Abstract

Reflectivity spectra of HxWO3 and LixWO3 thin films were measured over the photon energy range from 0.4 to 4.2 eV. It was found that microcrystalline tungsten bronzes have reflectances of 8%–30% over the dopant concentration range x (0 ≤ x ≤ 0.25). Values for the real part of refractive index n were also determined from the refined reflectivity data. The optical data are interpreted by use of a modified Drude-Zener model together with a single-oscillator model to differentiate between bound and free electronic states. The values of high-frequency dielectric constant εhf of M xWO3 (M = H +, Li+) bronzes were determined from the refractive-index data for estimation of the effective electronic masses involved in optical and polaronic transitions. A single-oscillator model showed that oscillator energy E a and dispersion energy E d increased and decreased, respectively, with increasing x values, opposite what occurs in crystalline tungsten bronzes. These findings support the fact that Bloch electrons are almost absent; instead, the polaronic species (W5+ and W4+) are assumed to control the reflectivity modifications (or variations in the refractive index) that are associated with the microcrystalline tungsten bronzes.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. W. Faughnan, R. S. Crandall, P. M. Heyman, “Electrochromism in WO3 amorphous films,” RCA Rev. 36, 177–200 (1975).
  2. Q. Zhong, S. A. Wessel, B. Heinrich, K. Colbow, “The electrochromic properties and mechanism of HxWO3 and LixWO3,” Sol. Energy Mater. 20, 289–296 (1990).
    [CrossRef]
  3. C. G. Granqvist, Handbook of Inorganic Electrochromic Materials (Elsevier, Amsterdam, 1995).
  4. H. Morita, H. Washida, “Electrochromism of atmospheric evaporated tungsten oxide films,” Jpn. J. Appl. Phys. 23, 754–759 (1984).
    [CrossRef]
  5. C. M. Lampert, “Electrochromic materials and devices for energy efficient windows,” Sol. Energy Mater. 11, 1–27 (1984).
    [CrossRef]
  6. R. B. Goldner, T. E. Haas, G. Seward, K. K. Wong, P. Norton, G. Foley, G. Berera, G. Wei, S. Schulz, R. Chapman, “Thin film solid state ionic materials for electrochromic Smart Window™ glass,” Solid State Ionics 28–30, 1715–1721 (1988).
    [CrossRef]
  7. I. F. Chang, “Electrochromic and electrochemichromic materials and phenomena,” in Non-emissive Electrooptic Displays, A. R. Kmetz, F. K. Von Willisen, eds. (Plenum, New York, 1976).
  8. C. G. Granqvist, “Transparent conductive electrodes for electrochromic devices: a review,” Appl. Phys. A 57, 19–24 (1993).
    [CrossRef]
  9. J. S. E. M. Svensson, C. G. Granqvist, “Electrochromic coatings for smart windows,” in Optical Materials Technology for Energy Efficiency & Solar Energy Conversion, C. W. Lampert, ed., Proc. SPIE502, 30–37 (1984).
  10. C. Bechinger, S. Ferrere, A. Zaban, J. Sprague, B. A. Gregg, “Photoelectrochromic windows and displays,” Nature 383, 608–610 (1996).
    [CrossRef]
  11. J. N. Yao, K. Hashimoto, A. Fujishima, “Photochromism induced in an electrolytically pretreated MoO3 thin film by visible light,” Nature 355, 624–626 (1992).
    [CrossRef]
  12. S. K. Deb, “Opportunities and challenges of electrochromic pohenomena in transition metal oxides,” Sol. Energy Mater. Sol. Cells 25, 327–338 (1992).
    [CrossRef]
  13. A. Bryant, M. Poirier, G. Riley, D. L. Lee, J. F. Vetelino, “Gas detection using surface acoustic wave delay lines,” Sens. Actuators 4, 105–111 (1983).
    [CrossRef]
  14. A. Georg, W. Graf, R. Neumann, V. Wittwer, “Stability of gasochromic WO3 films,” Sol. Energy Mater. Sol. Cells 63, 165–176 (2000).
    [CrossRef]
  15. L. J. LeGore, K. Snow, J. D. Galipeau, J. F. Vetelino, “The optimisation of a tungsten trioxide film for application in a surface acoustic wave gas sensor,” Sens. Actuators B 35–36, 164–169 (1996).
    [CrossRef]
  16. M. Di Giulio, D. Manno, G. Micocci, A. Serra, A. Tepore, “Gas-sensing properties of sputtered thin films of tungsten oxide,” J. Phys. D 30, 3211–3215 (1997).
    [CrossRef]
  17. S. K. Deb, “Optical and photoelectric properties and colour centres in thin films of tungsten oxide,” Philos. Mag. 27, 801–821 (1973).
    [CrossRef]
  18. C. G. Granqvist, “Electrochromic materials: metal oxide nanocomposites with variable optical properties,” Mater. Sci. Eng. A 168, 209–215 (1993).
    [CrossRef]
  19. A. Deneuville, P. Gerard, “Influence of substoichiometry, hydrogen content and crystallinity on the optical and electrical properties of HxWOy thin films,” J. Electron. Mater. 7, 559–587 (1978).
    [CrossRef]
  20. S. S. Sun, P. H. Holloway, “Modification of vapor-deposited WO3 electrochromic films by oxygen backfilling,” J. Vac. Sci. Technol. A 1, 529–533 (1983).
    [CrossRef]
  21. R. B. Goldner, G. Seward, K. Wong, T. Haas, G. H. Foley, R. Chapman, S. Schulz, “Completely solid lithiated smart windows,” Sol. Energy Mater. 19, 17–26 (1989).
    [CrossRef]
  22. L. Su, H. Wang, Z. Lu, “All-solid-state electrochromic window of Prussian Blue and electrodeposited WO3 film with poly(ethylene oxide) gel electrolyte,” Mater. Chem. Phys. 56, 266–270 (1998).
    [CrossRef]
  23. J. I. Pankove, ed., Display Devices (Springer-Verlag, Berlin, 1980), p. 191.
  24. T. Kamimori, J. Nagai, M. Mizuhashi, “Electrochromic devices for transmissive and reflective light control,” Sol. Energy Mater. 16, 27–38 (1987).
    [CrossRef]
  25. S. K. Deb, “Some perspectives on electrochromic device research,” in Materials and Optics for Solar Energy Conversion and Advanced Lighting Technology, C. W. Lampert, S. Holly, eds., Proc. SPIE692, 19–31 (1986).
  26. K. Bange, T. Gambke, “Electrochromic materials for optical switching devices,” Adv. Mater. 2, 10–16 (1990).
    [CrossRef]
  27. J. R. Stevens, J. S. E. M. Svensson, C. G. Granqvist, R. Spindler, “Electrochromism of WO3-based films in contact with a solid Li-doped siloxane elastomer electrolyte,” Appl. Opt. 26, 3489–3490 (1987).
    [CrossRef] [PubMed]
  28. T. Maruyama, S. Arai, “Electrochromic properties of tungsten trioxide thin films prepared by chemical vapor deposition,” J. Electrochem. Soc. 141, 1021–1024 (1994).
    [CrossRef]
  29. T. Maruyama, T. Kanagawa, “Electrochromic properties of tungsten trioxide thin films prepared by photochemical vapor deposition,” J. Electrochem. Soc. 141, 2435–2438 (1994).
    [CrossRef]
  30. A. Georg, W. Graf, D. Schweiger, V. Wittwer, P. Nitz, H. R. Wilson, “Switchable glazing with a large dynamic range in total solar energy transmittance,” Sol. Energy 62, 215–228 (1998).
    [CrossRef]
  31. A. Georg, W. Graf, R. Neumann, V. Wittwer, “Mechanism of the gasochromic coloration of porous WO3 films,” Solid State Ionics 127, 319–328 (2000).
    [CrossRef]
  32. N. Van Nha, N. Thi Bao Ngoc, N. Van Hung, “The preparation and gas sensitive property of Pt-WO3 thin film,” Thin Solid Films 334, 113–116 (1998).
    [CrossRef]
  33. D. K. Benson, C. E. Tracy, G. A. Hishmeh, P. E. Ciszek, S. H. Lee, D. P. Haberman, “Low-cost, fiber-optic hydrogen gas detector using guided-wave, surface-plasmon resonance in chemochromic thin films,” in Advanced Sensors and Monitors for Process Industries and the Environment, W. A. de Groot, ed., Proc. SPIE3535, 185–191 (1998).
  34. I. D. Raistrick, “Lithium insertion reactions in tungsten and vanadium oxide bronzes,” Solid State Ionics 9/10, 425–430 (1983).
    [CrossRef]
  35. J. P. Pereira-Ramas, R. Baddour-Hadjean, N. Kumagai, K. Tanno, “Improvement of the electrochemical behaviour of WO3 as reversible cathodic material for lithium batteries,” Electrochim. Acta 38, 431–436 (1993).
    [CrossRef]
  36. Z. Hussain, “Optical and electrochromic properties of oxide bronze thin films,” Ph.D. dissertation (University of London, London, 2001).
  37. T. Nanba, I. Yasui, “X-ray diffraction study of microstructure of amorphous tungsten trioxide films prepared by electron beam vacuum evaporation,” J. Solid State Chem. 83, 304–315 (1989).
    [CrossRef]
  38. M. Rubin, “Ion-assisted sputtering of tungsten oxide solar-control films,” J. Vac. Sci. Technol. A 10, 1905–1907 (1992).
    [CrossRef]
  39. J. Gottsche, A. Hinsch, V. Wittwer, “Electrochromic mixed WO3–TiO2 thin films produced by sputtering and the sol-gel technique: a comparison,” Sol. Energy Mater. Sol. Cells 31, 415–428 (1993).
    [CrossRef]
  40. T. Nishide, F. Mizukami, “Refractive indices of the tungsten oxide films prepared by sol-gel and sputtering processes,” Opt. Eng. 34, 3329–3333 (1995).
    [CrossRef]
  41. I. Bedja, S. Hotchandani, P. V. Kamat, “Photoelectrochemistry of quantized WO3 colloids electron storage, electrochromic, and photoelectrochromic effects,” J. Phys. Chem. 97, 11064–11070 (1993).
    [CrossRef]
  42. P. Delichere, P. Falaras, M. Froment, A. Hugot-Le Goff, “Electrochromism in anodic WO3 films. 1. Preparation and physicochemical properties of films in the virgin and colored states,” Thin Solid Films 161, 35–46 (1988).
    [CrossRef]
  43. L. Su, L. Zhang, J. Fang, M. Xu, Z. Lu, “Electrochromic and photoelectrochemical behavior of electrodeposited tungsten trioxide films,” Sol. Energy Mater. Sol. Cells 58, 133–140 (1999).
    [CrossRef]
  44. P. Gerard, A. Deneuville, “Color in tungsten trioxide thin films,” J. Appl. Phys. 48, 4252–4255 (1977).
    [CrossRef]
  45. A. Georg, W. Graf, V. Wittwer, “Comparison of electrical conductivity and optical properties of substoichiometrically and electrochemically colored WOx films of different crystallinity,” Sol. Energy Mater. Sol. Cells 51, 353–370 (1998).
    [CrossRef]
  46. A. Agrawal, H. Habibi, “Effect of heat treatment on the structure, composition and electrochromic properties of evaporated tungsten oxide films,” Thin Solid Films 169, 257–270 (1989).
    [CrossRef]
  47. K. Matsuhiro, Y. Masuda, “Transmissive electrochromic display using a porous crystalline WO3 counter electrode,” Proc. Soc. Inf. Disp. 21/22, 101–105 (1980).
  48. S. M. A. Durrani, E. E. Khawaja, M. A. Salim, M. F. Al-Kuhaili, A. M. Al-Shukri, “Effect of preparation conditions on the optical and thermochromic properties of thin films of tungsten oxide,” Sol. Energy Mater. Sol. Cells 71, 313–325 (2002).
    [CrossRef]
  49. H. Morita, “Coloration and decoloration in atmospheric-evaporated tungsten-oxide films (AETOF) utilizing lithium ions,” Jpn. J. Appl. Phys. 24, 750–754 (1985).
    [CrossRef]
  50. N. Yoshiike, S. Kondo, “Electrochemical properties of WO3. x(H2O). 1. The influences of water adsorption and hydroxylation,” J. Electrochem. Soc. 130, 2283–2287 (1983).
    [CrossRef]
  51. M. Green, Z. Hussain, “Optical properties of lithium tungsten bronze thin films,” J. Appl. Phys. 74, 3451–3458 (1993).
    [CrossRef]
  52. M. Green, Z. Hussain, “Optical properties of dilute hydrogen tungsten bronze thin films,” J. Appl. Phys. 69, 7788–7796 (1991).
    [CrossRef]
  53. A. Travlos, “Physical properties of thin films of sodium tungsten bronzes,” Ph.D. dissertation (University of London, London, 1984).
  54. K. S. Kang, “Electrochromic display: sodium insertion in tungsten trioxide films,” Ph.D. dissertation (University of London, London, 1979).
  55. M. Shiojiri, T. Miyano, C. Kaito, “Electron microscopic studies of structure and crystallization of amorphous metal oxide films,” Jpn. J. Appl. Phys. 18, 1937–1945 (1979).
    [CrossRef]
  56. A. Azens, M. Kitenbergs, U. Kanders, “Evaporation of tungsten oxide: a mass-spectrometric study of the vapor contents,” Vacuum 46, 745–747 (1995).
    [CrossRef]
  57. C. Bechinger, M. S. Burdis, J. G. Zhang, “Comparison between electrochromic and photochromic coloration efficiency of tungsten oxide thin films,” Solid State Commun. 101, 753–756 (1997).
