. Lett. 26, 471–474 (1999).
[CrossRef]

J. Air. Waste Manage. (1)

W. A. McClenny, E. J. Williams, R. C. Cohen, J. Stutz, “Preparing to measure the effects of the NOx SIP call—methods for ambient air monitoring of NO, NO2, NOy and individual NOz species,” J. Air. Waste Manage. 52, 542–562 (2002).
[CrossRef]

J. Chem. Phys. (2)

R. E. Smalley, L. Wharton, D. H. Levy, “Fluorescence excitation spectrum of rotationally cooled NO2,” J. Chem. Phys. 63, 4977–4989 (1975).
[CrossRef]

A. Delon, R. Jost, M. Jacon, “Laser induced dispersed fluorescence spectroscopy of 107 vibronic levels of NO2 ranging from 12000 to 17600 cm-1,” J. Chem. Phys. 114, 331–344 (2001).
[CrossRef]

J. Geophys. Res. (5)

D. A. Day, P. J. Wooldridge, M. B. Dillon, J. A. Thornton, R. C. Cohen, “A thermal dissociation laser-induced fluorescence instrument for in situ detection of NO2, peroxy nitrates, alkyl nitrates, and HNO3,” J. Geophys. Res. 107, 10.129/2001JD000779 (2002).

J. A. Thornton, P. J. Wooldridge, R. C. Cohen, M. Martinez, H. Harder, W. H. Brune, E. J. Williams, J. M. Roberts, F. C. Fehsenfeld, S. R. Hall, R. E. Shetter, B. P. Wert, A. Fried, “Ozone production rates as a function of NOx abundances and HOx production rates in the Nashville urban plume,” J. Geophys. Res. 107, 10.1029/2001JD000932 (2002).

T. B. Ryerson, E. J. Williams, F. C. Fehsenfeld, “An efficient photolysis system for fast-response NO2 measurements,” J. Geophys. Res. 105, 26447–26461 (2000).
[CrossRef]

R. S. Gao, E. R. Keim, E. L. Woodbridge, S. J. Ciciora, M. H. Proffitt, T. L. Thompson, R. J. McLaughlin, D. W. Fahey, “New photolysis system for NO2 measurements in the lower stratosphere,” J. Geophys. Res. 99, 20673–20681 (1994).
[CrossRef]

G. S. Tonnesen, R. L. Dennis, “Analysis of radical propagation efficiency to assess ozone sensitivity to hydrocarbons and NOx. 1. Local indicators of instantaneous odd oxygen production sensitivity,” J. Geophys. Res. 105, 9213–9225 (2000).
[CrossRef]

J. Phys. Chem. A (1)

K. K. Perkins, T. F. Hanisco, R. C. Cohen, L. C. Koch, R. M. Stimpfle, P. B. Voss, G. P. Bonne, E. J. Lanzendorf, J. G. Anderson, P. O. Wennberg, R. S. Gao, L. A. Del Negro, R. J. Salawitch, C. T. McElroy, E. J. Hintsa, M. Loewenstein, T. P. Bui, “The NOx-HNO3 system in the lower stratosphere: insights from in situ measurements and implications of the J(HNO3)-[OH] relationship,” J. Phys. Chem. A 105, 1521–1534 (2001).
[CrossRef]

J. Quan. Spectros. Radiat. Transfer (1)

J. P. Burrows, A. Dehn, B. Deters, S. Himmelmann, A. Richter, S. Voigt, J. Orphal, “Atmospheric remote-sensing reference data from GOME: Part I. Temperature-dependent absorption cross-sections of NO2 in the 231–794 nm range,” J. Quan. Spectros. Radiat. Transfer 60, 1025–1031 (1998).
[CrossRef]

Rev. Sci. Instrum. (1)

C. Fong, W. H. Brune, “A laser induced fluorescence instrument for measuring tropospheric NO2,” Rev. Sci. Instrum. 68, 4253–4262 (1997).
[CrossRef]

Other (2)

D. R. Miller, “Free jet sources,” in Atomic and Molecular Beam Methods, G. Scoles, ed. (Oxford U. Press, New York, 1988), pp. 14–53.

J. A. Thornton, “Nitrogen dioxide, peroxynitrates and the chemistry of tropospheric ozone production: new insights from in situ measurements,” Ph.D. dissertation (University of California, Berkeley, Berkeley, Calif., (2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Detection cell and optics. The laser beam enters through a slit in one of the spherical Herriott cell mirrors (depicted from the front below the cell). It then makes 54 passes, exiting through the same slit. Laser scatter is reduced by two different sets of baffles: (a) solid-disk baffles mounted in the middle of the spherical mirrors and (b) annulus baffles mounted to the walls of the cell. The inlet 1/8-in. (0.32-cm) nozzle with the 350-µm-diameter pinhole is held in the cell, close to the edge of the laser beam pattern. The collection optics for the fluorescent photons are shown on the inset to the right, giving a view of the cell perpendicular to the view on the left. A spherical mirror redirects fluorescent photons toward the detector. The photons pass through a collimating lens, a 740-nm long-pass filter (L.P.), a 750-nm long-pass filter, and a focusing lens before striking the PMT.

Fig. 2
Fig. 2

Fluorescence of 82 ppb of NO2 in zero air and corresponding reference cell transmission spectrum of NO2 in the region of excitation of 15,620 cm-1. The frequencies used for on-line and off-line measurements are indicated with arrows. A diode laser cavity mode hop is also indicated with an arrow.

Fig. 3
Fig. 3

One-minute averaged NO2 measurements made on 3 September 2001 in Granite Bay, California. The open circles represent data from the diode laser LIF instrument, and the solid diamonds represent data taken with the dye-laser LIF instrument.

Fig. 4
Fig. 4

(a) Calibration on 2 September 2001. Five different mixing ratios of NO2 (65.5, 32.5, 15.8, 7.6, and 0 ppb) in zero air are drawn through the sampling tubing. The lack of a slope in the off-line data demonstrates the absence of a NO2 continuum fluorescence signal above the noise in the cold NO2 spectrum. (b) Data from (a) plotted versus NO2 concentration excluding points where the concentration is being changed rapidly to the next step. The slope is 13.91 counts s-1 ppb-1 (834.6 counts min-1 ppb-1). The noise in the figure is consistent with the shot noise of photon counting.

Fig. 5
Fig. 5

Intercomparison of 1-min averaged NO2 data from Granite Bay with the tunable diode laser instrument at 640 nm and the dye-laser instrument at 585 nm. Slope is 0.975, R 2 = 0.927 with 3735 data points. Omitted are data with plumes on time scales of less than 1 min, because instrument clocks were not synchronized precisely enough to ensure averaging over the same time interval.

Tables (1)

Tables Icon

Table 1 Operating Conditions and Detection Limits of Contemporary LIF Experiments

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

xm=d*0.67P0/P1/2.
SN=StSt+Bt1/2.

Metrics