Abstract

Most modern pattern recognition filters used in target detection require a clutter-noise estimate to perform efficiently in realistic situations. Markovian and autoregressive models are proposed as an alternative to the white-noise model that has so far been the most widely used. Simulations by use of the Wiener filter and involving real clutter scenes show that both the Markovian and the autoregressive models perform considerably better than the white-noise model. The results also show that both models are general enough to yield similar results with different types of real scenes.

© 2002 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Design of correlation filters for recognition of linearly distorted objects in linearly degraded scenes

Erika M. Ramos-Michel and Vitaly Kober
J. Opt. Soc. Am. A 24(11) 3403-3417 (2007)

Optimum nonlinear composite filter for distortion-tolerant pattern recognition

Seung-Hyun Hong and Bahram Javidi
Appl. Opt. 41(11) 2172-2178 (2002)

New interpretations of Wiener filters for image recognition

Emanuel Marom and Hanni Inbar
J. Opt. Soc. Am. A 13(7) 1325-1330 (1996)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (12)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription