Abstract

Experimental results are presented for 180° contra-directional two-beam coupling (TBC) measurements in a single crystal fiber of LiNbO3:Fe using a single incident beam and its Fresnel reflection off the back surface of the fiber. To our knowledge, this is the first time that volume gratings have been written in a fiber using this beam coupling geometry. At small f-numbers, the TBC efficiency has been predicted to decrease in bulk LiNbO3:Fe due to the erasure of the weak gratings by the dark conductivity. We present experimental results validating the published theory and show experimentally that confinement of the interfering beams in a fiber geometry overcomes this limitation.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. S. Chen, J. T. LaMacchia, D. B. Fraser, “Holographic storage in lithium niobate,” Appl. Phys. Lett 13, 223–225 (1968).
    [CrossRef]
  2. J. Wilde, R. McRuer, L. Hesselink, J. Goodman, Digital Optical Computing, R. Arrathoon, ed., SPIE752, 200–208 (1986).
  3. G. A. Rakuljic, V. Leyva, “Volume holographic narrow-optical filter,” Opt. Lett. 18, 459–461 (1993).
    [CrossRef] [PubMed]
  4. B. H. Soffer, G. J. Dunning, Y. Owechko, E. Marom, “Associative holographic memory with feedback using phase-conjugate mirrors.” Opt. Lett. 11, 118–120 (1986).
    [CrossRef]
  5. S. M. Jensen, R. W. Hellwarth, “Generation of time-reversed waves by nonlinear refraction in a waveguide,” Appl. Phys. Lett. 33, 404–405 (1978).
    [CrossRef]
  6. P. Günter, J. P. Huignard, Photorefractive Materials and Their Application I (Springer-Verlag, Berlin, 1988).
  7. Y. H. Ja, “Energy transfer between two beams in writing a reflection volume hologram in a dynamic medium,” Opt. Quantum Electron. 14, 547–556 (1982).
    [CrossRef]
  8. P. Yeh, “Contra-directional two-wave mixing in photorefractive media,” Optics Commun. 45, 323–326 (1983).
    [CrossRef]
  9. K. R. MacDonald, J. Feinberg, Z. Z. Ming, Peter Günter, “Asymmetric transmission through a photorefractive crystal of barium titanate,” Optics Commun. 50, 146–150 (1984).
    [CrossRef]
  10. G. Cook, D. C. Jones, C. J. Finnan, L. L. Taylor, T. W. Vere, “Optical limiting with lithium niobate,” Power Limiting Materials and Devices, C. M. Lawson, ed., Proc. SPIE3798, 2–16 (1999).
  11. G. Cook, J. P. Duignan, L. L. Taylor, D. C. Jones, “Developing photorefractive fibers for optical limiting,” in Linear, Nonlinear, and Power Limiting Organics, M. Eich, M. G. Kuzyk, C. M. Lawson, R. A. Norwood, eds. Proc. SPIE4106, 230–244 (2000).
  12. F. Ito, K.-I. Kitayama, O. Nakao, “Enhanced two-wave mixing in a photorefractive waveguide having a periodically reversed c-axis by electrical poling technique,” Appl. Phys. Lett. 60, 793–795 (1992).
    [CrossRef]
  13. L. Hesselink, S. Redfield, “Photorefractive holographic recording in strontium barium niobate fibers,” Opt. Lett. 13, 877–879 (1988).
    [CrossRef] [PubMed]
  14. K.-I. Kitayama, F. Ito, “Holographic memory using long photorefractive fiber array,” Opt. Mater. 4, 392–398 (1995).
    [CrossRef]
  15. Y. Yu, S. Yin, “Photorefractive Optics Materials, Properties, and Applications (Academic, San Diego, Calif, 2000).
  16. M. M. Fejer, J. L. Nightengale, G. A. Magel, R. L. Byer, “Laser-heated pedestal growth apparatus for single-crystal optical fibers,” Rev. Sci. Instrum. 55, 1791–1796 (1984).
    [CrossRef]
  17. R. S. Feigelson, W. L. Kway, R. K. Route, “Single crystal fibers by the laser-heated pedestal growth method,” Opt. Eng. 24, 1102–1107 (1985).
  18. F. Ritzert, L. Westfall, “Making single-crystal fibers in a laser-heated floating zone,” Technical Support Package, NASA Tech Briefs, LEW-165391–23 (1998).

1998 (1)

F. Ritzert, L. Westfall, “Making single-crystal fibers in a laser-heated floating zone,” Technical Support Package, NASA Tech Briefs, LEW-165391–23 (1998).

1995 (1)

K.-I. Kitayama, F. Ito, “Holographic memory using long photorefractive fiber array,” Opt. Mater. 4, 392–398 (1995).
[CrossRef]

1993 (1)

1992 (1)

F. Ito, K.-I. Kitayama, O. Nakao, “Enhanced two-wave mixing in a photorefractive waveguide having a periodically reversed c-axis by electrical poling technique,” Appl. Phys. Lett. 60, 793–795 (1992).
[CrossRef]

1988 (1)

1986 (1)

1985 (1)

R. S. Feigelson, W. L. Kway, R. K. Route, “Single crystal fibers by the laser-heated pedestal growth method,” Opt. Eng. 24, 1102–1107 (1985).

1984 (2)

M. M. Fejer, J. L. Nightengale, G. A. Magel, R. L. Byer, “Laser-heated pedestal growth apparatus for single-crystal optical fibers,” Rev. Sci. Instrum. 55, 1791–1796 (1984).
[CrossRef]

K. R. MacDonald, J. Feinberg, Z. Z. Ming, Peter Günter, “Asymmetric transmission through a photorefractive crystal of barium titanate,” Optics Commun. 50, 146–150 (1984).
[CrossRef]

1983 (1)

P. Yeh, “Contra-directional two-wave mixing in photorefractive media,” Optics Commun. 45, 323–326 (1983).
[CrossRef]

1982 (1)

Y. H. Ja, “Energy transfer between two beams in writing a reflection volume hologram in a dynamic medium,” Opt. Quantum Electron. 14, 547–556 (1982).
[CrossRef]

1978 (1)

S. M. Jensen, R. W. Hellwarth, “Generation of time-reversed waves by nonlinear refraction in a waveguide,” Appl. Phys. Lett. 33, 404–405 (1978).
[CrossRef]

1968 (1)

F. S. Chen, J. T. LaMacchia, D. B. Fraser, “Holographic storage in lithium niobate,” Appl. Phys. Lett 13, 223–225 (1968).
[CrossRef]

Byer, R. L.

M. M. Fejer, J. L. Nightengale, G. A. Magel, R. L. Byer, “Laser-heated pedestal growth apparatus for single-crystal optical fibers,” Rev. Sci. Instrum. 55, 1791–1796 (1984).
[CrossRef]

Chen, F. S.

F. S. Chen, J. T. LaMacchia, D. B. Fraser, “Holographic storage in lithium niobate,” Appl. Phys. Lett 13, 223–225 (1968).
[CrossRef]

Cook, G.

G. Cook, D. C. Jones, C. J. Finnan, L. L. Taylor, T. W. Vere, “Optical limiting with lithium niobate,” Power Limiting Materials and Devices, C. M. Lawson, ed., Proc. SPIE3798, 2–16 (1999).

G. Cook, J. P. Duignan, L. L. Taylor, D. C. Jones, “Developing photorefractive fibers for optical limiting,” in Linear, Nonlinear, and Power Limiting Organics, M. Eich, M. G. Kuzyk, C. M. Lawson, R. A. Norwood, eds. Proc. SPIE4106, 230–244 (2000).

Duignan, J. P.

G. Cook, J. P. Duignan, L. L. Taylor, D. C. Jones, “Developing photorefractive fibers for optical limiting,” in Linear, Nonlinear, and Power Limiting Organics, M. Eich, M. G. Kuzyk, C. M. Lawson, R. A. Norwood, eds. Proc. SPIE4106, 230–244 (2000).

Dunning, G. J.

Feigelson, R. S.

R. S. Feigelson, W. L. Kway, R. K. Route, “Single crystal fibers by the laser-heated pedestal growth method,” Opt. Eng. 24, 1102–1107 (1985).

Feinberg, J.

K. R. MacDonald, J. Feinberg, Z. Z. Ming, Peter Günter, “Asymmetric transmission through a photorefractive crystal of barium titanate,” Optics Commun. 50, 146–150 (1984).
[CrossRef]

Fejer, M. M.

M. M. Fejer, J. L. Nightengale, G. A. Magel, R. L. Byer, “Laser-heated pedestal growth apparatus for single-crystal optical fibers,” Rev. Sci. Instrum. 55, 1791–1796 (1984).
[CrossRef]

Finnan, C. J.

