Abstract

Three-dimensional holograms were recorded in a cerium-doped, strontium barium niobate (SBN:75) photorefractive crystal. These holograms are shown to not degrade after more than one week of continuous readout and to reconstruct reproductions of the original object with an observable field of view of approximately 35°.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. W. Boyd, Nonlinear Optics (Academic, San Diego, Calif., 1992), pp. 399–427.
  2. N. V. Kukhtarev, V. B. Markov, S. G. Odulov, V. L. Vinetskii, “Holographic storage in electrooptic crystals,” Ferroelectrics 22, 949–960 (1979).
    [CrossRef]
  3. G. C. Valley, M. B. Kline, “Optimal properties of photorefractive materials for optical data processing,” Opt. Eng. 22, 704–711 (1983).
    [CrossRef]
  4. F. P. Strohkendl, J. M. C. Jonathan, R. W. Hellwarth, “Hole-electron competition in photorefractive gratings,” Opt. Lett. 11, 312–314 (1986).
    [CrossRef]
  5. A. Yariv, S. Orlov, G. Rakuljic, V. Leyva, “Holographic fixing, readout, and storage dynamics in photorefractive materials,” Opt. Lett. 20, 132–134 (1995).
    [CrossRef]
  6. D. Psaltis, F. Mok, “Holographic memories,” Sci. Am. 273, 70–76 (1995).
    [CrossRef]
  7. N. A. Vainos, M. C. Gower, “High-fidelity image amplification and phase conjugation in photorefractive Bi12SiO20 crystals,” Opt. Lett. 16, 363–365 (1991).
    [CrossRef] [PubMed]
  8. M. C. Bashaw, A. Aharoni, L. Hesselink, “Alleviation of image distortion due to striations in a photorefractive medium by using a phase-conjugated reference wave,” Opt. Lett. 17, 1149–1151 (1992).
    [CrossRef] [PubMed]
  9. A. Aharoni, M. C. Bashaw, L. Hesselink, “Distortion-free multiplexed holography in striated photorefractive media,” Appl. Opt. 32, 1973–1982 (1993).
    [CrossRef] [PubMed]
  10. D. L. Naylor, P. W. Tam, R. W. Hellwarth, “Fidelity of optical phase conjugation by photorefractive degenerate four-wave mixing in barium titanate,” J. Appl. Phys. 72, 5840–5847 (1992).
    [CrossRef]
  11. S. C. W. Hyde, N. P. Barry, R. Jones, J. C. Dainty, P. M. W. French, M. B. Klein, B. A. Wechsler, “Depth-resolved holographic imaging through scattering media by photorefraction,” Opt. Lett. 20, 1331–1333 (1995).
    [CrossRef] [PubMed]
  12. N. A. Vainos, M. C. Gower, “High-fidelity phase conjugation and real-time orthoscopic three-dimensional image projection in BaTiO3,” J. Opt. Soc. Am. B 8, 2355–2362 (1991).
    [CrossRef]
  13. F. Zhao, K. Sayano, “Compact read-only memory with lens–less phase-conjugate holograms,” Opt. Lett. 21, 1295–1297 (1996).
    [CrossRef] [PubMed]
  14. L. E. Adams, R. S. Bondurant, “Wide-field-of-view heterodyne receiver using a photorefractive double phase-conjugate mirror,” Opt. Lett. 16, 832–834 (1991).
    [CrossRef] [PubMed]
  15. B. P. Ketchel, G. L. Wood, R. J. Anderson, G. J. Salamo, “Three-dimensional image reconstruction using strontium barium niobate,” Appl. Phys. Lett. 71, 7–9 (1997).
    [CrossRef]
  16. J. J. Amodei, D. L. Staebler, “Holographic pattern fixing in electro-optic crystals,” Appl. Phys. Lett. 18, 540–542 (1971).
    [CrossRef]
  17. L. Arizmendi, “Thermal fixing of holographic gratings in Bi12SiO20,” J. Appl. Phys. 65, 423–427 (1989).
    [CrossRef]
  18. G. Montemezzani, P. Gunter, “Thermal hologram fixing in pure and doped KnbO3 crystals,” J. Opt. Soc. Am. B 7, 2323–2328 (1990).
    [CrossRef]
  19. D. Kirillov, J. Feinberg, “Fixable complementary gratings in photorefractive BaTiO3,” Opt. Lett. 16, 1520–1522 (1991).
    [CrossRef] [PubMed]
  20. F. Micheron, J. Trotier, “Photoinduced phase transitions in (Sr,Ba)Nb2O6,” Ferroelectrics 8, 441–442 (1974).
    [CrossRef]
  21. V. Leyva, A. Agranat, A. Yariv, “Fixing of a photorefractive grating in KTa1xNbxO3 by cooling through the ferroelectric phase transition,” Opt. Lett. 16, 554–556 (1991).
    [CrossRef] [PubMed]
  22. M. Horowitz, A. Bekker, B. Fischer, “Image and hologram fixing method with SrxBa1–xNb2O6 crystals,” Opt. Lett. 18, 1964–1966 (1993).
    [CrossRef] [PubMed]
  23. F. Micheron, G. Bismuth, “Electrical control of fixation and erasure of holographic patterns in ferroelectric materials,” Appl. Phys. Lett. 20, 79–81 (1972).
    [CrossRef]
  24. Y. Qiao, S. Orlov, D. Psaltis, R. R. Neurgaonkar, “Electrical fixing of photorefractive holograms in Sr0.75Ba0.25Nb2O6,” Opt. Lett. 18, 1004–1006 (1993).
    [CrossRef] [PubMed]
  25. R. S. Cudney, J. Fousek, M. Zgonik, P. Gunter, M. H. Garrett, D. Rytz, “Photorefractive and domain gratings in barium titanate,” Appl. Phys. Lett. 63, 3399–3401 (1993).
    [CrossRef]
  26. R. S. Cudney, J. Fousek, M. Zgonik, P. Gunter, “Enhancement of the amplitude and lifetime of photoinduced space charge fields in multi-domain ferroelectric crystals,” Phys. Rev. Lett. 72, 3883–3886 (1994).
    [CrossRef] [PubMed]
  27. R. S. Cudney, P. Bernasconi, M. Zgonik, J. Fousek, P. Gunter, “Photorefractive grating fixing in KNbO3 by ferroelectric domains,” Appl. Phys. Lett. 70, 1339–1341 (1997).
    [CrossRef]

1997 (2)

B. P. Ketchel, G. L. Wood, R. J. Anderson, G. J. Salamo, “Three-dimensional image reconstruction using strontium barium niobate,” Appl. Phys. Lett. 71, 7–9 (1997).
[CrossRef]

R. S. Cudney, P. Bernasconi, M. Zgonik, J. Fousek, P. Gunter, “Photorefractive grating fixing in KNbO3 by ferroelectric domains,” Appl. Phys. Lett. 70, 1339–1341 (1997).
[CrossRef]

1996 (1)

1995 (3)

S. C. W. Hyde, N. P. Barry, R. Jones, J. C. Dainty, P. M. W. French, M. B. Klein, B. A. Wechsler, “Depth-resolved holographic imaging through scattering media by photorefraction,” Opt. Lett. 20, 1331–1333 (1995).
[CrossRef] [PubMed]

A. Yariv, S. Orlov, G. Rakuljic, V. Leyva, “Holographic fixing, readout, and storage dynamics in photorefractive materials,” Opt. Lett. 20, 132–134 (1995).
[CrossRef]

D. Psaltis, F. Mok, “Holographic memories,” Sci. Am. 273, 70–76 (1995).
[CrossRef]

1994 (1)

R. S. Cudney, J. Fousek, M. Zgonik, P. Gunter, “Enhancement of the amplitude and lifetime of photoinduced space charge fields in multi-domain ferroelectric crystals,” Phys. Rev. Lett. 72, 3883–3886 (1994).
[CrossRef] [PubMed]

1993 (4)

1992 (2)

