Abstract

We report our observation of a bleaching effect under an ultraviolet exposure in LiNbO3:Fe:Cu crystals. Two three-step recording-transferring-fixing schemes are proposed to record nonvolatile photorefractive holograms in such crystals. In the schemes two red laser beams and an ultraviolet illumination are used selectively to write the charge grating in the shallow-level Fe centers, to develop the charge grating in the deep-level Cu centers by transferring the charge grating in the Fe centers, and to fix only the charge grating in the Cu centers for unerasable read-out. Experimental results, verifications, and an optimal recording scheme are given. A comparison of the lithium niobate crystals of the same double-doping system of Fe:Mn, Ce:Mn, Ce:Cu, and Fe:Cu is outlined.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Buse, A. Adibi, D. Psaltis, “Non-volatile holographic storage in doubly doped lithium niobate crystals,” Nature 393, 665–668 (1998).
    [CrossRef]
  2. A. Adibi, K. Buse, D. Psaltis, “Sensitivity improvement in two-center holographic recording,” Opt. Lett. 25, 539–541 (2000).
    [CrossRef]
  3. A. Adibi, K. Buse, D. Psaltis, “Effect of annealing in two-center holographic recording,” Appl. Phys. Lett. 74, 3767–3769 (1999).
    [CrossRef]
  4. Y. Liu, L. Liu, C. Zhou, L. Xu, “Photographic storage in photochromic LiNbO3:Fe:Mn crystals,” Acta Opt. Sin. 19, 1437–1438 (1999).
  5. Y. Liu, L. Liu, C. Zhou, “Prescription for optimizing holograms in LiNbO3:Fe:Mn,” Opt. Lett. 25, 551–553 (2000).
    [CrossRef]
  6. L. Liu, B. Liu, X. Yan, L. Shao, G. Li, Y. Yin, J. Li, Y. Guo, “Photorefractive miniaturized integration of optical 3D systems,” J. Opt. Soc. Am. A 1, 220–224 (1999).
  7. X. Yue, A. Adibi, T. Hudson, K. Buse, D. Psaltis, “Role of cerium in lithium niobate for holographic recording,” J. Appl. Phys. 87, 4051–4055 (2000).
    [CrossRef]
  8. Y. Liu, L. Liu, C. Zhou, L. Xu, “Nonvolatile photorefractive holograms in LiNbO3:Ce:Cu,” Opt. Lett. 25, 908–910 (2000).
    [CrossRef]
  9. O. Thiemann, O. F. Schirmer, “Energy levels of several 3D impurities and EPR of Ti3+ in LiNbO3,” in Electro-optic and magneto-optic materials, Proceedings of the Meeting, Hamburg, Federal Republic of Germany, Sept. 22, 23, 1988, J.-P. Huignard, ed., Proc. SPIE1018, 18–22 (1988).
  10. D. L. Stabler, D. Phillips, “Hologram storage in photochromic LiNbO3,” Appl. Phys. Lett. 24, 268–270 (1974). The paper reported the observation of the photochromic effect in LN:Fe:Cu, but no material and test details on the growing conditions, composition ratio, doping densities, annealing condition, and comparison of transmittance spectra were given.
    [CrossRef]
  11. D. Liu, L. Liu, Y. Liu, C. Zhou, L. Xu, “Self-enhancement effect during nonvolatile holographic storage in photochromic LiNbO3:Fe:Mn crystals,” Appl. Phys. Lett. 77, 2964–2966 (2000).
    [CrossRef]

2000 (5)

A. Adibi, K. Buse, D. Psaltis, “Sensitivity improvement in two-center holographic recording,” Opt. Lett. 25, 539–541 (2000).
[CrossRef]

Y. Liu, L. Liu, C. Zhou, “Prescription for optimizing holograms in LiNbO3:Fe:Mn,” Opt. Lett. 25, 551–553 (2000).
[CrossRef]

X. Yue, A. Adibi, T. Hudson, K. Buse, D. Psaltis, “Role of cerium in lithium niobate for holographic recording,” J. Appl. Phys. 87, 4051–4055 (2000).
[CrossRef]

