Abstract

We experimentally demonstrate space-code-division multiple access (space-CDMA) based two-dimensional (2-D) parallel optical interconnections by using image fibers and 8 × 8 vertical-cavity surface-emitting laser (VCSEL)/photo diode (PD) arrays. Two spatially encoded four-bit (2 × 2) parallel optical signals were emitted from 2-D VCSEL arrays and transmitted through image fibers. The encoded signals were multiplexed by an image-fiber coupler and detected by a 2-D PD array on the receiver side. The receiver recovered the intended parallel signal by decoding the signal. The transmission speed was 64 Mbps/ch (total throughput: 512 Mbps). Bit-error-rate (BER) measurement with a laterally misaligned PD array showed the array had a misalignment tolerance of 25 µm for a BER performance of 10-9.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Ishikawa, “Optoelectronic parallel computing system with reconfigurable optical interconnection,” SPIE Critical Review Series, Optoelectronic Interconnects and Packaging, R. T. Chen, P.S. Guilfoyle, eds., CR62, 156–175 (1996).
  2. K. Koyabu, F. Ohira, T. Yamamoto, “Fabrication of two-dimensional fiber arrays using microferrules,” IEEE Trans. Components, Packae., and Manuf. Technol., Part C 21, 11–19 (1998).
    [CrossRef]
  3. H. Kosaka, M. Kajita, Y. Li, Y. Sugimoto, “A two-dimensional optical parallel transmission using a vertical-cavity surface-emitting laser array module and an image fiber,” IEEE Photon. Technol. Lett. 9, 253–255 (1997).
    [CrossRef]
  4. T. Maj, A. G. Kirk, D. V. Plant, J. F. Ahadian, C. G. Fonstad, K. L. Lear, K. Tatah, M. S. Robinson, J. A. Trezza, “Interconnection of a two-dimensional array of vertical-cavity surface-emitting lasers to a receiver array by means of a fiber image guide,” Appl. Opt. 39, 683–689 (2000).
    [CrossRef]
  5. D. M. Chiarulli, S. P. Levitan, P. Derr, R. Hofmann, B. Greiner, “Demonstration of a multichannel optical interconnection by use of imaging fiber bundles butt coupled to optoelectronic circuits,” Appl. Opt. 39, 698–703 (2000).
    [CrossRef]
  6. Y. Li, J. Ai, J. Popelek, “Board-level 2-D data-capable optical interconnection circuits using polymer fiber-image guides,” Proc. IEEE 88, 794–805, (2000).
    [CrossRef]
  7. M. Nakamura, K. Kitayama, “High-speed 2-D parallel optical interconnects using image fibers with VCSEL/PD arrays,” IEICE Trans. Electron. E84-C, 282–287 (2001).
  8. S. Nishimura, T. Kudoh, H. Nishi, K. Tasho, K. Harasawa, S. Akutsu, S. Fukuda, Y. Shikichi, “A high-speed, highly-reliable network switch for parallel computing system using optical interconnection,” IEICE Trans. Electron., E84-C, 288–294 (2001).
  9. M. Kajita, K. Kasahara, T. J. Kim, D. T. Neilson, I. Ogura, I. Redmond, E. Schenfeld, “Wavelength-division multiplexing free-space optical interconnect networks for massively parallel processing systems,” Appl. Opt., 37, 3746–3755 (1998).
    [CrossRef]
  10. K. Kitayama, “Novel spatial spread spectrum based fiber optic CDMA networks for image transmission,” IEEE J. Sel. Areas Commun. 12, 762–772 (1994).
    [CrossRef]
  11. M. Nakamura, K. Kitayama, “System performances of optical space code-division multiple-access-based fiber-optic two-dimensional parallel data link,” Appl. Opt. 37, 2915–2924 (1998).
    [CrossRef]
  12. K. Kitayama, M. Nakamura, Y. Igasaki, K. Kaneda, “Image fiber-optic two-dimensional parallel links based upon optical space-CDMA: Experiment,” J. Lightwave Technol. 15, 202–212 (1997).
    [CrossRef]
  13. M. Nakamura, K. Kitayama, Y. Igasaki, K. Kaneda, “Four-channel, 8 × 8 bit, two-dimensional parallel transmission by use of space-code-division multiple-access encoder and decoder modules,” Appl. Opt., 37, 4389–4398 (1998).
    [CrossRef]
  14. M. Nakamura, K. Kitayama, Y. Igasaki, K. Kaneda, “Space-CDMA based 2D parallel optical transmission over record length (100m) long image fibre,” Electron. Lett. 34, 1127–1128 (1998).
    [CrossRef]
  15. M. Nakamura, K. Kitayama, Y. Igasaki, K. Kaneda, “Visual alignment using image fiber micro-optics for long-distance, ultra-high throughput space-CDMA based 2-D parallel optical data link,” In Massively Parallel Processing Using Optical Interconnections (MPPOI98), IEEE Computer Society229–236 (1998).
  16. Y. Ohiso, Y. Kohama, T. Kurokawa, “0.85-µm vertical-cavity surface-emitting laser array grown on GaAs and AIGaAs substrates by metal organic chemical vapor deposition,” Jpn. J. Appl. Phys. 34, 6073–6078 (1995).
    [CrossRef]