D. L. Naylor, P. W. Tam, R. W. Hellwarth, “Fidelity of optical phase conjugation by photorefractive degenerate four-wave mixing in barium titanate,” J. Appl. Phys. 72, 5840–5847 (1992).
[CrossRef]

M. C. Bashaw, A. Aharoni, L. Hesselink, “Alleviation of image distortion due to striations in a photorefractive medium by using a phase-conjugated reference wave,” Opt. Lett. 17, 1149–1151 (1992).
[CrossRef] [PubMed]

1991 (5)

1990 (1)

1989 (1)

L. Arizmendi, “Thermal fixing of holographic gratings in Bi12SiO20,” J. Appl. Phys. 65, 423–427 (1989).
[CrossRef]

1986 (1)

1983 (1)

G. C. Valley, M. B. Kline, “Optimal properties of photorefractive materials for optical data processing,” Opt. Eng. 22, 704–711 (1983).
[CrossRef]

1979 (1)

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, V. L. Vinetskii, “Holographic storage in electrooptic crystals,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

1974 (1)

F. Micheron, J. Trotier, “Photoinduced phase transitions in (Sr,Ba)Nb2O6,” Ferroelectrics 8, 441–442 (1974).
[CrossRef]

1972 (1)

F. Micheron, G. Bismuth, “Electrical control of fixation and erasure of holographic patterns in ferroelectric materials,” Appl. Phys. Lett. 20, 79–81 (1972).
[CrossRef]

1971 (1)

J. J. Amodei, D. L. Staebler, “Holographic pattern fixing in electro-optic crystals,” Appl. Phys. Lett. 18, 540–542 (1971).
[CrossRef]

Adams, L. E.

Agranat, A.

Aharoni, A.

Amodei, J. J.

J. J. Amodei, D. L. Staebler, “Holographic pattern fixing in electro-optic crystals,” Appl. Phys. Lett. 18, 540–542 (1971).
[CrossRef]

Anderson, R. J.

B. P. Ketchel, G. L. Wood, R. J. Anderson, G. J. Salamo, “Three-dimensional image reconstruction using strontium barium niobate,” Appl. Phys. Lett. 71, 7–9 (1997).
[CrossRef]

Arizmendi, L.

L. Arizmendi, “Thermal fixing of holographic gratings in Bi12SiO20,” J. Appl. Phys. 65, 423–427 (1989).
[CrossRef]

Barry, N. P.

Bashaw, M. C.

Bekker, A.

Bernasconi, P.

R. S. Cudney, P. Bernasconi, M. Zgonik, J. Fousek, P. Gunter, “Photorefractive grating fixing in KNbO3 by ferroelectric domains,” Appl. Phys. Lett. 70, 1339–1341 (1997).
[CrossRef]

Bismuth, G.

F. Micheron, G. Bismuth, “Electrical control of fixation and erasure of holographic patterns in ferroelectric materials,” Appl. Phys. Lett. 20, 79–81 (1972).
[CrossRef]

Bondurant, R. S.

Boyd, R. W.

R. W. Boyd, Nonlinear Optics (Academic, San Diego, Calif., 1992), pp. 399–427.

Cudney, R. S.

R. S. Cudney, P. Bernasconi, M. Zgonik, J. Fousek, P. Gunter, “Photorefractive grating fixing in KNbO3 by ferroelectric domains,” Appl. Phys. Lett. 70, 1339–1341 (1997).
[CrossRef]

R. S. Cudney, J. Fousek, M. Zgonik, P. Gunter, “Enhancement of the amplitude and lifetime of photoinduced space charge fields in multi-domain ferroelectric crystals,” Phys. Rev. Lett. 72, 3883–3886 (1994).
[CrossRef] [PubMed]

R. S. Cudney, J. Fousek, M. Zgonik, P. Gunter, M. H. Garrett, D. Rytz, “Photorefractive and domain gratings in barium titanate,” Appl. Phys. Lett. 63, 3399–3401 (1993).
[CrossRef]

Dainty, J. C.

Feinberg, J.

Fischer, B.

Fousek, J.

