Abstract

A novel method is developed to improve the accuracy of micro-resolution particle image velocimetry (PIV) in microfluidics measurements. This method utilizes the Laplacian of Gaussian method and image-processing techniques to eliminate the background scattering noise. A high signal-to-noise ratio image has been obtained. This technique is especially suitable for improving micro-resolution PIV in micro, two-, or multiphase flow conditions, such as for submicron bubbly flow measurements in a microchannel. The method can easily be implemented with minimal modification of the conventional PIV system. The results of simulation and experiments demonstrated the feasibility of this, to our knowledge, new method.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. J. Adrian, “Particle-imaging techniques for experimental fluid mechanics,” Annu. Rev. Fluid Mech. 23, 261–304 (1991).
    [Crossref]
  2. R. J. Adrian, C. S. Yao, “Pulsed laser technique application to liquid and gaseous flows and the scattering power of seed materials,” Appl. Opt. 24, 44–52 (1985).
    [Crossref] [PubMed]
  3. R. J. Adrian, “An image shifting technique to resolve directional ambiguity in double-pulsed velocimetry,” Appl. Opt. 25, 3855–3858 (1986).
    [Crossref] [PubMed]
  4. M. G. Olsen, R. J. Adrian, “Measurement volume defined by peak-finding algorithms in cross-correlation particle image velocimetry,” Meas. Sci. Technol. 12, 14–16 (2001).
    [Crossref]
  5. R. D. Keane, R. J. Adrian, “Theory of cross-correlation analysis of PIV images,” Appl. Sci. Res. 49, 191–215 (1992).
    [Crossref]
  6. H. J. Lin, M. Perlin, “Improved methods for thin, surface boundary layer investigations,” Exp. Fluids 25, 431–444 (1998).
    [Crossref]
  7. J. E. Rehm, N. T. Clemens, “An improved method for enhancing the resolution of conventional double-exposure single-frame particle image velocimetry,” Exp. Fluids 26, 497–504 (1999).
    [Crossref]
  8. Y. A. Hassan, R. S. Martinez, O. G. Philip, W. D. Schmidl, “Flow measurement of a two-phase fluid around a cylinder ina channel using particle image velocimetry,” Trans. Am. Nucl. Soc. 71, 583–585 (1994).
  9. J. F. Eschenbacher, K. Nakabe, K. Suzuki, “Flow visualization of a longitudinal vortex in drag-reducing surfactant flow,” J. Vis. 4, 331–339 (2001).
    [Crossref]
  10. M. A. Northrup, T. J. Kulp, S. M. Angel, “Fluorescent particle image velocimetry: application to flow measurement in refractive index-matched porous media,” Appl. Opt. 30, 3034–3040 (1991).
    [Crossref] [PubMed]
  11. I. Pitas, Digital Image Processing Algorithms and Applications, (Wiley, New York, 2000).
  12. W. K. Pratt, Digital Image Processing, 3rd ed. (Wiley, New York, 2001).
  13. R. C. Gonzalez, Richard E. Woods, Digital Image Processing, 2nd ed. (Prentice-Hall, Englewood Cliffs, N.J., 2002).
  14. D. Marr, E. Hildreth, “Theory of edge detection,” Proc. R. Soc. London, B207, 187–217 (1980).
    [Crossref]
  15. A. Huertas, G. Medion, “Detection of intensity changes with subpixel accuracy using Laplacian–Gaussian masks,” IEEE Trans. Pattern Anal. Mach. Intell. PAMI-8, 651–664 (1986).
    [Crossref]
  16. K. Okamoto, S. Nishio, T. Saga, T. Kobayashi, “Stardard images for particle-image velocimetry,” Meas. Sci. Technol. 11, 685–691 (2000).
    [Crossref]

2001 (2)

M. G. Olsen, R. J. Adrian, “Measurement volume defined by peak-finding algorithms in cross-correlation particle image velocimetry,” Meas. Sci. Technol. 12, 14–16 (2001).
[Crossref]

J. F. Eschenbacher, K. Nakabe, K. Suzuki, “Flow visualization of a longitudinal vortex in drag-reducing surfactant flow,” J. Vis. 4, 331–339 (2001).
[Crossref]

2000 (1)

K. Okamoto, S. Nishio, T. Saga, T. Kobayashi, “Stardard images for particle-image velocimetry,” Meas. Sci. Technol. 11, 685–691 (2000).
[Crossref]

1999 (1)

J. E. Rehm, N. T. Clemens, “An improved method for enhancing the resolution of conventional double-exposure single-frame particle image velocimetry,” Exp. Fluids 26, 497–504 (1999).
[Crossref]

1998 (1)

H. J. Lin, M. Perlin, “Improved methods for thin, surface boundary layer investigations,” Exp. Fluids 25, 431–444 (1998).
[Crossref]

1994 (1)

Y. A. Hassan, R. S. Martinez, O. G. Philip, W. D. Schmidl, “Flow measurement of a two-phase fluid around a cylinder ina channel using particle image velocimetry,” Trans. Am. Nucl. Soc. 71, 583–585 (1994).