G. Cook, D. C. Jones, C. J. Finnan, L. L. Taylor, T. W. Vere, “Optical limiting with lithium niobate,” Power Limiting Materials and Devices, C. M. Lawson, ed., Proc. SPIE3798, 2–16 (1999).

Fraser, D. B.

F. S. Chen, J. T. LaMacchia, D. B. Fraser, “Holographic storage in lithium niobate,” Appl. Phys. Lett 13, 223–225 (1968).
[CrossRef]

Goodman, J.

J. Wilde, R. McRuer, L. Hesselink, J. Goodman, Digital Optical Computing, R. Arrathoon, ed., SPIE752, 200–208 (1986).

Günter, P.

P. Günter, J. P. Huignard, Photorefractive Materials and Their Application I (Springer-Verlag, Berlin, 1988).

Günter, Peter

K. R. MacDonald, J. Feinberg, Z. Z. Ming, Peter Günter, “Asymmetric transmission through a photorefractive crystal of barium titanate,” Optics Commun. 50, 146–150 (1984).
[CrossRef]

Hellwarth, R. W.

S. M. Jensen, R. W. Hellwarth, “Generation of time-reversed waves by nonlinear refraction in a waveguide,” Appl. Phys. Lett. 33, 404–405 (1978).
[CrossRef]

Hesselink, L.

L. Hesselink, S. Redfield, “Photorefractive holographic recording in strontium barium niobate fibers,” Opt. Lett. 13, 877–879 (1988).
[CrossRef] [PubMed]

J. Wilde, R. McRuer, L. Hesselink, J. Goodman, Digital Optical Computing, R. Arrathoon, ed., SPIE752, 200–208 (1986).

Huignard, J. P.

P. Günter, J. P. Huignard, Photorefractive Materials and Their Application I (Springer-Verlag, Berlin, 1988).

Ito, F.

K.-I. Kitayama, F. Ito, “Holographic memory using long photorefractive fiber array,” Opt. Mater. 4, 392–398 (1995).
[CrossRef]

F. Ito, K.-I. Kitayama, O. Nakao, “Enhanced two-wave mixing in a photorefractive waveguide having a periodically reversed c-axis by electrical poling technique,” Appl. Phys. Lett. 60, 793–795 (1992).
[CrossRef]

Ja, Y. H.

Y. H. Ja, “Energy transfer between two beams in writing a reflection volume hologram in a dynamic medium,” Opt. Quantum Electron. 14, 547–556 (1982).
[CrossRef]

Jensen, S. M.

S. M. Jensen, R. W. Hellwarth, “Generation of time-reversed waves by nonlinear refraction in a waveguide,” Appl. Phys. Lett. 33, 404–405 (1978).
[CrossRef]

Jones, D. C.

G. Cook, D. C. Jones, C. J. Finnan, L. L. Taylor, T. W. Vere, “Optical limiting with lithium niobate,” Power Limiting Materials and Devices, C. M. Lawson, ed., Proc. SPIE3798, 2–16 (1999).

G. Cook, J. P. Duignan, L. L. Taylor, D. C. Jones, “Developing photorefractive fibers for optical limiting,” in Linear, Nonlinear, and Power Limiting Organics, M. Eich, M. G. Kuzyk, C. M. Lawson, R. A. Norwood, eds. Proc. SPIE4106, 230–244 (2000).

Kitayama, K.-I.

K.-I. Kitayama, F. Ito, “Holographic memory using long photorefractive fiber array,” Opt. Mater. 4, 392–398 (1995).
[CrossRef]

F. Ito, K.-I. Kitayama, O. Nakao, “Enhanced two-wave mixing in a photorefractive waveguide having a periodically reversed c-axis by electrical poling technique,” Appl. Phys. Lett. 60, 793–795 (1992).
[CrossRef]

Kway, W. L.

R. S. Feigelson, W. L. Kway, R. K. Route, “Single crystal fibers by the laser-heated pedestal growth method,” Opt. Eng. 24, 1102–1107 (1985).

LaMacchia, J. T.

F. S. Chen, J. T. LaMacchia, D. B. Fraser, “Holographic storage in lithium niobate,” Appl. Phys. Lett 13, 223–225 (1968).
[CrossRef]

Leyva, V.

MacDonald, K. R.