R. S. Cudney, P. Bernasconi, M. Zgonik, J. Fousek, P. Gunter, “Photorefractive grating fixing in KNbO3 by ferroelectric domains,” Appl. Phys. Lett. 70, 1339–1341 (1997).
[CrossRef]

R. S. Cudney, J. Fousek, M. Zgonik, P. Gunter, “Enhancement of the amplitude and lifetime of photoinduced space charge fields in multi-domain ferroelectric crystals,” Phys. Rev. Lett. 72, 3883–3886 (1994).
[CrossRef] [PubMed]

R. S. Cudney, J. Fousek, M. Zgonik, P. Gunter, M. H. Garrett, D. Rytz, “Photorefractive and domain gratings in barium titanate,” Appl. Phys. Lett. 63, 3399–3401 (1993).
[CrossRef]

French, P. M. W.

Garrett, M. H.

R. S. Cudney, J. Fousek, M. Zgonik, P. Gunter, M. H. Garrett, D. Rytz, “Photorefractive and domain gratings in barium titanate,” Appl. Phys. Lett. 63, 3399–3401 (1993).
[CrossRef]

Gower, M. C.

Gunter, P.

R. S. Cudney, P. Bernasconi, M. Zgonik, J. Fousek, P. Gunter, “Photorefractive grating fixing in KNbO3 by ferroelectric domains,” Appl. Phys. Lett. 70, 1339–1341 (1997).
[CrossRef]

R. S. Cudney, J. Fousek, M. Zgonik, P. Gunter, “Enhancement of the amplitude and lifetime of photoinduced space charge fields in multi-domain ferroelectric crystals,” Phys. Rev. Lett. 72, 3883–3886 (1994).
[CrossRef] [PubMed]

R. S. Cudney, J. Fousek, M. Zgonik, P. Gunter, M. H. Garrett, D. Rytz, “Photorefractive and domain gratings in barium titanate,” Appl. Phys. Lett. 63, 3399–3401 (1993).
[CrossRef]

G. Montemezzani, P. Gunter, “Thermal hologram fixing in pure and doped KnbO3 crystals,” J. Opt. Soc. Am. B 7, 2323–2328 (1990).
[CrossRef]

Hellwarth, R. W.

D. L. Naylor, P. W. Tam, R. W. Hellwarth, “Fidelity of optical phase conjugation by photorefractive degenerate four-wave mixing in barium titanate,” J. Appl. Phys. 72, 5840–5847 (1992).
[CrossRef]

F. P. Strohkendl, J. M. C. Jonathan, R. W. Hellwarth, “Hole-electron competition in photorefractive gratings,” Opt. Lett. 11, 312–314 (1986).
[CrossRef]

Hesselink, L.

Horowitz, M.

Hyde, S. C. W.

Jonathan, J. M. C.

Jones, R.

Ketchel, B. P.

B. P. Ketchel, G. L. Wood, R. J. Anderson, G. J. Salamo, “Three-dimensional image reconstruction using strontium barium niobate,” Appl. Phys. Lett. 71, 7–9 (1997).
[CrossRef]

Kirillov, D.

Klein, M. B.

Kline, M. B.

G. C. Valley, M. B. Kline, “Optimal properties of photorefractive materials for optical data processing,” Opt. Eng. 22, 704–711 (1983).
[CrossRef]

Kukhtarev, N. V.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, V. L. Vinetskii, “Holographic storage in electrooptic crystals,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

Leyva, V.

A. Yariv, S. Orlov, G. Rakuljic, V. Leyva, “Holographic fixing, readout, and storage dynamics in photorefractive materials,” Opt. Lett. 20, 132–134 (1995).
[CrossRef]

V. Leyva, A. Agranat, A. Yariv, “Fixing of a photorefractive grating in KTa1xNbxO3 by cooling through the ferroelectric phase transition,” Opt. Lett. 16, 554–556 (1991).
[CrossRef] [PubMed]

Markov, V. B.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, V. L. Vinetskii, “Holographic storage in electrooptic crystals,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

Micheron, F.