1992 (1)

R. D. Keane, R. J. Adrian, “Theory of cross-correlation analysis of PIV images,” Appl. Sci. Res. 49, 191–215 (1992).
[Crossref]

1991 (2)

1986 (2)

A. Huertas, G. Medion, “Detection of intensity changes with subpixel accuracy using Laplacian–Gaussian masks,” IEEE Trans. Pattern Anal. Mach. Intell. PAMI-8, 651–664 (1986).
[Crossref]

R. J. Adrian, “An image shifting technique to resolve directional ambiguity in double-pulsed velocimetry,” Appl. Opt. 25, 3855–3858 (1986).
[Crossref] [PubMed]

1985 (1)

1980 (1)

D. Marr, E. Hildreth, “Theory of edge detection,” Proc. R. Soc. London, B207, 187–217 (1980).
[Crossref]

Adrian, R. J.

M. G. Olsen, R. J. Adrian, “Measurement volume defined by peak-finding algorithms in cross-correlation particle image velocimetry,” Meas. Sci. Technol. 12, 14–16 (2001).
[Crossref]

R. D. Keane, R. J. Adrian, “Theory of cross-correlation analysis of PIV images,” Appl. Sci. Res. 49, 191–215 (1992).
[Crossref]

R. J. Adrian, “Particle-imaging techniques for experimental fluid mechanics,” Annu. Rev. Fluid Mech. 23, 261–304 (1991).
[Crossref]

R. J. Adrian, “An image shifting technique to resolve directional ambiguity in double-pulsed velocimetry,” Appl. Opt. 25, 3855–3858 (1986).
[Crossref] [PubMed]

R. J. Adrian, C. S. Yao, “Pulsed laser technique application to liquid and gaseous flows and the scattering power of seed materials,” Appl. Opt. 24, 44–52 (1985).
[Crossref] [PubMed]

Angel, S. M.

Clemens, N. T.

J. E. Rehm, N. T. Clemens, “An improved method for enhancing the resolution of conventional double-exposure single-frame particle image velocimetry,” Exp. Fluids 26, 497–504 (1999).
[Crossref]

Eschenbacher, J. F.

J. F. Eschenbacher, K. Nakabe, K. Suzuki, “Flow visualization of a longitudinal vortex in drag-reducing surfactant flow,” J. Vis. 4, 331–339 (2001).
[Crossref]

Gonzalez, R. C.

R. C. Gonzalez, Richard E. Woods, Digital Image Processing, 2nd ed. (Prentice-Hall, Englewood Cliffs, N.J., 2002).

Hassan, Y. A.

Y. A. Hassan, R. S. Martinez, O. G. Philip, W. D. Schmidl, “Flow measurement of a two-phase fluid around a cylinder ina channel using particle image velocimetry,” Trans. Am. Nucl. Soc. 71, 583–585 (1994).

Hildreth, E.

D. Marr, E. Hildreth, “Theory of edge detection,” Proc. R. Soc. London, B207, 187–217 (1980).
[Crossref]

Huertas, A.

A. Huertas, G. Medion, “Detection of intensity changes with subpixel accuracy using Laplacian–Gaussian masks,” IEEE Trans. Pattern Anal. Mach. Intell. PAMI-8, 651–664 (1986).
[Crossref]

Keane, R. D.

R. D. Keane, R. J. Adrian, “Theory of cross-correlation analysis of PIV images,” Appl. Sci. Res. 49, 191–215 (1992).
[Crossref]

Kobayashi, T.

K. Okamoto, S. Nishio, T. Saga, T. Kobayashi, “Stardard images for particle-image velocimetry,” Meas. Sci. Technol. 11, 685–691 (2000).
[Crossref]

Kulp, T. J.

Lin, H. J.

H. J. Lin, M. Perlin, “Improved methods for thin, surface boundary layer investigations,” Exp. Fluids 25, 431–444 (1998).
[Crossref]

Marr, D.

D. Marr, E. Hildreth, “Theory of edge detection,” Proc. R. Soc. London, B207, 187–217 (1980).
[Crossref]

Martinez, R. S.