Y. Liu, L. Liu, C. Zhou, L. Xu, “Nonvolatile photorefractive holograms in LiNbO3:Ce:Cu,” Opt. Lett. 25, 908–910 (2000).
[CrossRef]

D. Liu, L. Liu, Y. Liu, C. Zhou, L. Xu, “Self-enhancement effect during nonvolatile holographic storage in photochromic LiNbO3:Fe:Mn crystals,” Appl. Phys. Lett. 77, 2964–2966 (2000).
[CrossRef]

1999 (3)

L. Liu, B. Liu, X. Yan, L. Shao, G. Li, Y. Yin, J. Li, Y. Guo, “Photorefractive miniaturized integration of optical 3D systems,” J. Opt. Soc. Am. A 1, 220–224 (1999).

A. Adibi, K. Buse, D. Psaltis, “Effect of annealing in two-center holographic recording,” Appl. Phys. Lett. 74, 3767–3769 (1999).
[CrossRef]

Y. Liu, L. Liu, C. Zhou, L. Xu, “Photographic storage in photochromic LiNbO3:Fe:Mn crystals,” Acta Opt. Sin. 19, 1437–1438 (1999).

1998 (1)

K. Buse, A. Adibi, D. Psaltis, “Non-volatile holographic storage in doubly doped lithium niobate crystals,” Nature 393, 665–668 (1998).
[CrossRef]

1974 (1)

D. L. Stabler, D. Phillips, “Hologram storage in photochromic LiNbO3,” Appl. Phys. Lett. 24, 268–270 (1974). The paper reported the observation of the photochromic effect in LN:Fe:Cu, but no material and test details on the growing conditions, composition ratio, doping densities, annealing condition, and comparison of transmittance spectra were given.
[CrossRef]

Adibi, A.

A. Adibi, K. Buse, D. Psaltis, “Sensitivity improvement in two-center holographic recording,” Opt. Lett. 25, 539–541 (2000).
[CrossRef]

X. Yue, A. Adibi, T. Hudson, K. Buse, D. Psaltis, “Role of cerium in lithium niobate for holographic recording,” J. Appl. Phys. 87, 4051–4055 (2000).
[CrossRef]

A. Adibi, K. Buse, D. Psaltis, “Effect of annealing in two-center holographic recording,” Appl. Phys. Lett. 74, 3767–3769 (1999).
[CrossRef]

K. Buse, A. Adibi, D. Psaltis, “Non-volatile holographic storage in doubly doped lithium niobate crystals,” Nature 393, 665–668 (1998).
[CrossRef]

Buse, K.

A. Adibi, K. Buse, D. Psaltis, “Sensitivity improvement in two-center holographic recording,” Opt. Lett. 25, 539–541 (2000).
[CrossRef]

X. Yue, A. Adibi, T. Hudson, K. Buse, D. Psaltis, “Role of cerium in lithium niobate for holographic recording,” J. Appl. Phys. 87, 4051–4055 (2000).
[CrossRef]

A. Adibi, K. Buse, D. Psaltis, “Effect of annealing in two-center holographic recording,” Appl. Phys. Lett. 74, 3767–3769 (1999).
[CrossRef]

K. Buse, A. Adibi, D. Psaltis, “Non-volatile holographic storage in doubly doped lithium niobate crystals,” Nature 393, 665–668 (1998).
[CrossRef]

Guo, Y.

L. Liu, B. Liu, X. Yan, L. Shao, G. Li, Y. Yin, J. Li, Y. Guo, “Photorefractive miniaturized integration of optical 3D systems,” J. Opt. Soc. Am. A 1, 220–224 (1999).

Hudson, T.

X. Yue, A. Adibi, T. Hudson, K. Buse, D. Psaltis, “Role of cerium in lithium niobate for holographic recording,” J. Appl. Phys. 87, 4051–4055 (2000).
[CrossRef]

Li, G.

L. Liu, B. Liu, X. Yan, L. Shao, G. Li, Y. Yin, J. Li, Y. Guo, “Photorefractive miniaturized integration of optical 3D systems,” J. Opt. Soc. Am. A 1, 220–224 (1999).