F. Micheron, J. Trotier, “Photoinduced phase transitions in (Sr,Ba)Nb2O6,” Ferroelectrics 8, 441–442 (1974).
[CrossRef]

F. Micheron, G. Bismuth, “Electrical control of fixation and erasure of holographic patterns in ferroelectric materials,” Appl. Phys. Lett. 20, 79–81 (1972).
[CrossRef]

Mok, F.

D. Psaltis, F. Mok, “Holographic memories,” Sci. Am. 273, 70–76 (1995).
[CrossRef]

Montemezzani, G.

Naylor, D. L.

D. L. Naylor, P. W. Tam, R. W. Hellwarth, “Fidelity of optical phase conjugation by photorefractive degenerate four-wave mixing in barium titanate,” J. Appl. Phys. 72, 5840–5847 (1992).
[CrossRef]

Neurgaonkar, R. R.

Odulov, S. G.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, V. L. Vinetskii, “Holographic storage in electrooptic crystals,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

Orlov, S.

A. Yariv, S. Orlov, G. Rakuljic, V. Leyva, “Holographic fixing, readout, and storage dynamics in photorefractive materials,” Opt. Lett. 20, 132–134 (1995).
[CrossRef]

Y. Qiao, S. Orlov, D. Psaltis, R. R. Neurgaonkar, “Electrical fixing of photorefractive holograms in Sr0.75Ba0.25Nb2O6,” Opt. Lett. 18, 1004–1006 (1993).
[CrossRef] [PubMed]

Psaltis, D.

Qiao, Y.

Rakuljic, G.

A. Yariv, S. Orlov, G. Rakuljic, V. Leyva, “Holographic fixing, readout, and storage dynamics in photorefractive materials,” Opt. Lett. 20, 132–134 (1995).
[CrossRef]

Rytz, D.

R. S. Cudney, J. Fousek, M. Zgonik, P. Gunter, M. H. Garrett, D. Rytz, “Photorefractive and domain gratings in barium titanate,” Appl. Phys. Lett. 63, 3399–3401 (1993).
[CrossRef]

Salamo, G. J.

B. P. Ketchel, G. L. Wood, R. J. Anderson, G. J. Salamo, “Three-dimensional image reconstruction using strontium barium niobate,” Appl. Phys. Lett. 71, 7–9 (1997).
[CrossRef]

Sayano, K.

Staebler, D. L.

J. J. Amodei, D. L. Staebler, “Holographic pattern fixing in electro-optic crystals,” Appl. Phys. Lett. 18, 540–542 (1971).
[CrossRef]

Strohkendl, F. P.

Tam, P. W.

D. L. Naylor, P. W. Tam, R. W. Hellwarth, “Fidelity of optical phase conjugation by photorefractive degenerate four-wave mixing in barium titanate,” J. Appl. Phys. 72, 5840–5847 (1992).
[CrossRef]

Trotier, J.

F. Micheron, J. Trotier, “Photoinduced phase transitions in (Sr,Ba)Nb2O6,” Ferroelectrics 8, 441–442 (1974).
[CrossRef]

Vainos, N. A.

Valley, G. C.

G. C. Valley, M. B. Kline, “Optimal properties of photorefractive materials for optical data processing,” Opt. Eng. 22, 704–711 (1983).
[CrossRef]

Vinetskii, V. L.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, V. L. Vinetskii, “Holographic storage in electrooptic crystals,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

Wechsler, B. A.

Wood, G. L.

B. P. Ketchel, G. L. Wood, R. J. Anderson, G. J. Salamo, “Three-dimensional image reconstruction using strontium barium niobate,” Appl. Phys. Lett. 71, 7–9 (1997).
[CrossRef]

Yariv, A.

A. Yariv, S. Orlov, G. Rakuljic, V. Leyva, “Holographic fixing, readout, and storage dynamics in photorefractive materials,” Opt. Lett. 20, 132–134 (1995).
[CrossRef]

V. Leyva, A. Agranat, A. Yariv, “Fixing of a photorefractive grating in KTa1xNbxO3 by cooling through the ferroelectric phase transition,” Opt. Lett. 16, 554–556 (1991).
[CrossRef] [PubMed]

Zgonik, M.