    [CrossRef]
  58. S. Hashimoto, H. Matsuoka, H. Kagechika, M. Susa, K. S. Goto, “Degradation of electrochromic amorphous WO3 film in lithium-salt electrolyte,” J. Electrochem. Soc. 137, 1300–1304 (1990).
    [CrossRef]
  59. C. Ottermann, A. Temmink, K. Bange, “Correlation of injected charge to optical constants (n, k) of electrochromic films,” in Optical Materials Technology for Energy Efficiency and Solar Energy Conversion IX, C. G. Granqvist, C. M. Lampert, eds., Proc. SPIE1272, 111–121 (1990).
  60. K. Miyake, H. Kaneko, M. Sano, N. Suedomi, “Physical and electrochromic properties of the amorphous and crystalline tungsten oxide thick films prepared under reducing atmosphere,” J. Appl. Phys. 55, 2747–2753 (1984).
    [CrossRef]
  61. T. Yoshimura, “Oscillator strength of small-polaron absorption in WOx electrochromic thin films,” J. Appl. Phys. 57, 911–919 (1985).
    [CrossRef]
  62. M. Green, K. Kang, “Sodium tungsten bronze thin films: variation of chemical potential with sodium concentration,” Solid State Ionics 8, 281–289 (1983).
    [CrossRef]
  63. H. E. Bennett, J. M. Bennett, “Precision measurements in thin film optics,” in Physics of Thin Films, G. Hass, R. E. Fhun, eds. (Academic, New York, 1967), Vol. 4, p. 42.
  64. T. M. Donovan, W. E. Spicer, J. M. Bennett, E. J. Ashley, “Optical properties of amorphous germanium films,” Phys. Rev. B 2, 397–413 (1970).
    [CrossRef]
  65. R. B. Goldner, A. Brofos, G. Foley, E. L. Goldner, T. E. Haas, W. Henderson, P. Norton, B. A. Ratnam, N. Weis, K. K. Wong, “Optical frequencies free electron scattering studies on electrochromic materials for variable reflectivity windows,” in Optical Materials Technology for Energy Efficiency & Solar Energy Conversion IV, C. W. Lampert, ed., Proc. SPIE502, 54–57 (1984).
  66. S. F. Cogan, T. D. Plante, M. A. Parker, R. D. Rauh, “Free-electron electrochromic modulation in crystalline LixWO3,” J. Appl. Phys. 60, 2735–2738 (1986).
    [CrossRef]
  67. R. B. Goldner, P. Norton, K. Wong, G. Foley, E. L. Goldner, G. Seward, R. Chapman, “Further evidence for free electrons as dominating the behavior of electrochromic polycrystalline WO3 films,” Appl. Phys. Lett. 47, 536–537 (1985).
    [CrossRef]
  68. G. Hagg, A. Magneli, “Recent structure investigations of oxygen compounds of molybdenum and tungsten,” Rev. Pure Appl. Chem. 4, 235–249 (1954).
  69. E. Salje, K. Viswanathan, “Physical properties and phase transitions in WO3,” Acta Crystallogr. Sect. A 31, 356–359 (1975).
    [CrossRef]
  70. R. B. Goldner, D. H. Mendelsohn, J. Alexander, W. R. Henderson, D. Fitzpatrick, T. E. Haas, H. H. Sample, R. D. Rauh, M. A. Parker, T. L. Rose, “High near-infrared reflectivity modulation with polycrystalline electrochromic WO3 films,” Appl. Phys. Lett. 43, 1093–1095 (1983).
    [CrossRef]
  71. O. F. Schirmer, V. Wittwer, G. Baur, G. Brandt, “Dependence of WO3 electrochromic absorption on crystallinity,” J. Electrochem. Soc. 124, 749–753 (1977).
    [CrossRef]
  72. S. F. Cogan, R. D. Rauh, J. D. Weswood, D. I. Plotkin, R. B. Jones, “Infrared properties of electrochromic materials,” in Optical Materials Technology for Energy Efficiency and Solar Energy Conversion VIII, C. M. Lampert, ed., SPIE 1149, 2–7 (1989).
  73. J. S. E. M. Svensson, C. G. Granqvist, “Electrochromic coatings for smart windows: crystalline and amorphous WO3 films,” Thin Solid Films 126, 31–36 (1985).
    [CrossRef]
  74. P. A. Lightsey, D. A. Lilienfeld, D. F. Holcomb, “Transport properties of cubic NaxWO3 near the insulator-metal transition,” Phys. Rev. B 14, 4730–4732 (1976).
    [CrossRef]
  75. L. Kopp, B. N. Harmon, S. H. Liu, “Band structure of cubic NaxWO3,” Solid State Commun. 22, 677–679 (1977).
    [CrossRef]
  76. L. F. Mattheiss, “Band structure and Fermi surface of ReO3,” Phys. Rev. 181, 987–1000 (1969).
    [CrossRef]
  77. P. G. Dickens, S. C. Baker, M. T. Weller, “Hydrogen insertion in oxides,” Solid State Ionics 18/19, 89–97 (1986).
    [CrossRef]
  78. J. B. Goodenough, “Transition-metal oxides with metallic conductivity,” Bull. Soc. Chim. Fr. 4, 1200–1207 (1975).
  79. P. A. Lightsey, “Percolation view of transport properties in NaxWO3,” Phys. Rev. B 8, 3586–3589 (1973).
    [CrossRef]
  80. J. F. Owen, K. J. Teegarden, H. R. Shanks, “Optical properties of the sodium-tungsten bronzes and tungsten trioxide,” Phys. Rev. B 18, 3827–3837 (1978).
    [CrossRef]
  81. J. P. Doumerc, M. Pouchard, P. Hagenmuller, “Chemical bond, crystal structure and the metal–nonmetal transition in oxide bronzes,” in The Metallic and Non-metallic States of Matter, P. P. Edwards, C. N. R. Rao, eds. (Taylor & Francis, London, 1985), Chap. 11, p. 287.
  82. D. W. Bullett, “Bulk and surface electron states in WO3 and tungsten bronzes,” J. Phys. C 16, 2197–2207 (1983).
    [CrossRef]
  83. J. A. Duffy, Energy Levels in Inorganic Solids (Wiley, New York, 1990), p. 182.
  84. V. Wittwer, O. F. Schirmer, P. Schlotter, “Disorder dependence and optical detection of the Anderson transition in amorphous HxWO3 bronzes,” Solid State Commun. 25, 977–980 (1978).
    [CrossRef]
  85. C. Bechinger, M. S. Burdis, J. G. Zhang, “Comparison between electrochromic and photochromic coloration efficiency of tungsten oxide thin films,” Solid State Commun. 101, 753–756 (1997).
    [CrossRef]
  86. L. Su, L. Zhang, J. Fang, M. Xu, Z. Lu, “Electrochromic and photoelectrochemical behavior of electrodeposited tungsten trioxide films,” Sol. Energy Mater. Sol. Cells 58, 133–140 (1999).
    [CrossRef]
  87. P. Gerard, A. Deneuville, R. Courths, “Characterization of amorphpous WO3 thin films before and after coloration,” Thin Solid Films 71, 221–236 (1980).
    [CrossRef]
  88. J. G. Zhang, D. K. Benson, C. E. Tracy, S. K. Deb, A. W. Czanderna, C. Bechinger, “Chromic mechanism in amorphous WO3 films,” J. Electrochem. Soc. 144, 2022–2025 (1997).
    [CrossRef]
  89. S. H. Lee, H. M. Cheong, C. E. Tracy, A. Mascarenhas, D. K. Benson, S. K. Deb, “Raman spectroscopic studies of electrochromic a-WO3,” Electrochim. Acta 44, 3111–3115 (1999).
    [CrossRef]
  90. T. Yoshimura, M. Watanabe, Y. Koike, K. Kiyota, M. Tanaka, “Enhancement in oscillator strength of color centers in electrochromic thin films deposited from WO2 powder,” J. Appl. Phys. 53, 7314–7320 (1982).
    [CrossRef]
  91. P. D. Cikmach, “Electrochromism and charge carrier localization in WO3,” Ph.D dissertation (Latrian State University, Riga, Latvia, 1985; in Russian).
  92. A. I. Gavrilyuk, G. M. Gusinskii, T. G. Lanskaya, “Determination of the oscillator strength of an optical transition for color centers in WO3 thin films,” Tech. Phys. Lett. 20, 295–297 (1994).
  93. M. R. Goulding, C. B. Thomas, R. J. Hurditch, “A comparison of thermo and photochromic behavior in films of amorphous WO3,” Solid State Commun. 46, 451–453 (1983).
    [CrossRef]
  94. P. R. Collins, W. J. Fredericks, “Absorption spectra and oscillator strength of KBr:Pb,” J. Phys. Chem. Solids 47, 529–532 (1986).
    [CrossRef]
  95. F. Abeles, “Optical properties of metals,” in Optical Properties of Solids, F. Abeles, ed. (North-Holland, Amsterdam, 1972), Chap. 3, p. 93.
  96. M. R. Tubbs, “Dispersion effects in interference methods for the measurement of refractive index,” J. Phys. Chem. Solids 30, 2323–2325 (1969).
    [CrossRef]
  97. F. Abelès, “Methods for determining optical parameters of thin films,” in Progress in Optics, E. Wolf, ed. (Wiley, New York, 1963), Vol. II, p. 268.
  98. J. I. Pankov, Optical Processes in Semiconductors (Dover, New York, 1971), p. 93.
  99. M. R. Tubbs, “MoO3 layers-optical properties, color centres, and holographic recording,” Phys. Status Solidi A 21, 253–260 (1974).
    [CrossRef]
  100. D. Green, “Optical constants of sputtered WO3,” Appl. Opt. 29, 4547–4549 (1990).
    [CrossRef] [PubMed]
  101. S. Sawada, G. C. Danielson, “Domain structure of WO3 single crystals,” Phys. Rev. 113, 1005–1013 (1959).
    [CrossRef]
  102. T. Toyoda, “The optical dispersion parameters in WO3 thin films,” J. Appl. Phys. 63, 5166–5168 (1988).
    [CrossRef]
  103. Z. Hussain, “Vacuum temperature-dependent ellipsometic studies on WO3 thin films,” Appl. Opt. 38, 7112–7127 (1999).
    [CrossRef]
  104. E. K. Sichel, J. I. Gittleman, J. Zelez, “Electrochromism in the composite material Au-WO3,” Appl. Phys. Lett. 31, 109–111 (1977).
    [CrossRef]
  105. E. Salje, B. Guttler, “Anderson transition and intermediate polaron formation in WO3-x transport properties and optical absorption,” Philos. Mag. B 50, 607–620 (1984).
    [CrossRef]
  106. N. F. Mott, E. A. Davis, Electronic Process in Noncrystalline Materials (Clarendon, Oxford, 1979), p. 15.
  107. G. Hollinger, P. Pertosa, “Direct observation of the Anderson transition in HxWO3 bronzes by high resolution x-ray photoelectron spectroscopy,” Chem. Phys. Lett. 74, 341–344 (1980).
    [CrossRef]
  108. P. G. Dickens, R. M. P. Quillian, M. S. Whittingham, “The reflectance spectra of the tungsten bronzes,” Mater. Res. Bull. 3, 941–950 (1968).
    [CrossRef]
  109. A. Borghesi, M. Geddo, G. Guizzetti, E. Reguzzoni, A. Stella, F. Levy, “Plasmon and interband transitions in Ti1-xHfxSe2 systems,” Phys. Rev. B 29, 3167–3171 (1984).
    [CrossRef]
  110. K. Seeger, Semiconductor Physics (Springer-Verlag, Berlin, 1985), p. 302.
  111. R. B. Goldner, K. Wong, G. Foley, P. Norton, L. Wamboldt, G. Seward, T. Haas, R. Chapman, “Thin films of WO3 for practical electrochromic windows,” Sol. Energy Mater. 16, 365–370 (1987).
    [CrossRef]
  112. F. O. Arntz, R. B. Goldner, B. Morel, T. E. Hass, K. K. Wong, “Near-infrared reflectance modulation with electrochromic crystalline WO3 films deposited on ambient temperature glass substrates by an oxygen ion-assisted technique,” J. Appl. Phys. 67, 3177–3179 (1990).
    [CrossRef]
  113. S. K. Deb, “Electron spin resonance of defects in single crystal and thin films of tungsten trioxide,” Phys. Rev. B 16, 1020–1024 (1977).
    [CrossRef]
  114. J. D. Greiner, H. R. Shanks, D. C. Wallace, “Magnetic susceptibility of the cubic sodium tungsten bronzes,” J. Chem. Phys. 36, 772–776 (1962).
    [CrossRef]
  115. B. L. Crowder, M. J. Sienko, “Some solid-state studies of tungsten trioxide and their significance to tungsten bronze theory,” J. Chem. Phys. 38, 1576–1583 (1963).
    [CrossRef]
  116. J. Feinleib, W. J. Scouler, A. Ferretti, “Optical properties of the metal ReO3 from 0.1 to 22 eV,” Phys. Rev. 165, 765–774 (1968).
    [CrossRef]
  117. S. F. Cogan, T. D. Plante, M. A. Parker, R. D. Rauh, “Electrochromic solar attenuation in crystalline and amorphous LixWO3,” Sol. Energy Mater. 14, 185–193 (1986).
    [CrossRef]
  118. D. H. Mendelsohn, R. B. Goldner, “Ellipsometry measurements as direct evidence of the Drude model for polycrystalline electrochromic WO3 films,” J. Electrochem. Soc. 131, 857–860 (1984).
    [CrossRef]
  119. Y. Shigesato, “Photochromic properties of amorphous WO3 films,” Jpn. J. Appl. Phys. 30, 1457–1462 (1991).
    [CrossRef]
  120. M. DiDomenico, “Material dispersion in optical fiber waveguides,” J. Appl. Opt. 11, 652–654 (1972).
    [CrossRef]
  121. H. G. Unger, Planar Optical Waveguides and Fibers (Oxford U. Press, London, 1977).
  122. S. H. Wemple, M. DiDomenico, “Behavior of the electronic dielectric constant in covalent and ionic materials,” Phys. Rev. B 3, 1338–1350 (1971).
    [CrossRef]
  123. D. Davazoglou, A. Donnadieu, “Study of optical dispersion parameters of WO3 polycrystalline thin films,” J. App. Phys. 72, 1502–1511 (1992).
    [CrossRef]