Y. A. Hassan, R. S. Martinez, O. G. Philip, W. D. Schmidl, “Flow measurement of a two-phase fluid around a cylinder ina channel using particle image velocimetry,” Trans. Am. Nucl. Soc. 71, 583–585 (1994).

Medion, G.

A. Huertas, G. Medion, “Detection of intensity changes with subpixel accuracy using Laplacian–Gaussian masks,” IEEE Trans. Pattern Anal. Mach. Intell. PAMI-8, 651–664 (1986).
[Crossref]

Nakabe, K.

J. F. Eschenbacher, K. Nakabe, K. Suzuki, “Flow visualization of a longitudinal vortex in drag-reducing surfactant flow,” J. Vis. 4, 331–339 (2001).
[Crossref]

Nishio, S.

K. Okamoto, S. Nishio, T. Saga, T. Kobayashi, “Stardard images for particle-image velocimetry,” Meas. Sci. Technol. 11, 685–691 (2000).
[Crossref]

Northrup, M. A.

Okamoto, K.

K. Okamoto, S. Nishio, T. Saga, T. Kobayashi, “Stardard images for particle-image velocimetry,” Meas. Sci. Technol. 11, 685–691 (2000).
[Crossref]

Olsen, M. G.

M. G. Olsen, R. J. Adrian, “Measurement volume defined by peak-finding algorithms in cross-correlation particle image velocimetry,” Meas. Sci. Technol. 12, 14–16 (2001).
[Crossref]

Perlin, M.

H. J. Lin, M. Perlin, “Improved methods for thin, surface boundary layer investigations,” Exp. Fluids 25, 431–444 (1998).
[Crossref]

Philip, O. G.

Y. A. Hassan, R. S. Martinez, O. G. Philip, W. D. Schmidl, “Flow measurement of a two-phase fluid around a cylinder ina channel using particle image velocimetry,” Trans. Am. Nucl. Soc. 71, 583–585 (1994).

Pitas, I.

I. Pitas, Digital Image Processing Algorithms and Applications, (Wiley, New York, 2000).

Pratt, W. K.

W. K. Pratt, Digital Image Processing, 3rd ed. (Wiley, New York, 2001).

Rehm, J. E.

J. E. Rehm, N. T. Clemens, “An improved method for enhancing the resolution of conventional double-exposure single-frame particle image velocimetry,” Exp. Fluids 26, 497–504 (1999).
[Crossref]

Saga, T.

K. Okamoto, S. Nishio, T. Saga, T. Kobayashi, “Stardard images for particle-image velocimetry,” Meas. Sci. Technol. 11, 685–691 (2000).
[Crossref]

Schmidl, W. D.

Y. A. Hassan, R. S. Martinez, O. G. Philip, W. D. Schmidl, “Flow measurement of a two-phase fluid around a cylinder ina channel using particle image velocimetry,” Trans. Am. Nucl. Soc. 71, 583–585 (1994).

Suzuki, K.

J. F. Eschenbacher, K. Nakabe, K. Suzuki, “Flow visualization of a longitudinal vortex in drag-reducing surfactant flow,” J. Vis. 4, 331–339 (2001).
[Crossref]

Woods, Richard E.

R. C. Gonzalez, Richard E. Woods, Digital Image Processing, 2nd ed. (Prentice-Hall, Englewood Cliffs, N.J., 2002).

Yao, C. S.

Annu. Rev. Fluid Mech. (1)

R. J. Adrian, “Particle-imaging techniques for experimental fluid mechanics,” Annu. Rev. Fluid Mech. 23, 261–304 (1991).
[Crossref]

Appl. Opt. (3)

Appl. Sci. Res. (1)

R. D. Keane, R. J. Adrian, “Theory of cross-correlation analysis of PIV images,” Appl. Sci. Res. 49, 191–215 (1992).
[Crossref]

Exp. Fluids (2)

H. J. Lin, M. Perlin, “Improved methods for thin, surface boundary layer investigations,” Exp. Fluids 25, 431–444 (1998).
[Crossref]

J. E. Rehm, N. T. Clemens, “An improved method for enhancing the resolution of conventional double-exposure single-frame particle image velocimetry,” Exp. Fluids 26, 497–504 (1999).
[Crossref]

IEEE Trans. Pattern Anal. Mach. Intell. (1)

A. Huertas, G. Medion, “Detection of intensity changes with subpixel accuracy using Laplacian–Gaussian masks,” IEEE Trans. Pattern Anal. Mach. Intell. PAMI-8, 651–664 (1986).
[Crossref]