2001 (2)

M. Nakamura, K. Kitayama, “High-speed 2-D parallel optical interconnects using image fibers with VCSEL/PD arrays,” IEICE Trans. Electron. E84-C, 282–287 (2001).

S. Nishimura, T. Kudoh, H. Nishi, K. Tasho, K. Harasawa, S. Akutsu, S. Fukuda, Y. Shikichi, “A high-speed, highly-reliable network switch for parallel computing system using optical interconnection,” IEICE Trans. Electron., E84-C, 288–294 (2001).

2000 (3)

1998 (5)

1997 (2)

H. Kosaka, M. Kajita, Y. Li, Y. Sugimoto, “A two-dimensional optical parallel transmission using a vertical-cavity surface-emitting laser array module and an image fiber,” IEEE Photon. Technol. Lett. 9, 253–255 (1997).
[CrossRef]

K. Kitayama, M. Nakamura, Y. Igasaki, K. Kaneda, “Image fiber-optic two-dimensional parallel links based upon optical space-CDMA: Experiment,” J. Lightwave Technol. 15, 202–212 (1997).
[CrossRef]

1995 (1)

Y. Ohiso, Y. Kohama, T. Kurokawa, “0.85-µm vertical-cavity surface-emitting laser array grown on GaAs and AIGaAs substrates by metal organic chemical vapor deposition,” Jpn. J. Appl. Phys. 34, 6073–6078 (1995).
[CrossRef]

1994 (1)

K. Kitayama, “Novel spatial spread spectrum based fiber optic CDMA networks for image transmission,” IEEE J. Sel. Areas Commun. 12, 762–772 (1994).
[CrossRef]

Ahadian, J. F.

Ai, J.

Y. Li, J. Ai, J. Popelek, “Board-level 2-D data-capable optical interconnection circuits using polymer fiber-image guides,” Proc. IEEE 88, 794–805, (2000).
[CrossRef]

Akutsu, S.

S. Nishimura, T. Kudoh, H. Nishi, K. Tasho, K. Harasawa, S. Akutsu, S. Fukuda, Y. Shikichi, “A high-speed, highly-reliable network switch for parallel computing system using optical interconnection,” IEICE Trans. Electron., E84-C, 288–294 (2001).

Chiarulli, D. M.

Derr, P.

Fonstad, C. G.

Fukuda, S.

S. Nishimura, T. Kudoh, H. Nishi, K. Tasho, K. Harasawa, S. Akutsu, S. Fukuda, Y. Shikichi, “A high-speed, highly-reliable network switch for parallel computing system using optical interconnection,” IEICE Trans. Electron., E84-C, 288–294 (2001).

Greiner, B.

Harasawa, K.

S. Nishimura, T. Kudoh, H. Nishi, K. Tasho, K. Harasawa, S. Akutsu, S. Fukuda, Y. Shikichi, “A high-speed, highly-reliable network switch for parallel computing system using optical interconnection,” IEICE Trans. Electron., E84-C, 288–294 (2001).