K. R. MacDonald, J. Feinberg, Z. Z. Ming, Peter Günter, “Asymmetric transmission through a photorefractive crystal of barium titanate,” Optics Commun. 50, 146–150 (1984).
[CrossRef]

Magel, G. A.

M. M. Fejer, J. L. Nightengale, G. A. Magel, R. L. Byer, “Laser-heated pedestal growth apparatus for single-crystal optical fibers,” Rev. Sci. Instrum. 55, 1791–1796 (1984).
[CrossRef]

Marom, E.

McRuer, R.

J. Wilde, R. McRuer, L. Hesselink, J. Goodman, Digital Optical Computing, R. Arrathoon, ed., SPIE752, 200–208 (1986).

Ming, Z. Z.

K. R. MacDonald, J. Feinberg, Z. Z. Ming, Peter Günter, “Asymmetric transmission through a photorefractive crystal of barium titanate,” Optics Commun. 50, 146–150 (1984).
[CrossRef]

Nakao, O.

F. Ito, K.-I. Kitayama, O. Nakao, “Enhanced two-wave mixing in a photorefractive waveguide having a periodically reversed c-axis by electrical poling technique,” Appl. Phys. Lett. 60, 793–795 (1992).
[CrossRef]

Nightengale, J. L.

M. M. Fejer, J. L. Nightengale, G. A. Magel, R. L. Byer, “Laser-heated pedestal growth apparatus for single-crystal optical fibers,” Rev. Sci. Instrum. 55, 1791–1796 (1984).
[CrossRef]

Owechko, Y.

Rakuljic, G. A.

Redfield, S.

Ritzert, F.

F. Ritzert, L. Westfall, “Making single-crystal fibers in a laser-heated floating zone,” Technical Support Package, NASA Tech Briefs, LEW-165391–23 (1998).

Route, R. K.

R. S. Feigelson, W. L. Kway, R. K. Route, “Single crystal fibers by the laser-heated pedestal growth method,” Opt. Eng. 24, 1102–1107 (1985).

Soffer, B. H.

Taylor, L. L.

G. Cook, D. C. Jones, C. J. Finnan, L. L. Taylor, T. W. Vere, “Optical limiting with lithium niobate,” Power Limiting Materials and Devices, C. M. Lawson, ed., Proc. SPIE3798, 2–16 (1999).

G. Cook, J. P. Duignan, L. L. Taylor, D. C. Jones, “Developing photorefractive fibers for optical limiting,” in Linear, Nonlinear, and Power Limiting Organics, M. Eich, M. G. Kuzyk, C. M. Lawson, R. A. Norwood, eds. Proc. SPIE4106, 230–244 (2000).

Vere, T. W.

G. Cook, D. C. Jones, C. J. Finnan, L. L. Taylor, T. W. Vere, “Optical limiting with lithium niobate,” Power Limiting Materials and Devices, C. M. Lawson, ed., Proc. SPIE3798, 2–16 (1999).

Westfall, L.

F. Ritzert, L. Westfall, “Making single-crystal fibers in a laser-heated floating zone,” Technical Support Package, NASA Tech Briefs, LEW-165391–23 (1998).

Wilde, J.

J. Wilde, R. McRuer, L. Hesselink, J. Goodman, Digital Optical Computing, R. Arrathoon, ed., SPIE752, 200–208 (1986).

Yeh, P.

P. Yeh, “Contra-directional two-wave mixing in photorefractive media,” Optics Commun. 45, 323–326 (1983).
[CrossRef]

Yin, S.

Y. Yu, S. Yin, “Photorefractive Optics Materials, Properties, and Applications (Academic, San Diego, Calif, 2000).

Yu, Y.

Y. Yu, S. Yin, “Photorefractive Optics Materials, Properties, and Applications (Academic, San Diego, Calif, 2000).

Appl. Phys. Lett (1)

F. S. Chen, J. T. LaMacchia, D. B. Fraser, “Holographic storage in lithium niobate,” Appl. Phys. Lett 13, 223–225 (1968).
[CrossRef]

Appl. Phys. Lett. (2)

F. Ito, K.-I. Kitayama, O. Nakao, “Enhanced two-wave mixing in a photorefractive waveguide having a periodically reversed c-axis by electrical poling technique,” Appl. Phys. Lett. 60, 793–795 (1992).
[CrossRef]

S. M. Jensen, R. W. Hellwarth, “Generation of time-reversed waves by nonlinear refraction in a waveguide,” Appl. Phys. Lett. 33, 404–405 (1978).
[CrossRef]

Opt. Eng. (1)

R. S. Feigelson, W. L. Kway, R. K. Route, “Single crystal fibers by the laser-heated pedestal growth method,” Opt. Eng. 24, 1102–1107 (1985).