2002 (1)

S. M. A. Durrani, E. E. Khawaja, M. A. Salim, M. F. Al-Kuhaili, A. M. Al-Shukri, “Effect of preparation conditions on the optical and thermochromic properties of thin films of tungsten oxide,” Sol. Energy Mater. Sol. Cells 71, 313–325 (2002).
[CrossRef]

2000 (2)

A. Georg, W. Graf, R. Neumann, V. Wittwer, “Stability of gasochromic WO3 films,” Sol. Energy Mater. Sol. Cells 63, 165–176 (2000).
[CrossRef]

A. Georg, W. Graf, R. Neumann, V. Wittwer, “Mechanism of the gasochromic coloration of porous WO3 films,” Solid State Ionics 127, 319–328 (2000).
[CrossRef]

1999 (4)

L. Su, L. Zhang, J. Fang, M. Xu, Z. Lu, “Electrochromic and photoelectrochemical behavior of electrodeposited tungsten trioxide films,” Sol. Energy Mater. Sol. Cells 58, 133–140 (1999).
[CrossRef]

L. Su, L. Zhang, J. Fang, M. Xu, Z. Lu, “Electrochromic and photoelectrochemical behavior of electrodeposited tungsten trioxide films,” Sol. Energy Mater. Sol. Cells 58, 133–140 (1999).
[CrossRef]

S. H. Lee, H. M. Cheong, C. E. Tracy, A. Mascarenhas, D. K. Benson, S. K. Deb, “Raman spectroscopic studies of electrochromic a-WO3,” Electrochim. Acta 44, 3111–3115 (1999).
[CrossRef]

Z. Hussain, “Vacuum temperature-dependent ellipsometic studies on WO3 thin films,” Appl. Opt. 38, 7112–7127 (1999).
[CrossRef]

1998 (4)

A. Georg, W. Graf, V. Wittwer, “Comparison of electrical conductivity and optical properties of substoichiometrically and electrochemically colored WOx films of different crystallinity,” Sol. Energy Mater. Sol. Cells 51, 353–370 (1998).
[CrossRef]

N. Van Nha, N. Thi Bao Ngoc, N. Van Hung, “The preparation and gas sensitive property of Pt-WO3 thin film,” Thin Solid Films 334, 113–116 (1998).
[CrossRef]

L. Su, H. Wang, Z. Lu, “All-solid-state electrochromic window of Prussian Blue and electrodeposited WO3 film with poly(ethylene oxide) gel electrolyte,” Mater. Chem. Phys. 56, 266–270 (1998).
[CrossRef]

A. Georg, W. Graf, D. Schweiger, V. Wittwer, P. Nitz, H. R. Wilson, “Switchable glazing with a large dynamic range in total solar energy transmittance,” Sol. Energy 62, 215–228 (1998).
[CrossRef]

1997 (4)

M. Di Giulio, D. Manno, G. Micocci, A. Serra, A. Tepore, “Gas-sensing properties of sputtered thin films of tungsten oxide,” J. Phys. D 30, 3211–3215 (1997).
[CrossRef]

C. Bechinger, M. S. Burdis, J. G. Zhang, “Comparison between electrochromic and photochromic coloration efficiency of tungsten oxide thin films,” Solid State Commun. 101, 753–756 (1997).
[CrossRef]

C. Bechinger, M. S. Burdis, J. G. Zhang, “Comparison between electrochromic and photochromic coloration efficiency of tungsten oxide thin films,” Solid State Commun. 101, 753–756 (1997).
[CrossRef]

J. G. Zhang, D. K. Benson, C. E. Tracy, S. K. Deb, A. W. Czanderna, C. Bechinger, “Chromic mechanism in amorphous WO3 films,” J. Electrochem. Soc. 144, 2022–2025 (1997).
[CrossRef]

1996 (2)

L. J. LeGore, K. Snow, J. D. Galipeau, J. F. Vetelino, “The optimisation of a tungsten trioxide film for application in a surface acoustic wave gas sensor,” Sens. Actuators B 35–36, 164–169 (1996).
[CrossRef]

C. Bechinger, S. Ferrere, A. Zaban, J. Sprague, B. A. Gregg, “Photoelectrochromic windows and displays,” Nature 383, 608–610 (1996).
[CrossRef]

1995 (2)

T. Nishide, F. Mizukami, “Refractive indices of the tungsten oxide films prepared by sol-gel and sputtering processes,” Opt. Eng. 34, 3329–3333 (1995).
[CrossRef]

A. Azens, M. Kitenbergs, U. Kanders, “Evaporation of tungsten oxide: a mass-spectrometric study of the vapor contents,” Vacuum 46, 745–747 (1995).
[CrossRef]

1994 (3)

T. Maruyama, S. Arai, “Electrochromic properties of tungsten trioxide thin films prepared by chemical vapor deposition,” J. Electrochem. Soc. 141, 1021–1024 (1994).
[CrossRef]

T. Maruyama, T. Kanagawa, “Electrochromic properties of tungsten trioxide thin films prepared by photochemical vapor deposition,” J. Electrochem. Soc. 141, 2435–2438 (1994).
[CrossRef]

A. I. Gavrilyuk, G. M. Gusinskii, T. G. Lanskaya, “Determination of the oscillator strength of an optical transition for color centers in WO3 thin films,” Tech. Phys. Lett. 20, 295–297 (1994).

1993 (6)

I. Bedja, S. Hotchandani, P. V. Kamat, “Photoelectrochemistry of quantized WO3 colloids electron storage, electrochromic, and photoelectrochromic effects,” J. Phys. Chem. 97, 11064–11070 (1993).
[CrossRef]

J. Gottsche, A. Hinsch, V. Wittwer, “Electrochromic mixed WO3–TiO2 thin films produced by sputtering and the sol-gel technique: a comparison,” Sol. Energy Mater. Sol. Cells 31, 415–428 (1993).
[CrossRef]

J. P. Pereira-Ramas, R. Baddour-Hadjean, N. Kumagai, K. Tanno, “Improvement of the electrochemical behaviour of WO3 as reversible cathodic material for lithium batteries,” Electrochim. Acta 38, 431–436 (1993).
[CrossRef]

C. G. Granqvist, “Electrochromic materials: metal oxide nanocomposites with variable optical properties,” Mater. Sci. Eng. A 168, 209–215 (1993).
[CrossRef]

C. G. Granqvist, “Transparent conductive electrodes for electrochromic devices: a review,” Appl. Phys. A 57, 19–24 (1993).
[CrossRef]

M. Green, Z. Hussain, “Optical properties of lithium tungsten bronze thin films,” J. Appl. Phys. 74, 3451–3458 (1993).
[CrossRef]

1992 (4)

J. N. Yao, K. Hashimoto, A. Fujishima, “Photochromism induced in an electrolytically pretreated MoO3 thin film by visible light,” Nature 355, 624–626 (1992).
[CrossRef]

S. K. Deb, “Opportunities and challenges of electrochromic pohenomena in transition metal oxides,” Sol. Energy Mater. Sol. Cells 25, 327–338 (1992).
[CrossRef]

M. Rubin, “Ion-assisted sputtering of tungsten oxide solar-control films,” J. Vac. Sci. Technol. A 10, 1905–1907 (1992).
[CrossRef]

D. Davazoglou, A. Donnadieu, “Study of optical dispersion parameters of WO3 polycrystalline thin films,” J. App. Phys. 72, 1502–1511 (1992).
[CrossRef]

1991 (2)

Y. Shigesato, “Photochromic properties of amorphous WO3 films,” Jpn. J. Appl. Phys. 30, 1457–1462 (1991).
[CrossRef]

M. Green, Z. Hussain, “Optical properties of dilute hydrogen tungsten bronze thin films,” J. Appl. Phys. 69, 7788–7796 (1991).
[CrossRef]

1990 (5)

S. Hashimoto, H. Matsuoka, H. Kagechika, M. Susa, K. S. Goto, “Degradation of electrochromic amorphous WO3 film in lithium-salt electrolyte,” J. Electrochem. Soc. 137, 1300–1304 (1990).
[CrossRef]

K. Bange, T. Gambke, “Electrochromic materials for optical switching devices,” Adv. Mater. 2, 10–16 (1990).
[CrossRef]

Q. Zhong, S. A. Wessel, B. Heinrich, K. Colbow, “The electrochromic properties and mechanism of HxWO3 and LixWO3,” Sol. Energy Mater. 20, 289–296 (1990).
[CrossRef]

D. Green, “Optical constants of sputtered WO3,” Appl. Opt. 29, 4547–4549 (1990).
[CrossRef] [PubMed]

F. O. Arntz, R. B. Goldner, B. Morel, T. E. Hass, K. K. Wong, “Near-infrared reflectance modulation with electrochromic crystalline WO3 films deposited on ambient temperature glass substrates by an oxygen ion-assisted technique,” J. Appl. Phys. 67, 3177–3179 (1990).
[CrossRef]

1989 (3)

R. B. Goldner, G. Seward, K. Wong, T. Haas, G. H. Foley, R. Chapman, S. Schulz, “Completely solid lithiated smart windows,” Sol. Energy Mater. 19, 17–26 (1989).
[CrossRef]

T. Nanba, I. Yasui, “X-ray diffraction study of microstructure of amorphous tungsten trioxide films prepared by electron beam vacuum evaporation,” J. Solid State Chem. 83, 304–315 (1989).
[CrossRef]

A. Agrawal, H. Habibi, “Effect of heat treatment on the structure, composition and electrochromic properties of evaporated tungsten oxide films,” Thin Solid Films 169, 257–270 (1989).
[CrossRef]

1988 (3)

P. Delichere, P. Falaras, M. Froment, A. Hugot-Le Goff, “Electrochromism in anodic WO3 films. 1. Preparation and physicochemical properties of films in the virgin and colored states,” Thin Solid Films 161, 35–46 (1988).
[CrossRef]

R. B. Goldner, T. E. Haas, G. Seward, K. K. Wong, P. Norton, G. Foley, G. Berera, G. Wei, S. Schulz, R. Chapman, “Thin film solid state ionic materials for electrochromic Smart Window™ glass,” Solid State Ionics 28–30, 1715–1721 (1988).
[CrossRef]

T. Toyoda, “The optical dispersion parameters in WO3 thin films,” J. Appl. Phys. 63, 5166–5168 (1988).
[CrossRef]

1987 (3)

R. B. Goldner, K. Wong, G. Foley, P. Norton, L. Wamboldt, G. Seward, T. Haas, R. Chapman, “Thin films of WO3 for practical electrochromic windows,” Sol. Energy Mater. 16, 365–370 (1987).
[CrossRef]

J. R. Stevens, J. S. E. M. Svensson, C. G. Granqvist, R. Spindler, “Electrochromism of WO3-based films in contact with a solid Li-doped siloxane elastomer electrolyte,” Appl. Opt. 26, 3489–3490 (1987).
[CrossRef] [PubMed]

T. Kamimori, J. Nagai, M. Mizuhashi, “Electrochromic devices for transmissive and reflective light control,” Sol. Energy Mater. 16, 27–38 (1987).
[CrossRef]

1986 (4)

S. F. Cogan, T. D. Plante, M. A. Parker, R. D. Rauh, “Free-electron electrochromic modulation in crystalline LixWO3,” J. Appl. Phys. 60, 2735–2738 (1986).
[CrossRef]

P. G. Dickens, S. C. Baker, M. T. Weller, “Hydrogen insertion in oxides,” Solid State Ionics 18/19, 89–97 (1986).
[CrossRef]

S. F. Cogan, T. D. Plante, M. A. Parker, R. D. Rauh, “Electrochromic solar attenuation in crystalline and amorphous LixWO3,” Sol. Energy Mater. 14, 185–193 (1986).
[CrossRef]

P. R. Collins, W. J. Fredericks, “Absorption spectra and oscillator strength of KBr:Pb,” J. Phys. Chem. Solids 47, 529–532 (1986).
[CrossRef]

1985 (4)

J. S. E. M. Svensson, C. G. Granqvist, “Electrochromic coatings for smart windows: crystalline and amorphous WO3 films,” Thin Solid Films 126, 31–36 (1985).
[CrossRef]

R. B. Goldner, P. Norton, K. Wong, G. Foley, E. L. Goldner, G. Seward, R. Chapman, “Further evidence for free electrons as dominating the behavior of electrochromic polycrystalline WO3 films,” Appl. Phys. Lett. 47, 536–537 (1985).
[CrossRef]

T. Yoshimura, “Oscillator strength of small-polaron absorption in WOx electrochromic thin films,” J. Appl. Phys. 57, 911–919 (1985).
[CrossRef]