Hofmann, R.

Igasaki, Y.

M. Nakamura, K. Kitayama, Y. Igasaki, K. Kaneda, “Four-channel, 8 × 8 bit, two-dimensional parallel transmission by use of space-code-division multiple-access encoder and decoder modules,” Appl. Opt., 37, 4389–4398 (1998).
[CrossRef]

M. Nakamura, K. Kitayama, Y. Igasaki, K. Kaneda, “Space-CDMA based 2D parallel optical transmission over record length (100m) long image fibre,” Electron. Lett. 34, 1127–1128 (1998).
[CrossRef]

K. Kitayama, M. Nakamura, Y. Igasaki, K. Kaneda, “Image fiber-optic two-dimensional parallel links based upon optical space-CDMA: Experiment,” J. Lightwave Technol. 15, 202–212 (1997).
[CrossRef]

M. Nakamura, K. Kitayama, Y. Igasaki, K. Kaneda, “Visual alignment using image fiber micro-optics for long-distance, ultra-high throughput space-CDMA based 2-D parallel optical data link,” In Massively Parallel Processing Using Optical Interconnections (MPPOI98), IEEE Computer Society229–236 (1998).

Ishikawa, M.

M. Ishikawa, “Optoelectronic parallel computing system with reconfigurable optical interconnection,” SPIE Critical Review Series, Optoelectronic Interconnects and Packaging, R. T. Chen, P.S. Guilfoyle, eds., CR62, 156–175 (1996).

Kajita, M.

M. Kajita, K. Kasahara, T. J. Kim, D. T. Neilson, I. Ogura, I. Redmond, E. Schenfeld, “Wavelength-division multiplexing free-space optical interconnect networks for massively parallel processing systems,” Appl. Opt., 37, 3746–3755 (1998).
[CrossRef]

H. Kosaka, M. Kajita, Y. Li, Y. Sugimoto, “A two-dimensional optical parallel transmission using a vertical-cavity surface-emitting laser array module and an image fiber,” IEEE Photon. Technol. Lett. 9, 253–255 (1997).
[CrossRef]

Kaneda, K.

M. Nakamura, K. Kitayama, Y. Igasaki, K. Kaneda, “Space-CDMA based 2D parallel optical transmission over record length (100m) long image fibre,” Electron. Lett. 34, 1127–1128 (1998).
[CrossRef]

M. Nakamura, K. Kitayama, Y. Igasaki, K. Kaneda, “Four-channel, 8 × 8 bit, two-dimensional parallel transmission by use of space-code-division multiple-access encoder and decoder modules,” Appl. Opt., 37, 4389–4398 (1998).
[CrossRef]

K. Kitayama, M. Nakamura, Y. Igasaki, K. Kaneda, “Image fiber-optic two-dimensional parallel links based upon optical space-CDMA: Experiment,” J. Lightwave Technol. 15, 202–212 (1997).
[CrossRef]

M. Nakamura, K. Kitayama, Y. Igasaki, K. Kaneda, “Visual alignment using image fiber micro-optics for long-distance, ultra-high throughput space-CDMA based 2-D parallel optical data link,” In Massively Parallel Processing Using Optical Interconnections (MPPOI98), IEEE Computer Society229–236 (1998).

Kasahara, K.

Kim, T. J.

Kirk, A. G.

Kitayama, K.

M. Nakamura, K. Kitayama, “High-speed 2-D parallel optical interconnects using image fibers with VCSEL/PD arrays,” IEICE Trans. Electron. E84-C, 282–287 (2001).

M. Nakamura, K. Kitayama, “System performances of optical space code-division multiple-access-based fiber-optic two-dimensional parallel data link,” Appl. Opt. 37, 2915–2924 (1998).
[CrossRef]

M. Nakamura, K. Kitayama, Y. Igasaki, K. Kaneda, “Four-channel, 8 × 8 bit, two-dimensional parallel transmission by use of space-code-division multiple-access encoder and decoder modules,” Appl. Opt., 37, 4389–4398 (1998).
[CrossRef]

M. Nakamura, K. Kitayama, Y. Igasaki, K. Kaneda, “Space-CDMA based 2D parallel optical transmission over record length (100m) long image fibre,” Electron. Lett. 34, 1127–1128 (1998).
[CrossRef]

K. Kitayama, M. Nakamura, Y. Igasaki, K. Kaneda, “Image fiber-optic two-dimensional parallel links based upon optical space-CDMA: Experiment,” J. Lightwave Technol. 15, 202–212 (1997).
[CrossRef]

K. Kitayama, “Novel spatial spread spectrum based fiber optic CDMA networks for image transmission,” IEEE J. Sel. Areas Commun. 12, 762–772 (1994).
[CrossRef]

M. Nakamura, K. Kitayama, Y. Igasaki, K. Kaneda, “Visual alignment using image fiber micro-optics for long-distance, ultra-high throughput space-CDMA based 2-D parallel optical data link,” In Massively Parallel Processing Using Optical Interconnections (MPPOI98), IEEE Computer Society229–236 (1998).

Kohama, Y.

Y. Ohiso, Y. Kohama, T. Kurokawa, “0.85-µm vertical-cavity surface-emitting laser array grown on GaAs and AIGaAs substrates by metal organic chemical vapor deposition,” Jpn. J. Appl. Phys. 34, 6073–6078 (1995).
[CrossRef]

Kosaka, H.

H. Kosaka, M. Kajita, Y. Li, Y. Sugimoto, “A two-dimensional optical parallel transmission using a vertical-cavity surface-emitting laser array module and an image fiber,” IEEE Photon. Technol. Lett. 9, 253–255 (1997).
[CrossRef]

Koyabu, K.

K. Koyabu, F. Ohira, T. Yamamoto, “Fabrication of two-dimensional fiber arrays using microferrules,” IEEE Trans. Components, Packae., and Manuf. Technol., Part C 21, 11–19 (1998).
[CrossRef]

Kudoh, T.

S. Nishimura, T. Kudoh, H. Nishi, K. Tasho, K. Harasawa, S. Akutsu, S. Fukuda, Y. Shikichi, “A high-speed, highly-reliable network switch for parallel computing system using optical interconnection,” IEICE Trans. Electron., E84-C, 288–294 (2001).

Kurokawa, T.

Y. Ohiso, Y. Kohama, T. Kurokawa, “0.85-µm vertical-cavity surface-emitting laser array grown on GaAs and AIGaAs substrates by metal organic chemical vapor deposition,” Jpn. J. Appl. Phys. 34, 6073–6078 (1995).
[CrossRef]

Lear, K. L.

Levitan, S. P.

Li, Y.

Y. Li, J. Ai, J. Popelek, “Board-level 2-D data-capable optical interconnection circuits using polymer fiber-image guides,” Proc. IEEE 88, 794–805, (2000).
[CrossRef]

H. Kosaka, M. Kajita, Y. Li, Y. Sugimoto, “A two-dimensional optical parallel transmission using a vertical-cavity surface-emitting laser array module and an image fiber,” IEEE Photon. Technol. Lett. 9, 253–255 (1997).
[CrossRef]

Maj, T.

Nakamura, M.

M. Nakamura, K. Kitayama, “High-speed 2-D parallel optical interconnects using image fibers with VCSEL/PD arrays,” IEICE Trans. Electron. E84-C, 282–287 (2001).

M. Nakamura, K. Kitayama, “System performances of optical space code-division multiple-access-based fiber-optic two-dimensional parallel data link,” Appl. Opt. 37, 2915–2924 (1998).
[CrossRef]

M. Nakamura, K. Kitayama, Y. Igasaki, K. Kaneda, “Four-channel, 8 × 8 bit, two-dimensional parallel transmission by use of space-code-division multiple-access encoder and decoder modules,” Appl. Opt., 37, 4389–4398 (1998).
[CrossRef]

M. Nakamura, K. Kitayama, Y. Igasaki, K. Kaneda, “Space-CDMA based 2D parallel optical transmission over record length (100m) long image fibre,” Electron. Lett. 34, 1127–1128 (1998).
[CrossRef]