J. Vis. (1)

J. F. Eschenbacher, K. Nakabe, K. Suzuki, “Flow visualization of a longitudinal vortex in drag-reducing surfactant flow,” J. Vis. 4, 331–339 (2001).
[Crossref]

Meas. Sci. Technol. (2)

K. Okamoto, S. Nishio, T. Saga, T. Kobayashi, “Stardard images for particle-image velocimetry,” Meas. Sci. Technol. 11, 685–691 (2000).
[Crossref]

M. G. Olsen, R. J. Adrian, “Measurement volume defined by peak-finding algorithms in cross-correlation particle image velocimetry,” Meas. Sci. Technol. 12, 14–16 (2001).
[Crossref]

Proc. R. Soc. London (1)

D. Marr, E. Hildreth, “Theory of edge detection,” Proc. R. Soc. London, B207, 187–217 (1980).
[Crossref]

Trans. Am. Nucl. Soc. (1)

Y. A. Hassan, R. S. Martinez, O. G. Philip, W. D. Schmidl, “Flow measurement of a two-phase fluid around a cylinder ina channel using particle image velocimetry,” Trans. Am. Nucl. Soc. 71, 583–585 (1994).

Other (3)

I. Pitas, Digital Image Processing Algorithms and Applications, (Wiley, New York, 2000).

W. K. Pratt, Digital Image Processing, 3rd ed. (Wiley, New York, 2001).

R. C. Gonzalez, Richard E. Woods, Digital Image Processing, 2nd ed. (Prentice-Hall, Englewood Cliffs, N.J., 2002).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

LoG operator (solid curve) with σ = 1, and the closest possible DoG operator (dotted curve).

Fig. 2
Fig. 2

(a) Standard PIV image, (b) VVF of original images, (c) sinusoidal distorted image of (a), (d) VVF of noise images, (e) LoG response of (c), (f) VVF of LoG response images.

Fig. 3
Fig. 3

Sketch of the experimental setup.

Fig. 4
Fig. 4

Wedge channel.

Fig. 5
Fig. 5

VVF calculated with a conventional PIV algorithm: (a) one of original PIV images, (b) VVF (32 × 32), (c) VVF (16 × 16).

Fig. 6
Fig. 6

VVF calculated with novel PIV algorithm: (a) improved PIV images, (b) VVF (32 × 32), (c) VVF (16 × 16).

Fig. 7
Fig. 7

Calculation of VVF of a noise distorted image by use of the LoG algorithm: (a) sinusoidal distorted image, (b) conventional VVF, (c) LoG VVF.

Fig. 8
Fig. 8

Demonstration of LoG processing on PIV images: (a) original image, (b) LoG response of (a), (c) noise distorted image, (d) LoG response of (c).

Fig. 9
Fig. 9

Comparison of conventional and LoG methods on PIV measurements: (a) VVF of Fig. 8(a), (b) VVF of Fig. 8(b), (c) VVF of Fig. 8(c), (d) VVF of Fig. 8(d).

Fig. 10
Fig. 10

Improvement of processing accuracy by the LoG method on a distorted image: (a) blurry PIV image, (b) VVF of (a), calculated Vmean = 0.369 mm/s, (c) LoG response of (a), (d) VVF of (c), calculated Vmean = 0.631 mm/s.

Fig. 11
Fig. 11

Processing of a noise added signal by the LoG method on an out-of-focus image: (a) noise added PIV image, (b) VVF of (a), calculated Vmean = 0.231 mm/s, (c) LoG response of (a), (d) VVF of (c), calculated Vmean = 0.63 mm/s.

Tables (1)

Tables Icon

Table 1 Characteristics of the PIV System

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

Gx, y=-2Fx, y=2Fx, yx2+2Fx, yy2.
Gx, y=-2Fx, y  Hsx, y,
Hsx, y=gx, σgy, σ
gx, σ=12πσ21/2 exp-x22σ2 gy, σ=12πσ21/2 exp-y22σ2.
Hsx, y=12πσ2exp-x2+y22σ2
Gx, y=Fx, y  Hx, y,
Hx, y=-2Hsx, y=-212πσ2exp-x2+y22σ2=1πσ41-x2+y22σ2expx2+y22σ2.
Hx, y=gx, σ1gy, σ1-gx, σ21gy, σ21 =12πσ12exp-x2+y22σ12-12πσ22exp-x2+y22σ22.
Hx, y=A exp-x2+y22σ12-B exp-x2+y22σ22 AB, σ2>σ1.
AB=σ22σ12=2.56.
c=2a2+b21/2=221/2σ.
σ1=1.56a2+b25.12 ln 2.561/2, σ2=1.6σ1.

Metrics