H. Morita, “Coloration and decoloration in atmospheric-evaporated tungsten-oxide films (AETOF) utilizing lithium ions,” Jpn. J. Appl. Phys. 24, 750–754 (1985).
[CrossRef]

1984 (6)

K. Miyake, H. Kaneko, M. Sano, N. Suedomi, “Physical and electrochromic properties of the amorphous and crystalline tungsten oxide thick films prepared under reducing atmosphere,” J. Appl. Phys. 55, 2747–2753 (1984).
[CrossRef]

H. Morita, H. Washida, “Electrochromism of atmospheric evaporated tungsten oxide films,” Jpn. J. Appl. Phys. 23, 754–759 (1984).
[CrossRef]

C. M. Lampert, “Electrochromic materials and devices for energy efficient windows,” Sol. Energy Mater. 11, 1–27 (1984).
[CrossRef]

A. Borghesi, M. Geddo, G. Guizzetti, E. Reguzzoni, A. Stella, F. Levy, “Plasmon and interband transitions in Ti1-xHfxSe2 systems,” Phys. Rev. B 29, 3167–3171 (1984).
[CrossRef]

E. Salje, B. Guttler, “Anderson transition and intermediate polaron formation in WO3-x transport properties and optical absorption,” Philos. Mag. B 50, 607–620 (1984).
[CrossRef]

D. H. Mendelsohn, R. B. Goldner, “Ellipsometry measurements as direct evidence of the Drude model for polycrystalline electrochromic WO3 films,” J. Electrochem. Soc. 131, 857–860 (1984).
[CrossRef]

1983 (8)

M. R. Goulding, C. B. Thomas, R. J. Hurditch, “A comparison of thermo and photochromic behavior in films of amorphous WO3,” Solid State Commun. 46, 451–453 (1983).
[CrossRef]

A. Bryant, M. Poirier, G. Riley, D. L. Lee, J. F. Vetelino, “Gas detection using surface acoustic wave delay lines,” Sens. Actuators 4, 105–111 (1983).
[CrossRef]

S. S. Sun, P. H. Holloway, “Modification of vapor-deposited WO3 electrochromic films by oxygen backfilling,” J. Vac. Sci. Technol. A 1, 529–533 (1983).
[CrossRef]

I. D. Raistrick, “Lithium insertion reactions in tungsten and vanadium oxide bronzes,” Solid State Ionics 9/10, 425–430 (1983).
[CrossRef]

M. Green, K. Kang, “Sodium tungsten bronze thin films: variation of chemical potential with sodium concentration,” Solid State Ionics 8, 281–289 (1983).
[CrossRef]

N. Yoshiike, S. Kondo, “Electrochemical properties of WO3. x(H2O). 1. The influences of water adsorption and hydroxylation,” J. Electrochem. Soc. 130, 2283–2287 (1983).
[CrossRef]

R. B. Goldner, D. H. Mendelsohn, J. Alexander, W. R. Henderson, D. Fitzpatrick, T. E. Haas, H. H. Sample, R. D. Rauh, M. A. Parker, T. L. Rose, “High near-infrared reflectivity modulation with polycrystalline electrochromic WO3 films,” Appl. Phys. Lett. 43, 1093–1095 (1983).
[CrossRef]

D. W. Bullett, “Bulk and surface electron states in WO3 and tungsten bronzes,” J. Phys. C 16, 2197–2207 (1983).
[CrossRef]

1982 (1)

T. Yoshimura, M. Watanabe, Y. Koike, K. Kiyota, M. Tanaka, “Enhancement in oscillator strength of color centers in electrochromic thin films deposited from WO2 powder,” J. Appl. Phys. 53, 7314–7320 (1982).
[CrossRef]

1980 (3)

P. Gerard, A. Deneuville, R. Courths, “Characterization of amorphpous WO3 thin films before and after coloration,” Thin Solid Films 71, 221–236 (1980).
[CrossRef]

K. Matsuhiro, Y. Masuda, “Transmissive electrochromic display using a porous crystalline WO3 counter electrode,” Proc. Soc. Inf. Disp. 21/22, 101–105 (1980).

G. Hollinger, P. Pertosa, “Direct observation of the Anderson transition in HxWO3 bronzes by high resolution x-ray photoelectron spectroscopy,” Chem. Phys. Lett. 74, 341–344 (1980).
[CrossRef]

1979 (1)

M. Shiojiri, T. Miyano, C. Kaito, “Electron microscopic studies of structure and crystallization of amorphous metal oxide films,” Jpn. J. Appl. Phys. 18, 1937–1945 (1979).
[CrossRef]

1978 (3)

V. Wittwer, O. F. Schirmer, P. Schlotter, “Disorder dependence and optical detection of the Anderson transition in amorphous HxWO3 bronzes,” Solid State Commun. 25, 977–980 (1978).
[CrossRef]

J. F. Owen, K. J. Teegarden, H. R. Shanks, “Optical properties of the sodium-tungsten bronzes and tungsten trioxide,” Phys. Rev. B 18, 3827–3837 (1978).
[CrossRef]

A. Deneuville, P. Gerard, “Influence of substoichiometry, hydrogen content and crystallinity on the optical and electrical properties of HxWOy thin films,” J. Electron. Mater. 7, 559–587 (1978).
[CrossRef]

1977 (5)

O. F. Schirmer, V. Wittwer, G. Baur, G. Brandt, “Dependence of WO3 electrochromic absorption on crystallinity,” J. Electrochem. Soc. 124, 749–753 (1977).
[CrossRef]

L. Kopp, B. N. Harmon, S. H. Liu, “Band structure of cubic NaxWO3,” Solid State Commun. 22, 677–679 (1977).
[CrossRef]

P. Gerard, A. Deneuville, “Color in tungsten trioxide thin films,” J. Appl. Phys. 48, 4252–4255 (1977).
[CrossRef]

E. K. Sichel, J. I. Gittleman, J. Zelez, “Electrochromism in the composite material Au-WO3,” Appl. Phys. Lett. 31, 109–111 (1977).
[CrossRef]

S. K. Deb, “Electron spin resonance of defects in single crystal and thin films of tungsten trioxide,” Phys. Rev. B 16, 1020–1024 (1977).
[CrossRef]

1976 (1)

P. A. Lightsey, D. A. Lilienfeld, D. F. Holcomb, “Transport properties of cubic NaxWO3 near the insulator-metal transition,” Phys. Rev. B 14, 4730–4732 (1976).
[CrossRef]

1975 (3)

J. B. Goodenough, “Transition-metal oxides with metallic conductivity,” Bull. Soc. Chim. Fr. 4, 1200–1207 (1975).

E. Salje, K. Viswanathan, “Physical properties and phase transitions in WO3,” Acta Crystallogr. Sect. A 31, 356–359 (1975).
[CrossRef]

B. W. Faughnan, R. S. Crandall, P. M. Heyman, “Electrochromism in WO3 amorphous films,” RCA Rev. 36, 177–200 (1975).

1974 (1)

M. R. Tubbs, “MoO3 layers-optical properties, color centres, and holographic recording,” Phys. Status Solidi A 21, 253–260 (1974).
[CrossRef]

1973 (2)

S. K. Deb, “Optical and photoelectric properties and colour centres in thin films of tungsten oxide,” Philos. Mag. 27, 801–821 (1973).
[CrossRef]

P. A. Lightsey, “Percolation view of transport properties in NaxWO3,” Phys. Rev. B 8, 3586–3589 (1973).
[CrossRef]

1972 (1)

M. DiDomenico, “Material dispersion in optical fiber waveguides,” J. Appl. Opt. 11, 652–654 (1972).
[CrossRef]

1971 (1)

S. H. Wemple, M. DiDomenico, “Behavior of the electronic dielectric constant in covalent and ionic materials,” Phys. Rev. B 3, 1338–1350 (1971).
[CrossRef]

1970 (1)

T. M. Donovan, W. E. Spicer, J. M. Bennett, E. J. Ashley, “Optical properties of amorphous germanium films,” Phys. Rev. B 2, 397–413 (1970).
[CrossRef]

1969 (2)

L. F. Mattheiss, “Band structure and Fermi surface of ReO3,” Phys. Rev. 181, 987–1000 (1969).
[CrossRef]

M. R. Tubbs, “Dispersion effects in interference methods for the measurement of refractive index,” J. Phys. Chem. Solids 30, 2323–2325 (1969).
[CrossRef]

1968 (2)

P. G. Dickens, R. M. P. Quillian, M. S. Whittingham, “The reflectance spectra of the tungsten bronzes,” Mater. Res. Bull. 3, 941–950 (1968).
[CrossRef]

J. Feinleib, W. J. Scouler, A. Ferretti, “Optical properties of the metal ReO3 from 0.1 to 22 eV,” Phys. Rev. 165, 765–774 (1968).
[CrossRef]

1963 (1)

B. L. Crowder, M. J. Sienko, “Some solid-state studies of tungsten trioxide and their significance to tungsten bronze theory,” J. Chem. Phys. 38, 1576–1583 (1963).
[CrossRef]

1962 (1)

J. D. Greiner, H. R. Shanks, D. C. Wallace, “Magnetic susceptibility of the cubic sodium tungsten bronzes,” J. Chem. Phys. 36, 772–776 (1962).
[CrossRef]

1959 (1)

S. Sawada, G. C. Danielson, “Domain structure of WO3 single crystals,” Phys. Rev. 113, 1005–1013 (1959).
[CrossRef]

1954 (1)

G. Hagg, A. Magneli, “Recent structure investigations of oxygen compounds of molybdenum and tungsten,” Rev. Pure Appl. Chem. 4, 235–249 (1954).

Abeles, F.

F. Abeles, “Optical properties of metals,” in Optical Properties of Solids, F. Abeles, ed. (North-Holland, Amsterdam, 1972), Chap. 3, p. 93.

Abelès, F.

F. Abelès, “Methods for determining optical parameters of thin films,” in Progress in Optics, E. Wolf, ed. (Wiley, New York, 1963), Vol. II, p. 268.

Agrawal, A.

A. Agrawal, H. Habibi, “Effect of heat treatment on the structure, composition and electrochromic properties of evaporated tungsten oxide films,” Thin Solid Films 169, 257–270 (1989).
[CrossRef]

Alexander, J.

R. B. Goldner, D. H. Mendelsohn, J. Alexander, W. R. Henderson, D. Fitzpatrick, T. E. Haas, H. H. Sample, R. D. Rauh, M. A. Parker, T. L. Rose, “High near-infrared reflectivity modulation with polycrystalline electrochromic WO3 films,” Appl. Phys. Lett. 43, 1093–1095 (1983).
[CrossRef]

Al-Kuhaili, M. F.

S. M. A. Durrani, E. E. Khawaja, M. A. Salim, M. F. Al-Kuhaili, A. M. Al-Shukri, “Effect of preparation conditions on the optical and thermochromic properties of thin films of tungsten oxide,” Sol. Energy Mater. Sol. Cells 71, 313–325 (2002).
[CrossRef]

Al-Shukri, A. M.

S. M. A. Durrani, E. E. Khawaja, M. A. Salim, M. F. Al-Kuhaili, A. M. Al-Shukri, “Effect of preparation conditions on the optical and thermochromic properties of thin films of tungsten oxide,” Sol. Energy Mater. Sol. Cells 71, 313–325 (2002).
[CrossRef]

Arai, S.

T. Maruyama, S. Arai, “Electrochromic properties of tungsten trioxide thin films prepared by chemical vapor deposition,” J. Electrochem. Soc. 141, 1021–1024 (1994).
[CrossRef]

Arntz, F. O.

F. O. Arntz, R. B. Goldner, B. Morel, T. E. Hass, K. K. Wong, “Near-infrared reflectance modulation with electrochromic crystalline WO3 films deposited on ambient temperature glass substrates by an oxygen ion-assisted technique,” J. Appl. Phys. 67, 3177–3179 (1990).
[CrossRef]

Ashley, E. J.

T. M. Donovan, W. E. Spicer, J. M. Bennett, E. J. Ashley, “Optical properties of amorphous germanium films,” Phys. Rev. B 2, 397–413 (1970).
[CrossRef]

Azens, A.

A. Azens, M. Kitenbergs, U. Kanders, “Evaporation of tungsten oxide: a mass-spectrometric study of the vapor contents,” Vacuum 46, 745–747 (1995).
[CrossRef]

Baddour-Hadjean, R.

J. P. Pereira-Ramas, R. Baddour-Hadjean, N. Kumagai, K. Tanno, “Improvement of the electrochemical behaviour of WO3 as reversible cathodic material for lithium batteries,” Electrochim. Acta 38, 431–436 (1993).
[CrossRef]

Baker, S. C.

P. G. Dickens, S. C. Baker, M. T. Weller, “Hydrogen insertion in oxides,” Solid State Ionics 18/19, 89–97 (1986).
[CrossRef]

Bange, K.

K. Bange, T. Gambke, “Electrochromic materials for optical switching devices,” Adv. Mater. 2, 10–16 (1990).
[CrossRef]

C. Ottermann, A. Temmink, K. Bange, “Correlation of injected charge to optical constants (n, k) of electrochromic films,” in Optical Materials Technology for Energy Efficiency and Solar Energy Conversion IX, C. G. Granqvist, C. M. Lampert, eds., Proc. SPIE1272, 111–121 (1990).

Baur, G.

O. F. Schirmer, V. Wittwer, G. Baur, G. Brandt, “Dependence of WO3 electrochromic absorption on crystallinity,” J. Electrochem. Soc. 124, 749–753 (1977).
[CrossRef]

Bechinger, C.