Li, J.

L. Liu, B. Liu, X. Yan, L. Shao, G. Li, Y. Yin, J. Li, Y. Guo, “Photorefractive miniaturized integration of optical 3D systems,” J. Opt. Soc. Am. A 1, 220–224 (1999).

Liu, B.

L. Liu, B. Liu, X. Yan, L. Shao, G. Li, Y. Yin, J. Li, Y. Guo, “Photorefractive miniaturized integration of optical 3D systems,” J. Opt. Soc. Am. A 1, 220–224 (1999).

Liu, D.

D. Liu, L. Liu, Y. Liu, C. Zhou, L. Xu, “Self-enhancement effect during nonvolatile holographic storage in photochromic LiNbO3:Fe:Mn crystals,” Appl. Phys. Lett. 77, 2964–2966 (2000).
[CrossRef]

Liu, L.

D. Liu, L. Liu, Y. Liu, C. Zhou, L. Xu, “Self-enhancement effect during nonvolatile holographic storage in photochromic LiNbO3:Fe:Mn crystals,” Appl. Phys. Lett. 77, 2964–2966 (2000).
[CrossRef]

Y. Liu, L. Liu, C. Zhou, “Prescription for optimizing holograms in LiNbO3:Fe:Mn,” Opt. Lett. 25, 551–553 (2000).
[CrossRef]

Y. Liu, L. Liu, C. Zhou, L. Xu, “Nonvolatile photorefractive holograms in LiNbO3:Ce:Cu,” Opt. Lett. 25, 908–910 (2000).
[CrossRef]

L. Liu, B. Liu, X. Yan, L. Shao, G. Li, Y. Yin, J. Li, Y. Guo, “Photorefractive miniaturized integration of optical 3D systems,” J. Opt. Soc. Am. A 1, 220–224 (1999).

Y. Liu, L. Liu, C. Zhou, L. Xu, “Photographic storage in photochromic LiNbO3:Fe:Mn crystals,” Acta Opt. Sin. 19, 1437–1438 (1999).

Liu, Y.

Y. Liu, L. Liu, C. Zhou, “Prescription for optimizing holograms in LiNbO3:Fe:Mn,” Opt. Lett. 25, 551–553 (2000).
[CrossRef]

Y. Liu, L. Liu, C. Zhou, L. Xu, “Nonvolatile photorefractive holograms in LiNbO3:Ce:Cu,” Opt. Lett. 25, 908–910 (2000).
[CrossRef]

D. Liu, L. Liu, Y. Liu, C. Zhou, L. Xu, “Self-enhancement effect during nonvolatile holographic storage in photochromic LiNbO3:Fe:Mn crystals,” Appl. Phys. Lett. 77, 2964–2966 (2000).
[CrossRef]

Y. Liu, L. Liu, C. Zhou, L. Xu, “Photographic storage in photochromic LiNbO3:Fe:Mn crystals,” Acta Opt. Sin. 19, 1437–1438 (1999).

Phillips, D.

D. L. Stabler, D. Phillips, “Hologram storage in photochromic LiNbO3,” Appl. Phys. Lett. 24, 268–270 (1974). The paper reported the observation of the photochromic effect in LN:Fe:Cu, but no material and test details on the growing conditions, composition ratio, doping densities, annealing condition, and comparison of transmittance spectra were given.
[CrossRef]

Psaltis, D.

A. Adibi, K. Buse, D. Psaltis, “Sensitivity improvement in two-center holographic recording,” Opt. Lett. 25, 539–541 (2000).
[CrossRef]

X. Yue, A. Adibi, T. Hudson, K. Buse, D. Psaltis, “Role of cerium in lithium niobate for holographic recording,” J. Appl. Phys. 87, 4051–4055 (2000).
[CrossRef]

A. Adibi, K. Buse, D. Psaltis, “Effect of annealing in two-center holographic recording,” Appl. Phys. Lett. 74, 3767–3769 (1999).
[CrossRef]

K. Buse, A. Adibi, D. Psaltis, “Non-volatile holographic storage in doubly doped lithium niobate crystals,” Nature 393, 665–668 (1998).
[CrossRef]

Schirmer, O. F.