R. S. Cudney, P. Bernasconi, M. Zgonik, J. Fousek, P. Gunter, “Photorefractive grating fixing in KNbO3 by ferroelectric domains,” Appl. Phys. Lett. 70, 1339–1341 (1997).
[CrossRef]

R. S. Cudney, J. Fousek, M. Zgonik, P. Gunter, “Enhancement of the amplitude and lifetime of photoinduced space charge fields in multi-domain ferroelectric crystals,” Phys. Rev. Lett. 72, 3883–3886 (1994).
[CrossRef] [PubMed]

R. S. Cudney, J. Fousek, M. Zgonik, P. Gunter, M. H. Garrett, D. Rytz, “Photorefractive and domain gratings in barium titanate,” Appl. Phys. Lett. 63, 3399–3401 (1993).
[CrossRef]

Zhao, F.

Appl. Opt. (1)

Appl. Phys. Lett. (5)

B. P. Ketchel, G. L. Wood, R. J. Anderson, G. J. Salamo, “Three-dimensional image reconstruction using strontium barium niobate,” Appl. Phys. Lett. 71, 7–9 (1997).
[CrossRef]

J. J. Amodei, D. L. Staebler, “Holographic pattern fixing in electro-optic crystals,” Appl. Phys. Lett. 18, 540–542 (1971).
[CrossRef]

F. Micheron, G. Bismuth, “Electrical control of fixation and erasure of holographic patterns in ferroelectric materials,” Appl. Phys. Lett. 20, 79–81 (1972).
[CrossRef]

R. S. Cudney, J. Fousek, M. Zgonik, P. Gunter, M. H. Garrett, D. Rytz, “Photorefractive and domain gratings in barium titanate,” Appl. Phys. Lett. 63, 3399–3401 (1993).
[CrossRef]

R. S. Cudney, P. Bernasconi, M. Zgonik, J. Fousek, P. Gunter, “Photorefractive grating fixing in KNbO3 by ferroelectric domains,” Appl. Phys. Lett. 70, 1339–1341 (1997).
[CrossRef]

Ferroelectrics (2)

F. Micheron, J. Trotier, “Photoinduced phase transitions in (Sr,Ba)Nb2O6,” Ferroelectrics 8, 441–442 (1974).
[CrossRef]

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, V. L. Vinetskii, “Holographic storage in electrooptic crystals,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

J. Appl. Phys. (2)

D. L. Naylor, P. W. Tam, R. W. Hellwarth, “Fidelity of optical phase conjugation by photorefractive degenerate four-wave mixing in barium titanate,” J. Appl. Phys. 72, 5840–5847 (1992).
[CrossRef]

L. Arizmendi, “Thermal fixing of holographic gratings in Bi12SiO20,” J. Appl. Phys. 65, 423–427 (1989).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Eng. (1)

G. C. Valley, M. B. Kline, “Optimal properties of photorefractive materials for optical data processing,” Opt. Eng. 22, 704–711 (1983).
[CrossRef]

Opt. Lett. (11)

F. P. Strohkendl, J. M. C. Jonathan, R. W. Hellwarth, “Hole-electron competition in photorefractive gratings,” Opt. Lett. 11, 312–314 (1986).
[CrossRef]

A. Yariv, S. Orlov, G. Rakuljic, V. Leyva, “Holographic fixing, readout, and storage dynamics in photorefractive materials,” Opt. Lett. 20, 132–134 (1995).
[CrossRef]

S. C. W. Hyde, N. P. Barry, R. Jones, J. C. Dainty, P. M. W. French, M. B. Klein, B. A. Wechsler, “Depth-resolved holographic imaging through scattering media by photorefraction,” Opt. Lett. 20, 1331–1333 (1995).
[CrossRef] [PubMed]

N. A. Vainos, M. C. Gower, “High-fidelity image amplification and phase conjugation in photorefractive Bi12SiO20 crystals,” Opt. Lett. 16, 363–365 (1991).
[CrossRef] [PubMed]