C. Bechinger, M. S. Burdis, J. G. Zhang, “Comparison between electrochromic and photochromic coloration efficiency of tungsten oxide thin films,” Solid State Commun. 101, 753–756 (1997).
[CrossRef]

J. G. Zhang, D. K. Benson, C. E. Tracy, S. K. Deb, A. W. Czanderna, C. Bechinger, “Chromic mechanism in amorphous WO3 films,” J. Electrochem. Soc. 144, 2022–2025 (1997).
[CrossRef]

C. Bechinger, M. S. Burdis, J. G. Zhang, “Comparison between electrochromic and photochromic coloration efficiency of tungsten oxide thin films,” Solid State Commun. 101, 753–756 (1997).
[CrossRef]

C. Bechinger, S. Ferrere, A. Zaban, J. Sprague, B. A. Gregg, “Photoelectrochromic windows and displays,” Nature 383, 608–610 (1996).
[CrossRef]

Bedja, I.

I. Bedja, S. Hotchandani, P. V. Kamat, “Photoelectrochemistry of quantized WO3 colloids electron storage, electrochromic, and photoelectrochromic effects,” J. Phys. Chem. 97, 11064–11070 (1993).
[CrossRef]

Bennett, H. E.

H. E. Bennett, J. M. Bennett, “Precision measurements in thin film optics,” in Physics of Thin Films, G. Hass, R. E. Fhun, eds. (Academic, New York, 1967), Vol. 4, p. 42.

Bennett, J. M.

T. M. Donovan, W. E. Spicer, J. M. Bennett, E. J. Ashley, “Optical properties of amorphous germanium films,” Phys. Rev. B 2, 397–413 (1970).
[CrossRef]

H. E. Bennett, J. M. Bennett, “Precision measurements in thin film optics,” in Physics of Thin Films, G. Hass, R. E. Fhun, eds. (Academic, New York, 1967), Vol. 4, p. 42.

Benson, D. K.

S. H. Lee, H. M. Cheong, C. E. Tracy, A. Mascarenhas, D. K. Benson, S. K. Deb, “Raman spectroscopic studies of electrochromic a-WO3,” Electrochim. Acta 44, 3111–3115 (1999).
[CrossRef]

J. G. Zhang, D. K. Benson, C. E. Tracy, S. K. Deb, A. W. Czanderna, C. Bechinger, “Chromic mechanism in amorphous WO3 films,” J. Electrochem. Soc. 144, 2022–2025 (1997).
[CrossRef]

D. K. Benson, C. E. Tracy, G. A. Hishmeh, P. E. Ciszek, S. H. Lee, D. P. Haberman, “Low-cost, fiber-optic hydrogen gas detector using guided-wave, surface-plasmon resonance in chemochromic thin films,” in Advanced Sensors and Monitors for Process Industries and the Environment, W. A. de Groot, ed., Proc. SPIE3535, 185–191 (1998).

Berera, G.

R. B. Goldner, T. E. Haas, G. Seward, K. K. Wong, P. Norton, G. Foley, G. Berera, G. Wei, S. Schulz, R. Chapman, “Thin film solid state ionic materials for electrochromic Smart Window™ glass,” Solid State Ionics 28–30, 1715–1721 (1988).
[CrossRef]

Borghesi, A.

A. Borghesi, M. Geddo, G. Guizzetti, E. Reguzzoni, A. Stella, F. Levy, “Plasmon and interband transitions in Ti1-xHfxSe2 systems,” Phys. Rev. B 29, 3167–3171 (1984).
[CrossRef]

Brandt, G.

O. F. Schirmer, V. Wittwer, G. Baur, G. Brandt, “Dependence of WO3 electrochromic absorption on crystallinity,” J. Electrochem. Soc. 124, 749–753 (1977).
[CrossRef]

Brofos, A.

R. B. Goldner, A. Brofos, G. Foley, E. L. Goldner, T. E. Haas, W. Henderson, P. Norton, B. A. Ratnam, N. Weis, K. K. Wong, “Optical frequencies free electron scattering studies on electrochromic materials for variable reflectivity windows,” in Optical Materials Technology for Energy Efficiency & Solar Energy Conversion IV, C. W. Lampert, ed., Proc. SPIE502, 54–57 (1984).

Bryant, A.

A. Bryant, M. Poirier, G. Riley, D. L. Lee, J. F. Vetelino, “Gas detection using surface acoustic wave delay lines,” Sens. Actuators 4, 105–111 (1983).
[CrossRef]

Bullett, D. W.

D. W. Bullett, “Bulk and surface electron states in WO3 and tungsten bronzes,” J. Phys. C 16, 2197–2207 (1983).
[CrossRef]

Burdis, M. S.

C. Bechinger, M. S. Burdis, J. G. Zhang, “Comparison between electrochromic and photochromic coloration efficiency of tungsten oxide thin films,” Solid State Commun. 101, 753–756 (1997).
[CrossRef]

C. Bechinger, M. S. Burdis, J. G. Zhang, “Comparison between electrochromic and photochromic coloration efficiency of tungsten oxide thin films,” Solid State Commun. 101, 753–756 (1997).
[CrossRef]

Chang, I. F.

I. F. Chang, “Electrochromic and electrochemichromic materials and phenomena,” in Non-emissive Electrooptic Displays, A. R. Kmetz, F. K. Von Willisen, eds. (Plenum, New York, 1976).

Chapman, R.

R. B. Goldner, G. Seward, K. Wong, T. Haas, G. H. Foley, R. Chapman, S. Schulz, “Completely solid lithiated smart windows,” Sol. Energy Mater. 19, 17–26 (1989).
[CrossRef]

R. B. Goldner, T. E. Haas, G. Seward, K. K. Wong, P. Norton, G. Foley, G. Berera, G. Wei, S. Schulz, R. Chapman, “Thin film solid state ionic materials for electrochromic Smart Window™ glass,” Solid State Ionics 28–30, 1715–1721 (1988).
[CrossRef]

R. B. Goldner, K. Wong, G. Foley, P. Norton, L. Wamboldt, G. Seward, T. Haas, R. Chapman, “Thin films of WO3 for practical electrochromic windows,” Sol. Energy Mater. 16, 365–370 (1987).
[CrossRef]

R. B. Goldner, P. Norton, K. Wong, G. Foley, E. L. Goldner, G. Seward, R. Chapman, “Further evidence for free electrons as dominating the behavior of electrochromic polycrystalline WO3 films,” Appl. Phys. Lett. 47, 536–537 (1985).
[CrossRef]

Cheong, H. M.

S. H. Lee, H. M. Cheong, C. E. Tracy, A. Mascarenhas, D. K. Benson, S. K. Deb, “Raman spectroscopic studies of electrochromic a-WO3,” Electrochim. Acta 44, 3111–3115 (1999).
[CrossRef]

Cikmach, P. D.

P. D. Cikmach, “Electrochromism and charge carrier localization in WO3,” Ph.D dissertation (Latrian State University, Riga, Latvia, 1985; in Russian).

Ciszek, P. E.

D. K. Benson, C. E. Tracy, G. A. Hishmeh, P. E. Ciszek, S. H. Lee, D. P. Haberman, “Low-cost, fiber-optic hydrogen gas detector using guided-wave, surface-plasmon resonance in chemochromic thin films,” in Advanced Sensors and Monitors for Process Industries and the Environment, W. A. de Groot, ed., Proc. SPIE3535, 185–191 (1998).

Cogan, S. F.

S. F. Cogan, T. D. Plante, M. A. Parker, R. D. Rauh, “Free-electron electrochromic modulation in crystalline LixWO3,” J. Appl. Phys. 60, 2735–2738 (1986).
[CrossRef]

S. F. Cogan, T. D. Plante, M. A. Parker, R. D. Rauh, “Electrochromic solar attenuation in crystalline and amorphous LixWO3,” Sol. Energy Mater. 14, 185–193 (1986).
[CrossRef]

S. F. Cogan, R. D. Rauh, J. D. Weswood, D. I. Plotkin, R. B. Jones, “Infrared properties of electrochromic materials,” in Optical Materials Technology for Energy Efficiency and Solar Energy Conversion VIII, C. M. Lampert, ed., SPIE 1149, 2–7 (1989).

Colbow, K.

Q. Zhong, S. A. Wessel, B. Heinrich, K. Colbow, “The electrochromic properties and mechanism of HxWO3 and LixWO3,” Sol. Energy Mater. 20, 289–296 (1990).
[CrossRef]

Collins, P. R.

P. R. Collins, W. J. Fredericks, “Absorption spectra and oscillator strength of KBr:Pb,” J. Phys. Chem. Solids 47, 529–532 (1986).
[CrossRef]

Courths, R.

P. Gerard, A. Deneuville, R. Courths, “Characterization of amorphpous WO3 thin films before and after coloration,” Thin Solid Films 71, 221–236 (1980).
[CrossRef]

Crandall, R. S.

B. W. Faughnan, R. S. Crandall, P. M. Heyman, “Electrochromism in WO3 amorphous films,” RCA Rev. 36, 177–200 (1975).

Crowder, B. L.

B. L. Crowder, M. J. Sienko, “Some solid-state studies of tungsten trioxide and their significance to tungsten bronze theory,” J. Chem. Phys. 38, 1576–1583 (1963).
[CrossRef]

Czanderna, A. W.

J. G. Zhang, D. K. Benson, C. E. Tracy, S. K. Deb, A. W. Czanderna, C. Bechinger, “Chromic mechanism in amorphous WO3 films,” J. Electrochem. Soc. 144, 2022–2025 (1997).
[CrossRef]

Danielson, G. C.

S. Sawada, G. C. Danielson, “Domain structure of WO3 single crystals,” Phys. Rev. 113, 1005–1013 (1959).
[CrossRef]

Davazoglou, D.

D. Davazoglou, A. Donnadieu, “Study of optical dispersion parameters of WO3 polycrystalline thin films,” J. App. Phys. 72, 1502–1511 (1992).
[CrossRef]

Davis, E. A.

N. F. Mott, E. A. Davis, Electronic Process in Noncrystalline Materials (Clarendon, Oxford, 1979), p. 15.

Deb, S. K.

S. H. Lee, H. M. Cheong, C. E. Tracy, A. Mascarenhas, D. K. Benson, S. K. Deb, “Raman spectroscopic studies of electrochromic a-WO3,” Electrochim. Acta 44, 3111–3115 (1999).
[CrossRef]

J. G. Zhang, D. K. Benson, C. E. Tracy, S. K. Deb, A. W. Czanderna, C. Bechinger, “Chromic mechanism in amorphous WO3 films,” J. Electrochem. Soc. 144, 2022–2025 (1997).
[CrossRef]

S. K. Deb, “Opportunities and challenges of electrochromic pohenomena in transition metal oxides,” Sol. Energy Mater. Sol. Cells 25, 327–338 (1992).
[CrossRef]

S. K. Deb, “Electron spin resonance of defects in single crystal and thin films of tungsten trioxide,” Phys. Rev. B 16, 1020–1024 (1977).
[CrossRef]

S. K. Deb, “Optical and photoelectric properties and colour centres in thin films of tungsten oxide,” Philos. Mag. 27, 801–821 (1973).
[CrossRef]

S. K. Deb, “Some perspectives on electrochromic device research,” in Materials and Optics for Solar Energy Conversion and Advanced Lighting Technology, C. W. Lampert, S. Holly, eds., Proc. SPIE692, 19–31 (1986).

Delichere, P.

P. Delichere, P. Falaras, M. Froment, A. Hugot-Le Goff, “Electrochromism in anodic WO3 films. 1. Preparation and physicochemical properties of films in the virgin and colored states,” Thin Solid Films 161, 35–46 (1988).
[CrossRef]

Deneuville, A.

P. Gerard, A. Deneuville, R. Courths, “Characterization of amorphpous WO3 thin films before and after coloration,” Thin Solid Films 71, 221–236 (1980).
[CrossRef]

A. Deneuville, P. Gerard, “Influence of substoichiometry, hydrogen content and crystallinity on the optical and electrical properties of HxWOy thin films,” J. Electron. Mater. 7, 559–587 (1978).
[CrossRef]

P. Gerard, A. Deneuville, “Color in tungsten trioxide thin films,” J. Appl. Phys. 48, 4252–4255 (1977).
[CrossRef]

Di Giulio, M.

M. Di Giulio, D. Manno, G. Micocci, A. Serra, A. Tepore, “Gas-sensing properties of sputtered thin films of tungsten oxide,” J. Phys. D 30, 3211–3215 (1997).
[CrossRef]

Dickens, P. G.

P. G. Dickens, S. C. Baker, M. T. Weller, “Hydrogen insertion in oxides,” Solid State Ionics 18/19, 89–97 (1986).
[CrossRef]

P. G. Dickens, R. M. P. Quillian, M. S. Whittingham, “The reflectance spectra of the tungsten bronzes,” Mater. Res. Bull. 3, 941–950 (1968).
[CrossRef]

DiDomenico, M.

M. DiDomenico, “Material dispersion in optical fiber waveguides,” J. Appl. Opt. 11, 652–654 (1972).
[CrossRef]

S. H. Wemple, M. DiDomenico, “Behavior of the electronic dielectric constant in covalent and ionic materials,” Phys. Rev. B 3, 1338–1350 (1971).
[CrossRef]

Donnadieu, A.

D. Davazoglou, A. Donnadieu, “Study of optical dispersion parameters of WO3 polycrystalline thin films,” J. App. Phys. 72, 1502–1511 (1992).
[CrossRef]

Donovan, T. M.