Opt. Lett. (3)

Opt. Mater. (1)

K.-I. Kitayama, F. Ito, “Holographic memory using long photorefractive fiber array,” Opt. Mater. 4, 392–398 (1995).
[CrossRef]

Opt. Quantum Electron. (1)

Y. H. Ja, “Energy transfer between two beams in writing a reflection volume hologram in a dynamic medium,” Opt. Quantum Electron. 14, 547–556 (1982).
[CrossRef]

Optics Commun. (2)

P. Yeh, “Contra-directional two-wave mixing in photorefractive media,” Optics Commun. 45, 323–326 (1983).
[CrossRef]

K. R. MacDonald, J. Feinberg, Z. Z. Ming, Peter Günter, “Asymmetric transmission through a photorefractive crystal of barium titanate,” Optics Commun. 50, 146–150 (1984).
[CrossRef]

Rev. Sci. Instrum. (1)

M. M. Fejer, J. L. Nightengale, G. A. Magel, R. L. Byer, “Laser-heated pedestal growth apparatus for single-crystal optical fibers,” Rev. Sci. Instrum. 55, 1791–1796 (1984).
[CrossRef]

Technical Support Package, NASA Tech Briefs (1)

F. Ritzert, L. Westfall, “Making single-crystal fibers in a laser-heated floating zone,” Technical Support Package, NASA Tech Briefs, LEW-165391–23 (1998).

Other (5)

P. Günter, J. P. Huignard, Photorefractive Materials and Their Application I (Springer-Verlag, Berlin, 1988).

Y. Yu, S. Yin, “Photorefractive Optics Materials, Properties, and Applications (Academic, San Diego, Calif, 2000).

G. Cook, D. C. Jones, C. J. Finnan, L. L. Taylor, T. W. Vere, “Optical limiting with lithium niobate,” Power Limiting Materials and Devices, C. M. Lawson, ed., Proc. SPIE3798, 2–16 (1999).

G. Cook, J. P. Duignan, L. L. Taylor, D. C. Jones, “Developing photorefractive fibers for optical limiting,” in Linear, Nonlinear, and Power Limiting Organics, M. Eich, M. G. Kuzyk, C. M. Lawson, R. A. Norwood, eds. Proc. SPIE4106, 230–244 (2000).

J. Wilde, R. McRuer, L. Hesselink, J. Goodman, Digital Optical Computing, R. Arrathoon, ed., SPIE752, 200–208 (1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup used for measuring the TBC efficiency. A 532 nm laser (L) was used for writing volume gratings in a LiNbO3:Fe fiber (F). The incident power was attenuated by using a half-wave plate (HP) between a polarizer (P) and an analyzer (A). A beam expander (BE) is used in conjunction with a focusing lens (L1) and aperture (A1) in order to vary the f-number (spot size). The transmitted light from the fiber was collected with a lens (L2) and was measured using a silicon detector (D2). A second aperture (A2) was used to block the photorefractive backscattered light off L1, which may affect the measurement. The incident beam was monitored by detecting (D1) a fraction of the incident beam with a beam splitter (BS).

Fig. 2
Fig. 2

Linear transmission at low (read-only) power in the 5 mm bulk crystal (filled squares) and 11 mm fiber (filled circles). For f-numbers less than f/10 the linear transmission of the fiber is reduced; a large part of the loss in linear transmission is due to the fiber quality.

Fig. 3
Fig. 3

An optical micrograph of the LiNbO3:Fe fiber used for waveguiding showing a fracture across the fiber at locations where there is a substantial change in fiber diameter.

Fig. 4
Fig. 4

TBC efficiency in the bulk crystal (open squares) and 11 mm fiber (filled circles). The solid curve through the fiber data is a guide to the eye, whereas the dashed curve is the theoretical data10 for the TBC efficiency in the bulk crystal. Error bars (standard deviation) for the experimental data are included. The establishment of the grating as a function of time is seen in the inset, which shows the transmitted power as a function of time.

Metrics