O. Thiemann, O. F. Schirmer, “Energy levels of several 3D impurities and EPR of Ti3+ in LiNbO3,” in Electro-optic and magneto-optic materials, Proceedings of the Meeting, Hamburg, Federal Republic of Germany, Sept. 22, 23, 1988, J.-P. Huignard, ed., Proc. SPIE1018, 18–22 (1988).

Shao, L.

L. Liu, B. Liu, X. Yan, L. Shao, G. Li, Y. Yin, J. Li, Y. Guo, “Photorefractive miniaturized integration of optical 3D systems,” J. Opt. Soc. Am. A 1, 220–224 (1999).

Stabler, D. L.

D. L. Stabler, D. Phillips, “Hologram storage in photochromic LiNbO3,” Appl. Phys. Lett. 24, 268–270 (1974). The paper reported the observation of the photochromic effect in LN:Fe:Cu, but no material and test details on the growing conditions, composition ratio, doping densities, annealing condition, and comparison of transmittance spectra were given.
[CrossRef]

Thiemann, O.

O. Thiemann, O. F. Schirmer, “Energy levels of several 3D impurities and EPR of Ti3+ in LiNbO3,” in Electro-optic and magneto-optic materials, Proceedings of the Meeting, Hamburg, Federal Republic of Germany, Sept. 22, 23, 1988, J.-P. Huignard, ed., Proc. SPIE1018, 18–22 (1988).

Xu, L.

Y. Liu, L. Liu, C. Zhou, L. Xu, “Nonvolatile photorefractive holograms in LiNbO3:Ce:Cu,” Opt. Lett. 25, 908–910 (2000).
[CrossRef]

D. Liu, L. Liu, Y. Liu, C. Zhou, L. Xu, “Self-enhancement effect during nonvolatile holographic storage in photochromic LiNbO3:Fe:Mn crystals,” Appl. Phys. Lett. 77, 2964–2966 (2000).
[CrossRef]

Y. Liu, L. Liu, C. Zhou, L. Xu, “Photographic storage in photochromic LiNbO3:Fe:Mn crystals,” Acta Opt. Sin. 19, 1437–1438 (1999).

Yan, X.

L. Liu, B. Liu, X. Yan, L. Shao, G. Li, Y. Yin, J. Li, Y. Guo, “Photorefractive miniaturized integration of optical 3D systems,” J. Opt. Soc. Am. A 1, 220–224 (1999).

Yin, Y.

L. Liu, B. Liu, X. Yan, L. Shao, G. Li, Y. Yin, J. Li, Y. Guo, “Photorefractive miniaturized integration of optical 3D systems,” J. Opt. Soc. Am. A 1, 220–224 (1999).

Yue, X.

X. Yue, A. Adibi, T. Hudson, K. Buse, D. Psaltis, “Role of cerium in lithium niobate for holographic recording,” J. Appl. Phys. 87, 4051–4055 (2000).
[CrossRef]

Zhou, C.

Y. Liu, L. Liu, C. Zhou, L. Xu, “Nonvolatile photorefractive holograms in LiNbO3:Ce:Cu,” Opt. Lett. 25, 908–910 (2000).
[CrossRef]

Y. Liu, L. Liu, C. Zhou, “Prescription for optimizing holograms in LiNbO3:Fe:Mn,” Opt. Lett. 25, 551–553 (2000).
[CrossRef]

D. Liu, L. Liu, Y. Liu, C. Zhou, L. Xu, “Self-enhancement effect during nonvolatile holographic storage in photochromic LiNbO3:Fe:Mn crystals,” Appl. Phys. Lett. 77, 2964–2966 (2000).
[CrossRef]

Y. Liu, L. Liu, C. Zhou, L. Xu, “Photographic storage in photochromic LiNbO3:Fe:Mn crystals,” Acta Opt. Sin. 19, 1437–1438 (1999).

Acta Opt. Sin. (1)

Y. Liu, L. Liu, C. Zhou, L. Xu, “Photographic storage in photochromic LiNbO3:Fe:Mn crystals,” Acta Opt. Sin. 19, 1437–1438 (1999).