K. Kitayama, M. Nakamura, Y. Igasaki, K. Kaneda, “Image fiber-optic two-dimensional parallel links based upon optical space-CDMA: Experiment,” J. Lightwave Technol. 15, 202–212 (1997).
[CrossRef]

M. Nakamura, K. Kitayama, Y. Igasaki, K. Kaneda, “Visual alignment using image fiber micro-optics for long-distance, ultra-high throughput space-CDMA based 2-D parallel optical data link,” In Massively Parallel Processing Using Optical Interconnections (MPPOI98), IEEE Computer Society229–236 (1998).

Neilson, D. T.

Nishi, H.

S. Nishimura, T. Kudoh, H. Nishi, K. Tasho, K. Harasawa, S. Akutsu, S. Fukuda, Y. Shikichi, “A high-speed, highly-reliable network switch for parallel computing system using optical interconnection,” IEICE Trans. Electron., E84-C, 288–294 (2001).

Nishimura, S.

S. Nishimura, T. Kudoh, H. Nishi, K. Tasho, K. Harasawa, S. Akutsu, S. Fukuda, Y. Shikichi, “A high-speed, highly-reliable network switch for parallel computing system using optical interconnection,” IEICE Trans. Electron., E84-C, 288–294 (2001).

Ogura, I.

Ohira, F.

K. Koyabu, F. Ohira, T. Yamamoto, “Fabrication of two-dimensional fiber arrays using microferrules,” IEEE Trans. Components, Packae., and Manuf. Technol., Part C 21, 11–19 (1998).
[CrossRef]

Ohiso, Y.

Y. Ohiso, Y. Kohama, T. Kurokawa, “0.85-µm vertical-cavity surface-emitting laser array grown on GaAs and AIGaAs substrates by metal organic chemical vapor deposition,” Jpn. J. Appl. Phys. 34, 6073–6078 (1995).
[CrossRef]

Plant, D. V.

Popelek, J.

Y. Li, J. Ai, J. Popelek, “Board-level 2-D data-capable optical interconnection circuits using polymer fiber-image guides,” Proc. IEEE 88, 794–805, (2000).
[CrossRef]

Redmond, I.

Robinson, M. S.

Schenfeld, E.

Shikichi, Y.

S. Nishimura, T. Kudoh, H. Nishi, K. Tasho, K. Harasawa, S. Akutsu, S. Fukuda, Y. Shikichi, “A high-speed, highly-reliable network switch for parallel computing system using optical interconnection,” IEICE Trans. Electron., E84-C, 288–294 (2001).

Sugimoto, Y.

H. Kosaka, M. Kajita, Y. Li, Y. Sugimoto, “A two-dimensional optical parallel transmission using a vertical-cavity surface-emitting laser array module and an image fiber,” IEEE Photon. Technol. Lett. 9, 253–255 (1997).
[CrossRef]

Tasho, K.

S. Nishimura, T. Kudoh, H. Nishi, K. Tasho, K. Harasawa, S. Akutsu, S. Fukuda, Y. Shikichi, “A high-speed, highly-reliable network switch for parallel computing system using optical interconnection,” IEICE Trans. Electron., E84-C, 288–294 (2001).

Tatah, K.

Trezza, J. A.

Yamamoto, T.

K. Koyabu, F. Ohira, T. Yamamoto, “Fabrication of two-dimensional fiber arrays using microferrules,” IEEE Trans. Components, Packae., and Manuf. Technol., Part C 21, 11–19 (1998).
[CrossRef]

Appl. Opt. (5)

Electron. Lett. (1)

M. Nakamura, K. Kitayama, Y. Igasaki, K. Kaneda, “Space-CDMA based 2D parallel optical transmission over record length (100m) long image fibre,” Electron. Lett. 34, 1127–1128 (1998).
[CrossRef]

IEEE J. Sel. Areas Commun. (1)

K. Kitayama, “Novel spatial spread spectrum based fiber optic CDMA networks for image transmission,” IEEE J. Sel. Areas Commun. 12, 762–772 (1994).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