M. C. Bashaw, A. Aharoni, L. Hesselink, “Alleviation of image distortion due to striations in a photorefractive medium by using a phase-conjugated reference wave,” Opt. Lett. 17, 1149–1151 (1992).
[CrossRef] [PubMed]

F. Zhao, K. Sayano, “Compact read-only memory with lens–less phase-conjugate holograms,” Opt. Lett. 21, 1295–1297 (1996).
[CrossRef] [PubMed]

L. E. Adams, R. S. Bondurant, “Wide-field-of-view heterodyne receiver using a photorefractive double phase-conjugate mirror,” Opt. Lett. 16, 832–834 (1991).
[CrossRef] [PubMed]

V. Leyva, A. Agranat, A. Yariv, “Fixing of a photorefractive grating in KTa1xNbxO3 by cooling through the ferroelectric phase transition,” Opt. Lett. 16, 554–556 (1991).
[CrossRef] [PubMed]

M. Horowitz, A. Bekker, B. Fischer, “Image and hologram fixing method with SrxBa1–xNb2O6 crystals,” Opt. Lett. 18, 1964–1966 (1993).
[CrossRef] [PubMed]

D. Kirillov, J. Feinberg, “Fixable complementary gratings in photorefractive BaTiO3,” Opt. Lett. 16, 1520–1522 (1991).
[CrossRef] [PubMed]

Y. Qiao, S. Orlov, D. Psaltis, R. R. Neurgaonkar, “Electrical fixing of photorefractive holograms in Sr0.75Ba0.25Nb2O6,” Opt. Lett. 18, 1004–1006 (1993).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

R. S. Cudney, J. Fousek, M. Zgonik, P. Gunter, “Enhancement of the amplitude and lifetime of photoinduced space charge fields in multi-domain ferroelectric crystals,” Phys. Rev. Lett. 72, 3883–3886 (1994).
[CrossRef] [PubMed]

Sci. Am. (1)

D. Psaltis, F. Mok, “Holographic memories,” Sci. Am. 273, 70–76 (1995).
[CrossRef]

Other (1)

R. W. Boyd, Nonlinear Optics (Academic, San Diego, Calif., 1992), pp. 399–427.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental apparatus employed to study the fixing of a 3-D holographic image in a 1 cm × 1 cm × 1 cm SBN:75 photorefractive crystal. Three beams are needed to write a 3-D hologram: an object beam to illuminate the object being recorded, a reference beam to produce the interference pattern, and a read beam to reconstruct the hologram. The object die is 1 cm from the crystal. Optical components include BS, beam splitter; BX, beam expander; M, mirror; 1/2λ, half-wave plate.

Fig. 2
Fig. 2

Hologram of a 3-D die recorded by a Canon D30 digital camera at three different viewing angles over a range of ∼35°.

Fig. 3
Fig. 3

(a) Relative diffraction efficiency of an unfixed image plotted as a function of readout time. (b) Relative diffraction efficiency of a permanently fixed image plotted as a function of readout time. The protect stage and revealed image are indicated by points A and B, respectively.

Fig. 4
Fig. 4

(a) Light incident on the crystal excites a charge that then diffuses to the dark regions. (b) Diffused charge creates a new space-charge distribution that produces the space-charge field E SC.

Fig. 5
Fig. 5

Diagram illustrating how the addition of an applied field to the original existing space-charge field creates a strong depolarizing field that allows the ferroelectric domains to flip, producing a head-to-head pattern that is locked in place by the free charge.

Fig. 6
Fig. 6

(a) Ferroelectric domains become locked in place or fixed as the free charge is transported to neutralize the bound charge. (b) The nonuniform free-charge distribution results in a nonuniform charge excitation under uniform illumination and no applied field. Diffusion of the excited charge then results in a modulated space-charge field and a corresponding index of refraction pattern.

Tables (1)

Tables Icon

Table 1 Summary of Procedures Used to Create and Subsequently View Permanent 3-D Holographic Images in a SBN:75 Crystala

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

n+Δn=n-1/2n3reffESC,

Metrics