Appl. Phys. Lett. (3)

A. Adibi, K. Buse, D. Psaltis, “Effect of annealing in two-center holographic recording,” Appl. Phys. Lett. 74, 3767–3769 (1999).
[CrossRef]

D. L. Stabler, D. Phillips, “Hologram storage in photochromic LiNbO3,” Appl. Phys. Lett. 24, 268–270 (1974). The paper reported the observation of the photochromic effect in LN:Fe:Cu, but no material and test details on the growing conditions, composition ratio, doping densities, annealing condition, and comparison of transmittance spectra were given.
[CrossRef]

D. Liu, L. Liu, Y. Liu, C. Zhou, L. Xu, “Self-enhancement effect during nonvolatile holographic storage in photochromic LiNbO3:Fe:Mn crystals,” Appl. Phys. Lett. 77, 2964–2966 (2000).
[CrossRef]

J. Appl. Phys. (1)

X. Yue, A. Adibi, T. Hudson, K. Buse, D. Psaltis, “Role of cerium in lithium niobate for holographic recording,” J. Appl. Phys. 87, 4051–4055 (2000).
[CrossRef]

J. Opt. Soc. Am. A (1)

L. Liu, B. Liu, X. Yan, L. Shao, G. Li, Y. Yin, J. Li, Y. Guo, “Photorefractive miniaturized integration of optical 3D systems,” J. Opt. Soc. Am. A 1, 220–224 (1999).

Nature (1)

K. Buse, A. Adibi, D. Psaltis, “Non-volatile holographic storage in doubly doped lithium niobate crystals,” Nature 393, 665–668 (1998).
[CrossRef]

Opt. Lett. (3)

Other (1)

O. Thiemann, O. F. Schirmer, “Energy levels of several 3D impurities and EPR of Ti3+ in LiNbO3,” in Electro-optic and magneto-optic materials, Proceedings of the Meeting, Hamburg, Federal Republic of Germany, Sept. 22, 23, 1988, J.-P. Huignard, ed., Proc. SPIE1018, 18–22 (1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Energy band diagram for LiNbO3 double doped with Fe or Ce and Mn or Cu. CB, conduction band; VB, valence band; γ, photoexcitation coefficient of UV; s, recombination constant.

Fig. 2
Fig. 2

Spectral transmissions of LiNbO3:Fe:Cu before and after an UV illumination for 1 h.

Fig. 3
Fig. 3

Experimental setup for nonvolatile holographic recording.

Fig. 4
Fig. 4

Flow charts of red recording beams and UV light in (a) the conventional two-step recording scheme, (b) the three-step scheme, (c) the modified three-step schemes. Where, I UV and I r represent the UV light and red beams, respectively.

Fig. 5
Fig. 5

Time evolution of diffraction efficiency of the photorefractive grating by using the two-step recording/fixing scheme of Fig. 4(a).

Fig. 6
Fig. 6

Time evolution of diffraction efficiency of the photorefractive grating with the three-step recording scheme of Fig. 4(b): (a) the recording step with two red beams, (b) the transferring step with two red beams plus an UV light, (c) the fixing step with an on-Bragg red beam readout.

Fig. 7
Fig. 7

Time evolution of diffraction efficiency of the photorefractive grating by use of the modified three-step recording scheme of Fig. 4(c). (a) Recording step with two red beams, (b) the transferring step with a coherent on-Bragg red beam plus an UV light, (c) the fixing step with a coherent on-Bragg red beam (and the dashed line with an incoherent off-Bragg red beam, (d) the erasing with an UV light.

Fig. 8
Fig. 8

Erasure characteristics in the second transferring step of the modified three-step scheme with different beams: (a) an on-Bragg coherent red beam plus an UV light, (b) an on-Bragg red beam, (c) an UV light, (d) an off-Bragg red beam, (e) an off-Bragg red beam plus an UV light.

Tables (1)

Tables Icon

Table 1 Comparison of Lithium Niobate Crystals of the Same Double-Doping System

Metrics