T. M. Donovan, W. E. Spicer, J. M. Bennett, E. J. Ashley, “Optical properties of amorphous germanium films,” Phys. Rev. B 2, 397–413 (1970).
[CrossRef]

Doumerc, J. P.

J. P. Doumerc, M. Pouchard, P. Hagenmuller, “Chemical bond, crystal structure and the metal–nonmetal transition in oxide bronzes,” in The Metallic and Non-metallic States of Matter, P. P. Edwards, C. N. R. Rao, eds. (Taylor & Francis, London, 1985), Chap. 11, p. 287.

Duffy, J. A.

J. A. Duffy, Energy Levels in Inorganic Solids (Wiley, New York, 1990), p. 182.

Durrani, S. M. A.

S. M. A. Durrani, E. E. Khawaja, M. A. Salim, M. F. Al-Kuhaili, A. M. Al-Shukri, “Effect of preparation conditions on the optical and thermochromic properties of thin films of tungsten oxide,” Sol. Energy Mater. Sol. Cells 71, 313–325 (2002).
[CrossRef]

Falaras, P.

P. Delichere, P. Falaras, M. Froment, A. Hugot-Le Goff, “Electrochromism in anodic WO3 films. 1. Preparation and physicochemical properties of films in the virgin and colored states,” Thin Solid Films 161, 35–46 (1988).
[CrossRef]

Fang, J.

L. Su, L. Zhang, J. Fang, M. Xu, Z. Lu, “Electrochromic and photoelectrochemical behavior of electrodeposited tungsten trioxide films,” Sol. Energy Mater. Sol. Cells 58, 133–140 (1999).
[CrossRef]

L. Su, L. Zhang, J. Fang, M. Xu, Z. Lu, “Electrochromic and photoelectrochemical behavior of electrodeposited tungsten trioxide films,” Sol. Energy Mater. Sol. Cells 58, 133–140 (1999).
[CrossRef]

Faughnan, B. W.

B. W. Faughnan, R. S. Crandall, P. M. Heyman, “Electrochromism in WO3 amorphous films,” RCA Rev. 36, 177–200 (1975).

Feinleib, J.

J. Feinleib, W. J. Scouler, A. Ferretti, “Optical properties of the metal ReO3 from 0.1 to 22 eV,” Phys. Rev. 165, 765–774 (1968).
[CrossRef]

Ferrere, S.

C. Bechinger, S. Ferrere, A. Zaban, J. Sprague, B. A. Gregg, “Photoelectrochromic windows and displays,” Nature 383, 608–610 (1996).
[CrossRef]

Ferretti, A.

J. Feinleib, W. J. Scouler, A. Ferretti, “Optical properties of the metal ReO3 from 0.1 to 22 eV,” Phys. Rev. 165, 765–774 (1968).
[CrossRef]

Fitzpatrick, D.

R. B. Goldner, D. H. Mendelsohn, J. Alexander, W. R. Henderson, D. Fitzpatrick, T. E. Haas, H. H. Sample, R. D. Rauh, M. A. Parker, T. L. Rose, “High near-infrared reflectivity modulation with polycrystalline electrochromic WO3 films,” Appl. Phys. Lett. 43, 1093–1095 (1983).
[CrossRef]

Foley, G.

R. B. Goldner, T. E. Haas, G. Seward, K. K. Wong, P. Norton, G. Foley, G. Berera, G. Wei, S. Schulz, R. Chapman, “Thin film solid state ionic materials for electrochromic Smart Window™ glass,” Solid State Ionics 28–30, 1715–1721 (1988).
[CrossRef]

R. B. Goldner, K. Wong, G. Foley, P. Norton, L. Wamboldt, G. Seward, T. Haas, R. Chapman, “Thin films of WO3 for practical electrochromic windows,” Sol. Energy Mater. 16, 365–370 (1987).
[CrossRef]

R. B. Goldner, P. Norton, K. Wong, G. Foley, E. L. Goldner, G. Seward, R. Chapman, “Further evidence for free electrons as dominating the behavior of electrochromic polycrystalline WO3 films,” Appl. Phys. Lett. 47, 536–537 (1985).
[CrossRef]

R. B. Goldner, A. Brofos, G. Foley, E. L. Goldner, T. E. Haas, W. Henderson, P. Norton, B. A. Ratnam, N. Weis, K. K. Wong, “Optical frequencies free electron scattering studies on electrochromic materials for variable reflectivity windows,” in Optical Materials Technology for Energy Efficiency & Solar Energy Conversion IV, C. W. Lampert, ed., Proc. SPIE502, 54–57 (1984).

Foley, G. H.

R. B. Goldner, G. Seward, K. Wong, T. Haas, G. H. Foley, R. Chapman, S. Schulz, “Completely solid lithiated smart windows,” Sol. Energy Mater. 19, 17–26 (1989).
[CrossRef]

Fredericks, W. J.

P. R. Collins, W. J. Fredericks, “Absorption spectra and oscillator strength of KBr:Pb,” J. Phys. Chem. Solids 47, 529–532 (1986).
[CrossRef]

Froment, M.

P. Delichere, P. Falaras, M. Froment, A. Hugot-Le Goff, “Electrochromism in anodic WO3 films. 1. Preparation and physicochemical properties of films in the virgin and colored states,” Thin Solid Films 161, 35–46 (1988).
[CrossRef]

Fujishima, A.

J. N. Yao, K. Hashimoto, A. Fujishima, “Photochromism induced in an electrolytically pretreated MoO3 thin film by visible light,” Nature 355, 624–626 (1992).
[CrossRef]

Galipeau, J. D.

L. J. LeGore, K. Snow, J. D. Galipeau, J. F. Vetelino, “The optimisation of a tungsten trioxide film for application in a surface acoustic wave gas sensor,” Sens. Actuators B 35–36, 164–169 (1996).
[CrossRef]

Gambke, T.

K. Bange, T. Gambke, “Electrochromic materials for optical switching devices,” Adv. Mater. 2, 10–16 (1990).
[CrossRef]

Gavrilyuk, A. I.

A. I. Gavrilyuk, G. M. Gusinskii, T. G. Lanskaya, “Determination of the oscillator strength of an optical transition for color centers in WO3 thin films,” Tech. Phys. Lett. 20, 295–297 (1994).

Geddo, M.

A. Borghesi, M. Geddo, G. Guizzetti, E. Reguzzoni, A. Stella, F. Levy, “Plasmon and interband transitions in Ti1-xHfxSe2 systems,” Phys. Rev. B 29, 3167–3171 (1984).
[CrossRef]

Georg, A.

A. Georg, W. Graf, R. Neumann, V. Wittwer, “Mechanism of the gasochromic coloration of porous WO3 films,” Solid State Ionics 127, 319–328 (2000).
[CrossRef]

A. Georg, W. Graf, R. Neumann, V. Wittwer, “Stability of gasochromic WO3 films,” Sol. Energy Mater. Sol. Cells 63, 165–176 (2000).
[CrossRef]

A. Georg, W. Graf, D. Schweiger, V. Wittwer, P. Nitz, H. R. Wilson, “Switchable glazing with a large dynamic range in total solar energy transmittance,” Sol. Energy 62, 215–228 (1998).
[CrossRef]

A. Georg, W. Graf, V. Wittwer, “Comparison of electrical conductivity and optical properties of substoichiometrically and electrochemically colored WOx films of different crystallinity,” Sol. Energy Mater. Sol. Cells 51, 353–370 (1998).
[CrossRef]

Gerard, P.

P. Gerard, A. Deneuville, R. Courths, “Characterization of amorphpous WO3 thin films before and after coloration,” Thin Solid Films 71, 221–236 (1980).
[CrossRef]

A. Deneuville, P. Gerard, “Influence of substoichiometry, hydrogen content and crystallinity on the optical and electrical properties of HxWOy thin films,” J. Electron. Mater. 7, 559–587 (1978).
[CrossRef]

P. Gerard, A. Deneuville, “Color in tungsten trioxide thin films,” J. Appl. Phys. 48, 4252–4255 (1977).
[CrossRef]

Gittleman, J. I.

E. K. Sichel, J. I. Gittleman, J. Zelez, “Electrochromism in the composite material Au-WO3,” Appl. Phys. Lett. 31, 109–111 (1977).
[CrossRef]

Goldner, E. L.

R. B. Goldner, P. Norton, K. Wong, G. Foley, E. L. Goldner, G. Seward, R. Chapman, “Further evidence for free electrons as dominating the behavior of electrochromic polycrystalline WO3 films,” Appl. Phys. Lett. 47, 536–537 (1985).
[CrossRef]

R. B. Goldner, A. Brofos, G. Foley, E. L. Goldner, T. E. Haas, W. Henderson, P. Norton, B. A. Ratnam, N. Weis, K. K. Wong, “Optical frequencies free electron scattering studies on electrochromic materials for variable reflectivity windows,” in Optical Materials Technology for Energy Efficiency & Solar Energy Conversion IV, C. W. Lampert, ed., Proc. SPIE502, 54–57 (1984).

Goldner, R. B.

F. O. Arntz, R. B. Goldner, B. Morel, T. E. Hass, K. K. Wong, “Near-infrared reflectance modulation with electrochromic crystalline WO3 films deposited on ambient temperature glass substrates by an oxygen ion-assisted technique,” J. Appl. Phys. 67, 3177–3179 (1990).
[CrossRef]

R. B. Goldner, G. Seward, K. Wong, T. Haas, G. H. Foley, R. Chapman, S. Schulz, “Completely solid lithiated smart windows,” Sol. Energy Mater. 19, 17–26 (1989).
[CrossRef]

R. B. Goldner, T. E. Haas, G. Seward, K. K. Wong, P. Norton, G. Foley, G. Berera, G. Wei, S. Schulz, R. Chapman, “Thin film solid state ionic materials for electrochromic Smart Window™ glass,” Solid State Ionics 28–30, 1715–1721 (1988).
[CrossRef]

R. B. Goldner, K. Wong, G. Foley, P. Norton, L. Wamboldt, G. Seward, T. Haas, R. Chapman, “Thin films of WO3 for practical electrochromic windows,” Sol. Energy Mater. 16, 365–370 (1987).
[CrossRef]

R. B. Goldner, P. Norton, K. Wong, G. Foley, E. L. Goldner, G. Seward, R. Chapman, “Further evidence for free electrons as dominating the behavior of electrochromic polycrystalline WO3 films,” Appl. Phys. Lett. 47, 536–537 (1985).
[CrossRef]

D. H. Mendelsohn, R. B. Goldner, “Ellipsometry measurements as direct evidence of the Drude model for polycrystalline electrochromic WO3 films,” J. Electrochem. Soc. 131, 857–860 (1984).
[CrossRef]

R. B. Goldner, D. H. Mendelsohn, J. Alexander, W. R. Henderson, D. Fitzpatrick, T. E. Haas, H. H. Sample, R. D. Rauh, M. A. Parker, T. L. Rose, “High near-infrared reflectivity modulation with polycrystalline electrochromic WO3 films,” Appl. Phys. Lett. 43, 1093–1095 (1983).
[CrossRef]

R. B. Goldner, A. Brofos, G. Foley, E. L. Goldner, T. E. Haas, W. Henderson, P. Norton, B. A. Ratnam, N. Weis, K. K. Wong, “Optical frequencies free electron scattering studies on electrochromic materials for variable reflectivity windows,” in Optical Materials Technology for Energy Efficiency & Solar Energy Conversion IV, C. W. Lampert, ed., Proc. SPIE502, 54–57 (1984).

Goodenough, J. B.

J. B. Goodenough, “Transition-metal oxides with metallic conductivity,” Bull. Soc. Chim. Fr. 4, 1200–1207 (1975).

Goto, K. S.

S. Hashimoto, H. Matsuoka, H. Kagechika, M. Susa, K. S. Goto, “Degradation of electrochromic amorphous WO3 film in lithium-salt electrolyte,” J. Electrochem. Soc. 137, 1300–1304 (1990).
[CrossRef]

Gottsche, J.

J. Gottsche, A. Hinsch, V. Wittwer, “Electrochromic mixed WO3–TiO2 thin films produced by sputtering and the sol-gel technique: a comparison,” Sol. Energy Mater. Sol. Cells 31, 415–428 (1993).
[CrossRef]

Goulding, M. R.

M. R. Goulding, C. B. Thomas, R. J. Hurditch, “A comparison of thermo and photochromic behavior in films of amorphous WO3,” Solid State Commun. 46, 451–453 (1983).
[CrossRef]

Graf, W.

A. Georg, W. Graf, R. Neumann, V. Wittwer, “Mechanism of the gasochromic coloration of porous WO3 films,” Solid State Ionics 127, 319–328 (2000).
[CrossRef]

A. Georg, W. Graf, R. Neumann, V. Wittwer, “Stability of gasochromic WO3 films,” Sol. Energy Mater. Sol. Cells 63, 165–176 (2000).
[CrossRef]

A. Georg, W. Graf, D. Schweiger, V. Wittwer, P. Nitz, H. R. Wilson, “Switchable glazing with a large dynamic range in total solar energy transmittance,” Sol. Energy 62, 215–228 (1998).
[CrossRef]

A. Georg, W. Graf, V. Wittwer, “Comparison of electrical conductivity and optical properties of substoichiometrically and electrochemically colored WOx films of different crystallinity,” Sol. Energy Mater. Sol. Cells 51, 353–370 (1998).
[CrossRef]

Granqvist, C. G.