H. Kosaka, M. Kajita, Y. Li, Y. Sugimoto, “A two-dimensional optical parallel transmission using a vertical-cavity surface-emitting laser array module and an image fiber,” IEEE Photon. Technol. Lett. 9, 253–255 (1997).
[CrossRef]

IEEE Trans. Components, Packae., and Manuf. Technol., Part C (1)

K. Koyabu, F. Ohira, T. Yamamoto, “Fabrication of two-dimensional fiber arrays using microferrules,” IEEE Trans. Components, Packae., and Manuf. Technol., Part C 21, 11–19 (1998).
[CrossRef]

IEICE Trans. Electron. (2)

M. Nakamura, K. Kitayama, “High-speed 2-D parallel optical interconnects using image fibers with VCSEL/PD arrays,” IEICE Trans. Electron. E84-C, 282–287 (2001).

S. Nishimura, T. Kudoh, H. Nishi, K. Tasho, K. Harasawa, S. Akutsu, S. Fukuda, Y. Shikichi, “A high-speed, highly-reliable network switch for parallel computing system using optical interconnection,” IEICE Trans. Electron., E84-C, 288–294 (2001).

J. Lightwave Technol. (1)

K. Kitayama, M. Nakamura, Y. Igasaki, K. Kaneda, “Image fiber-optic two-dimensional parallel links based upon optical space-CDMA: Experiment,” J. Lightwave Technol. 15, 202–212 (1997).
[CrossRef]

Jpn. J. Appl. Phys. (1)

Y. Ohiso, Y. Kohama, T. Kurokawa, “0.85-µm vertical-cavity surface-emitting laser array grown on GaAs and AIGaAs substrates by metal organic chemical vapor deposition,” Jpn. J. Appl. Phys. 34, 6073–6078 (1995).
[CrossRef]

Proc. IEEE (1)

Y. Li, J. Ai, J. Popelek, “Board-level 2-D data-capable optical interconnection circuits using polymer fiber-image guides,” Proc. IEEE 88, 794–805, (2000).
[CrossRef]

Other (2)

M. Ishikawa, “Optoelectronic parallel computing system with reconfigurable optical interconnection,” SPIE Critical Review Series, Optoelectronic Interconnects and Packaging, R. T. Chen, P.S. Guilfoyle, eds., CR62, 156–175 (1996).

M. Nakamura, K. Kitayama, Y. Igasaki, K. Kaneda, “Visual alignment using image fiber micro-optics for long-distance, ultra-high throughput space-CDMA based 2-D parallel optical data link,” In Massively Parallel Processing Using Optical Interconnections (MPPOI98), IEEE Computer Society229–236 (1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic diagrams depicting (a) spatial encoding and (b) spatial decoding.

Fig. 2
Fig. 2

Space-CDMA system implementation by use of VCSEL/PD arrays.

Fig. 3
Fig. 3

Experimental setup of space-CDMA system by use of image fibers and VCSEL/PD arrays.

Fig. 4
Fig. 4

Photograph showing two transmitters and a receiver with VCSEL/PD arrays for the space-CDMA experiment.

Fig. 5
Fig. 5

Eye patterns when a serial data stream was transmitted without encoder/decoder: (a) 100 Mbps/ch, PRBS 211-1, (b) 1 Gbps/ch, PRBS 223-1).

Fig. 6
Fig. 6

Prepared OOSPs with code size of 4 × 4.

Fig. 7
Fig. 7

2 × 2 optical signals encoded by (a) OOSP 1 and (b) OOSP 2 after propagation through 1-m-long image fibers. (c) Encoded and multiplexed optical signals.

Fig. 8
Fig. 8

Observed eye pattern of Ch-1 of transmitter #1.

Fig. 9
Fig. 9

BER performance versus lateral misalignment of PD array.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Eq = e11qe12qe1Mqe21qe22qe2MqeM1qeM2qeMMq,
i=jMj=1M ei,jq ei+k,j+1q=wfor k=1=0λafor 1k, lM-1,
i=1Mj=1M ei,jq ei+k,j+1qλc for qq, 0k, lM-1,

Metrics