C. G. Granqvist, “Electrochromic materials: metal oxide nanocomposites with variable optical properties,” Mater. Sci. Eng. A 168, 209–215 (1993).
[CrossRef]

C. G. Granqvist, “Transparent conductive electrodes for electrochromic devices: a review,” Appl. Phys. A 57, 19–24 (1993).
[CrossRef]

J. R. Stevens, J. S. E. M. Svensson, C. G. Granqvist, R. Spindler, “Electrochromism of WO3-based films in contact with a solid Li-doped siloxane elastomer electrolyte,” Appl. Opt. 26, 3489–3490 (1987).
[CrossRef] [PubMed]

J. S. E. M. Svensson, C. G. Granqvist, “Electrochromic coatings for smart windows: crystalline and amorphous WO3 films,” Thin Solid Films 126, 31–36 (1985).
[CrossRef]

J. S. E. M. Svensson, C. G. Granqvist, “Electrochromic coatings for smart windows,” in Optical Materials Technology for Energy Efficiency & Solar Energy Conversion, C. W. Lampert, ed., Proc. SPIE502, 30–37 (1984).

C. G. Granqvist, Handbook of Inorganic Electrochromic Materials (Elsevier, Amsterdam, 1995).

Green, D.

Green, M.

M. Green, Z. Hussain, “Optical properties of lithium tungsten bronze thin films,” J. Appl. Phys. 74, 3451–3458 (1993).
[CrossRef]

M. Green, Z. Hussain, “Optical properties of dilute hydrogen tungsten bronze thin films,” J. Appl. Phys. 69, 7788–7796 (1991).
[CrossRef]

M. Green, K. Kang, “Sodium tungsten bronze thin films: variation of chemical potential with sodium concentration,” Solid State Ionics 8, 281–289 (1983).
[CrossRef]

Gregg, B. A.

C. Bechinger, S. Ferrere, A. Zaban, J. Sprague, B. A. Gregg, “Photoelectrochromic windows and displays,” Nature 383, 608–610 (1996).
[CrossRef]

Greiner, J. D.

J. D. Greiner, H. R. Shanks, D. C. Wallace, “Magnetic susceptibility of the cubic sodium tungsten bronzes,” J. Chem. Phys. 36, 772–776 (1962).
[CrossRef]

Guizzetti, G.

A. Borghesi, M. Geddo, G. Guizzetti, E. Reguzzoni, A. Stella, F. Levy, “Plasmon and interband transitions in Ti1-xHfxSe2 systems,” Phys. Rev. B 29, 3167–3171 (1984).
[CrossRef]

Gusinskii, G. M.

A. I. Gavrilyuk, G. M. Gusinskii, T. G. Lanskaya, “Determination of the oscillator strength of an optical transition for color centers in WO3 thin films,” Tech. Phys. Lett. 20, 295–297 (1994).

Guttler, B.

E. Salje, B. Guttler, “Anderson transition and intermediate polaron formation in WO3-x transport properties and optical absorption,” Philos. Mag. B 50, 607–620 (1984).
[CrossRef]

Haas, T.

R. B. Goldner, G. Seward, K. Wong, T. Haas, G. H. Foley, R. Chapman, S. Schulz, “Completely solid lithiated smart windows,” Sol. Energy Mater. 19, 17–26 (1989).
[CrossRef]

R. B. Goldner, K. Wong, G. Foley, P. Norton, L. Wamboldt, G. Seward, T. Haas, R. Chapman, “Thin films of WO3 for practical electrochromic windows,” Sol. Energy Mater. 16, 365–370 (1987).
[CrossRef]

Haas, T. E.

R. B. Goldner, T. E. Haas, G. Seward, K. K. Wong, P. Norton, G. Foley, G. Berera, G. Wei, S. Schulz, R. Chapman, “Thin film solid state ionic materials for electrochromic Smart Window™ glass,” Solid State Ionics 28–30, 1715–1721 (1988).
[CrossRef]

R. B. Goldner, D. H. Mendelsohn, J. Alexander, W. R. Henderson, D. Fitzpatrick, T. E. Haas, H. H. Sample, R. D. Rauh, M. A. Parker, T. L. Rose, “High near-infrared reflectivity modulation with polycrystalline electrochromic WO3 films,” Appl. Phys. Lett. 43, 1093–1095 (1983).
[CrossRef]

R. B. Goldner, A. Brofos, G. Foley, E. L. Goldner, T. E. Haas, W. Henderson, P. Norton, B. A. Ratnam, N. Weis, K. K. Wong, “Optical frequencies free electron scattering studies on electrochromic materials for variable reflectivity windows,” in Optical Materials Technology for Energy Efficiency & Solar Energy Conversion IV, C. W. Lampert, ed., Proc. SPIE502, 54–57 (1984).

Haberman, D. P.

D. K. Benson, C. E. Tracy, G. A. Hishmeh, P. E. Ciszek, S. H. Lee, D. P. Haberman, “Low-cost, fiber-optic hydrogen gas detector using guided-wave, surface-plasmon resonance in chemochromic thin films,” in Advanced Sensors and Monitors for Process Industries and the Environment, W. A. de Groot, ed., Proc. SPIE3535, 185–191 (1998).

Habibi, H.

A. Agrawal, H. Habibi, “Effect of heat treatment on the structure, composition and electrochromic properties of evaporated tungsten oxide films,” Thin Solid Films 169, 257–270 (1989).
[CrossRef]

Hagenmuller, P.

J. P. Doumerc, M. Pouchard, P. Hagenmuller, “Chemical bond, crystal structure and the metal–nonmetal transition in oxide bronzes,” in The Metallic and Non-metallic States of Matter, P. P. Edwards, C. N. R. Rao, eds. (Taylor & Francis, London, 1985), Chap. 11, p. 287.

Hagg, G.

G. Hagg, A. Magneli, “Recent structure investigations of oxygen compounds of molybdenum and tungsten,” Rev. Pure Appl. Chem. 4, 235–249 (1954).

Harmon, B. N.

L. Kopp, B. N. Harmon, S. H. Liu, “Band structure of cubic NaxWO3,” Solid State Commun. 22, 677–679 (1977).
[CrossRef]

Hashimoto, K.

J. N. Yao, K. Hashimoto, A. Fujishima, “Photochromism induced in an electrolytically pretreated MoO3 thin film by visible light,” Nature 355, 624–626 (1992).
[CrossRef]

Hashimoto, S.

S. Hashimoto, H. Matsuoka, H. Kagechika, M. Susa, K. S. Goto, “Degradation of electrochromic amorphous WO3 film in lithium-salt electrolyte,” J. Electrochem. Soc. 137, 1300–1304 (1990).
[CrossRef]

Hass, T. E.

F. O. Arntz, R. B. Goldner, B. Morel, T. E. Hass, K. K. Wong, “Near-infrared reflectance modulation with electrochromic crystalline WO3 films deposited on ambient temperature glass substrates by an oxygen ion-assisted technique,” J. Appl. Phys. 67, 3177–3179 (1990).
[CrossRef]

Heinrich, B.

Q. Zhong, S. A. Wessel, B. Heinrich, K. Colbow, “The electrochromic properties and mechanism of HxWO3 and LixWO3,” Sol. Energy Mater. 20, 289–296 (1990).
[CrossRef]

Henderson, W.

R. B. Goldner, A. Brofos, G. Foley, E. L. Goldner, T. E. Haas, W. Henderson, P. Norton, B. A. Ratnam, N. Weis, K. K. Wong, “Optical frequencies free electron scattering studies on electrochromic materials for variable reflectivity windows,” in Optical Materials Technology for Energy Efficiency & Solar Energy Conversion IV, C. W. Lampert, ed., Proc. SPIE502, 54–57 (1984).

Henderson, W. R.

R. B. Goldner, D. H. Mendelsohn, J. Alexander, W. R. Henderson, D. Fitzpatrick, T. E. Haas, H. H. Sample, R. D. Rauh, M. A. Parker, T. L. Rose, “High near-infrared reflectivity modulation with polycrystalline electrochromic WO3 films,” Appl. Phys. Lett. 43, 1093–1095 (1983).
[CrossRef]

Heyman, P. M.

B. W. Faughnan, R. S. Crandall, P. M. Heyman, “Electrochromism in WO3 amorphous films,” RCA Rev. 36, 177–200 (1975).

Hinsch, A.

J. Gottsche, A. Hinsch, V. Wittwer, “Electrochromic mixed WO3–TiO2 thin films produced by sputtering and the sol-gel technique: a comparison,” Sol. Energy Mater. Sol. Cells 31, 415–428 (1993).
[CrossRef]

Hishmeh, G. A.

D. K. Benson, C. E. Tracy, G. A. Hishmeh, P. E. Ciszek, S. H. Lee, D. P. Haberman, “Low-cost, fiber-optic hydrogen gas detector using guided-wave, surface-plasmon resonance in chemochromic thin films,” in Advanced Sensors and Monitors for Process Industries and the Environment, W. A. de Groot, ed., Proc. SPIE3535, 185–191 (1998).

Holcomb, D. F.

P. A. Lightsey, D. A. Lilienfeld, D. F. Holcomb, “Transport properties of cubic NaxWO3 near the insulator-metal transition,” Phys. Rev. B 14, 4730–4732 (1976).
[CrossRef]

Hollinger, G.

G. Hollinger, P. Pertosa, “Direct observation of the Anderson transition in HxWO3 bronzes by high resolution x-ray photoelectron spectroscopy,” Chem. Phys. Lett. 74, 341–344 (1980).
[CrossRef]

Holloway, P. H.

S. S. Sun, P. H. Holloway, “Modification of vapor-deposited WO3 electrochromic films by oxygen backfilling,” J. Vac. Sci. Technol. A 1, 529–533 (1983).
[CrossRef]

Hotchandani, S.

I. Bedja, S. Hotchandani, P. V. Kamat, “Photoelectrochemistry of quantized WO3 colloids electron storage, electrochromic, and photoelectrochromic effects,” J. Phys. Chem. 97, 11064–11070 (1993).
[CrossRef]

Hugot-Le Goff, A.

P. Delichere, P. Falaras, M. Froment, A. Hugot-Le Goff, “Electrochromism in anodic WO3 films. 1. Preparation and physicochemical properties of films in the virgin and colored states,” Thin Solid Films 161, 35–46 (1988).
[CrossRef]

Hurditch, R. J.

M. R. Goulding, C. B. Thomas, R. J. Hurditch, “A comparison of thermo and photochromic behavior in films of amorphous WO3,” Solid State Commun. 46, 451–453 (1983).
[CrossRef]

Hussain, Z.

Z. Hussain, “Vacuum temperature-dependent ellipsometic studies on WO3 thin films,” Appl. Opt. 38, 7112–7127 (1999).
[CrossRef]

M. Green, Z. Hussain, “Optical properties of lithium tungsten bronze thin films,” J. Appl. Phys. 74, 3451–3458 (1993).
[CrossRef]

M. Green, Z. Hussain, “Optical properties of dilute hydrogen tungsten bronze thin films,” J. Appl. Phys. 69, 7788–7796 (1991).
[CrossRef]

Z. Hussain, “Optical and electrochromic properties of oxide bronze thin films,” Ph.D. dissertation (University of London, London, 2001).

Jones, R. B.

S. F. Cogan, R. D. Rauh, J. D. Weswood, D. I. Plotkin, R. B. Jones, “Infrared properties of electrochromic materials,” in Optical Materials Technology for Energy Efficiency and Solar Energy Conversion VIII, C. M. Lampert, ed., SPIE 1149, 2–7 (1989).

Kagechika, H.

S. Hashimoto, H. Matsuoka, H. Kagechika, M. Susa, K. S. Goto, “Degradation of electrochromic amorphous WO3 film in lithium-salt electrolyte,” J. Electrochem. Soc. 137, 1300–1304 (1990).
[CrossRef]

Kaito, C.

M. Shiojiri, T. Miyano, C. Kaito, “Electron microscopic studies of structure and crystallization of amorphous metal oxide films,” Jpn. J. Appl. Phys. 18, 1937–1945 (1979).
[CrossRef]

Kamat, P. V.

I. Bedja, S. Hotchandani, P. V. Kamat, “Photoelectrochemistry of quantized WO3 colloids electron storage, electrochromic, and photoelectrochromic effects,” J. Phys. Chem. 97, 11064–11070 (1993).
[CrossRef]

Kamimori, T.

T. Kamimori, J. Nagai, M. Mizuhashi, “Electrochromic devices for transmissive and reflective light control,” Sol. Energy Mater. 16, 27–38 (1987).
[CrossRef]

Kanagawa, T.

T. Maruyama, T. Kanagawa, “Electrochromic properties of tungsten trioxide thin films prepared by photochemical vapor deposition,” J. Electrochem. Soc. 141, 2435–2438 (1994).
[CrossRef]

Kanders, U.

A. Azens, M. Kitenbergs, U. Kanders, “Evaporation of tungsten oxide: a mass-spectrometric study of the vapor contents,” Vacuum 46, 745–747 (1995).
[CrossRef]

Kaneko, H.

K. Miyake, H. Kaneko, M. Sano, N. Suedomi, “Physical and electrochromic properties of the amorphous and crystalline tungsten oxide thick films prepared under reducing atmosphere,” J. Appl. Phys. 55, 2747–2753 (1984).
[CrossRef]

Kang, K.

M. Green, K. Kang, “Sodium tungsten bronze thin films: variation of chemical potential with sodium concentration,” Solid State Ionics 8, 281–289 (1983).
[CrossRef]

Kang, K. S.

K. S. Kang, “Electrochromic display: sodium insertion in tungsten trioxide films,” Ph.D. dissertation (University of London, London, 1979).

Khawaja, E. E.

S. M. A. Durrani, E. E. Khawaja, M. A. Salim, M. F. Al-Kuhaili, A. M. Al-Shukri, “Effect of preparation conditions on the optical and thermochromic properties of thin films of tungsten oxide,” Sol. Energy Mater. Sol. Cells 71, 313–325 (2002).
[CrossRef]

Kitenbergs, M.

A. Azens, M. Kitenbergs, U. Kanders, “Evaporation of tungsten oxide: a mass-spectrometric study of the vapor contents,” Vacuum 46, 745–747 (1995).
[CrossRef]

Kiyota, K.

T. Yoshimura, M. Watanabe, Y. Koike, K. Kiyota, M. Tanaka, “Enhancement in oscillator strength of color centers in electrochromic thin films deposited from WO2 powder,” J. Appl. Phys. 53, 7314–7320 (1982).
[CrossRef]

Koike, Y.

T. Yoshimura, M. Watanabe, Y. Koike, K. Kiyota, M. Tanaka, “Enhancement in oscillator strength of color centers in electrochromic thin films deposited from WO2 powder,” J. Appl. Phys. 53, 7314–7320 (1982).
[CrossRef]

Kondo, S.

N. Yoshiike, S. Kondo, “Electrochemical properties of WO3. x(H2O). 1. The influences of water adsorption and hydroxylation,” J. Electrochem. Soc. 130, 2283–2287 (1983).
[CrossRef]

Kopp, L.

L. Kopp, B. N. Harmon, S. H. Liu, “Band structure of cubic NaxWO3,” Solid State Commun. 22, 677–679 (1977).
[CrossRef]

Kumagai, N.

J. P. Pereira-Ramas, R. Baddour-Hadjean, N. Kumagai, K. Tanno, “Improvement of the electrochemical behaviour of WO3 as reversible cathodic material for lithium batteries,” Electrochim. Acta 38, 431–436 (1993).
[CrossRef]

Lampert, C. M.

C. M. Lampert, “Electrochromic materials and devices for energy efficient windows,” Sol. Energy Mater. 11, 1–27 (1984).
[CrossRef]

Lanskaya, T. G.

A. I. Gavrilyuk, G. M. Gusinskii, T. G. Lanskaya, “Determination of the oscillator strength of an optical transition for color centers in WO3 thin films,” Tech. Phys. Lett. 20, 295–297 (1994).

Lee, D. L.

A. Bryant, M. Poirier, G. Riley, D. L. Lee, J. F. Vetelino, “Gas detection using surface acoustic wave delay lines,” Sens. Actuators 4, 105–111 (1983).
[CrossRef]

Lee, S. H.

S. H. Lee, H. M. Cheong, C. E. Tracy, A. Mascarenhas, D. K. Benson, S. K. Deb, “Raman spectroscopic studies of electrochromic a-WO3,” Electrochim. Acta 44, 3111–3115 (1999).
[CrossRef]

D. K. Benson, C. E. Tracy, G. A. Hishmeh, P. E. Ciszek, S. H. Lee, D. P. Haberman, “Low-cost, fiber-optic hydrogen gas detector using guided-wave, surface-plasmon resonance in chemochromic thin films,” in Advanced Sensors and Monitors for Process Industries and the Environment, W. A. de Groot, ed., Proc. SPIE3535, 185–191 (1998).

LeGore, L. J.

L. J. LeGore, K. Snow, J. D. Galipeau, J. F. Vetelino, “The optimisation of a tungsten trioxide film for application in a surface acoustic wave gas sensor,” Sens. Actuators B 35–36, 164–169 (1996).
[CrossRef]

Levy, F.

A. Borghesi, M. Geddo, G. Guizzetti, E. Reguzzoni, A. Stella, F. Levy, “Plasmon and interband transitions in Ti1-xHfxSe2 systems,” Phys. Rev. B 29, 3167–3171 (1984).
[CrossRef]

Lightsey, P. A.

P. A. Lightsey, D. A. Lilienfeld, D. F. Holcomb, “Transport properties of cubic NaxWO3 near the insulator-metal transition,” Phys. Rev. B 14, 4730–4732 (1976).
[CrossRef]

P. A. Lightsey, “Percolation view of transport properties in NaxWO3,” Phys. Rev. B 8, 3586–3589 (1973).
[CrossRef]

Lilienfeld, D. A.

P. A. Lightsey, D. A. Lilienfeld, D. F. Holcomb, “Transport properties of cubic NaxWO3 near the insulator-metal transition,” Phys. Rev. B 14, 4730–4732 (1976).
[CrossRef]

Liu, S. H.

L. Kopp, B. N. Harmon, S. H. Liu, “Band structure of cubic NaxWO3,” Solid State Commun. 22, 677–679 (1977).
[CrossRef]

Lu, Z.

L. Su, L. Zhang, J. Fang, M. Xu, Z. Lu, “Electrochromic and photoelectrochemical behavior of electrodeposited tungsten trioxide films,” Sol. Energy Mater. Sol. Cells 58, 133–140 (1999).
[CrossRef]

L. Su, L. Zhang, J. Fang, M. Xu, Z. Lu, “Electrochromic and photoelectrochemical behavior of electrodeposited tungsten trioxide films,” Sol. Energy Mater. Sol. Cells 58, 133–140 (1999).
[CrossRef]

L. Su, H. Wang, Z. Lu, “All-solid-state electrochromic window of Prussian Blue and electrodeposited WO3 film with poly(ethylene oxide) gel electrolyte,” Mater. Chem. Phys. 56, 266–270 (1998).
[CrossRef]

Magneli, A.

G. Hagg, A. Magneli, “Recent structure investigations of oxygen compounds of molybdenum and tungsten,” Rev. Pure Appl. Chem. 4, 235–249 (1954).

Manno, D.

M. Di Giulio, D. Manno, G. Micocci, A. Serra, A. Tepore, “Gas-sensing properties of sputtered thin films of tungsten oxide,” J. Phys. D 30, 3211–3215 (1997).
[CrossRef]

Maruyama, T.

T. Maruyama, S. Arai, “Electrochromic properties of tungsten trioxide thin films prepared by chemical vapor deposition,” J. Electrochem. Soc. 141, 1021–1024 (1994).
[CrossRef]

T. Maruyama, T. Kanagawa, “Electrochromic properties of tungsten trioxide thin films prepared by photochemical vapor deposition,” J. Electrochem. Soc. 141, 2435–2438 (1994).
[CrossRef]

Mascarenhas, A.

S. H. Lee, H. M. Cheong, C. E. Tracy, A. Mascarenhas, D. K. Benson, S. K. Deb, “Raman spectroscopic studies of electrochromic a-WO3,” Electrochim. Acta 44, 3111–3115 (1999).
[CrossRef]

Masuda, Y.

K. Matsuhiro, Y. Masuda, “Transmissive electrochromic display using a porous crystalline WO3 counter electrode,” Proc. Soc. Inf. Disp. 21/22, 101–105 (1980).

Matsuhiro, K.

K. Matsuhiro, Y. Masuda, “Transmissive electrochromic display using a porous crystalline WO3 counter electrode,” Proc. Soc. Inf. Disp. 21/22, 101–105 (1980).

Matsuoka, H.

S. Hashimoto, H. Matsuoka, H. Kagechika, M. Susa, K. S. Goto, “Degradation of electrochromic amorphous WO3 film in lithium-salt electrolyte,” J. Electrochem. Soc. 137, 1300–1304 (1990).
[CrossRef]

Mattheiss, L. F.

L. F. Mattheiss, “Band structure and Fermi surface of ReO3,” Phys. Rev. 181, 987–1000 (1969).
[CrossRef]

Mendelsohn, D. H.

D. H. Mendelsohn, R. B. Goldner, “Ellipsometry measurements as direct evidence of the Drude model for polycrystalline electrochromic WO3 films,” J. Electrochem. Soc. 131, 857–860 (1984).
[CrossRef]

R. B. Goldner, D. H. Mendelsohn, J. Alexander, W. R. Henderson, D. Fitzpatrick, T. E. Haas, H. H. Sample, R. D. Rauh, M. A. Parker, T. L. Rose, “High near-infrared reflectivity modulation with polycrystalline electrochromic WO3 films,” Appl. Phys. Lett. 43, 1093–1095 (1983).
[CrossRef]

Micocci, G.

M. Di Giulio, D. Manno, G. Micocci, A. Serra, A. Tepore, “Gas-sensing properties of sputtered thin films of tungsten oxide,” J. Phys. D 30, 3211–3215 (1997).
[CrossRef]

Miyake, K.

K. Miyake, H. Kaneko, M. Sano, N. Suedomi, “Physical and electrochromic properties of the amorphous and crystalline tungsten oxide thick films prepared under reducing atmosphere,” J. Appl. Phys. 55, 2747–2753 (1984).
[CrossRef]

Miyano, T.

M. Shiojiri, T. Miyano, C. Kaito, “Electron microscopic studies of structure and crystallization of amorphous metal oxide films,” Jpn. J. Appl. Phys. 18, 1937–1945 (1979).
[CrossRef]

Mizuhashi, M.

T. Kamimori, J. Nagai, M. Mizuhashi, “Electrochromic devices for transmissive and reflective light control,” Sol. Energy Mater. 16, 27–38 (1987).
[CrossRef]

Mizukami, F.

T. Nishide, F. Mizukami, “Refractive indices of the tungsten oxide films prepared by sol-gel and sputtering processes,” Opt. Eng. 34, 3329–3333 (1995).
[CrossRef]

Morel, B.

F. O. Arntz, R. B. Goldner, B. Morel, T. E. Hass, K. K. Wong, “Near-infrared reflectance modulation with electrochromic crystalline WO3 films deposited on ambient temperature glass substrates by an oxygen ion-assisted technique,” J. Appl. Phys. 67, 3177–3179 (1990).
[CrossRef]

Morita, H.

H. Morita, “Coloration and decoloration in atmospheric-evaporated tungsten-oxide films (AETOF) utilizing lithium ions,” Jpn. J. Appl. Phys. 24, 750–754 (1985).
[CrossRef]

H. Morita, H. Washida, “Electrochromism of atmospheric evaporated tungsten oxide films,” Jpn. J. Appl. Phys. 23, 754–759 (1984).
[CrossRef]

Mott, N. F.

N. F. Mott, E. A. Davis, Electronic Process in Noncrystalline Materials (Clarendon, Oxford, 1979), p. 15.

Nagai, J.

T. Kamimori, J. Nagai, M. Mizuhashi, “Electrochromic devices for transmissive and reflective light control,” Sol. Energy Mater. 16, 27–38 (1987).
[CrossRef]

Nanba, T.

T. Nanba, I. Yasui, “X-ray diffraction study of microstructure of amorphous tungsten trioxide films prepared by electron beam vacuum evaporation,” J. Solid State Chem. 83, 304–315 (1989).
[CrossRef]

Neumann, R.

A. Georg, W. Graf, R. Neumann, V. Wittwer, “Mechanism of the gasochromic coloration of porous WO3 films,” Solid State Ionics 127, 319–328 (2000).
[CrossRef]

A. Georg, W. Graf, R. Neumann, V. Wittwer, “Stability of gasochromic WO3 films,” Sol. Energy Mater. Sol. Cells 63, 165–176 (2000).
[CrossRef]

Nishide, T.

T. Nishide, F. Mizukami, “Refractive indices of the tungsten oxide films prepared by sol-gel and sputtering processes,” Opt. Eng. 34, 3329–3333 (1995).
[CrossRef]

Nitz, P.

A. Georg, W. Graf, D. Schweiger, V. Wittwer, P. Nitz, H. R. Wilson, “Switchable glazing with a large dynamic range in total solar energy transmittance,” Sol. Energy 62, 215–228 (1998).
[CrossRef]

Norton, P.

R. B. Goldner, T. E. Haas, G. Seward, K. K. Wong, P. Norton, G. Foley, G. Berera, G. Wei, S. Schulz, R. Chapman, “Thin film solid state ionic materials for electrochromic Smart Window™ glass,” Solid State Ionics 28–30, 1715–1721 (1988).
[CrossRef]

R. B. Goldner, K. Wong, G. Foley, P. Norton, L. Wamboldt, G. Seward, T. Haas, R. Chapman, “Thin films of WO3 for practical electrochromic windows,” Sol. Energy Mater. 16, 365–370 (1987).
[CrossRef]

R. B. Goldner, P. Norton, K. Wong, G. Foley, E. L. Goldner, G. Seward, R. Chapman, “Further evidence for free electrons as dominating the behavior of electrochromic polycrystalline WO3 films,” Appl. Phys. Lett. 47, 536–537 (1985).
[CrossRef]

R. B. Goldner, A. Brofos, G. Foley, E. L. Goldner, T. E. Haas, W. Henderson, P. Norton, B. A. Ratnam, N. Weis, K. K. Wong, “Optical frequencies free electron scattering studies on electrochromic materials for variable reflectivity windows,” in Optical Materials Technology for Energy Efficiency & Solar Energy Conversion IV, C. W. Lampert, ed., Proc. SPIE502, 54–57 (1984).

Ottermann, C.

C. Ottermann, A. Temmink, K. Bange, “Correlation of injected charge to optical constants (n, k) of electrochromic films,” in Optical Materials Technology for Energy Efficiency and Solar Energy Conversion IX, C. G. Granqvist, C. M. Lampert, eds., Proc. SPIE1272, 111–121 (1990).

Owen, J. F.

J. F. Owen, K. J. Teegarden, H. R. Shanks, “Optical properties of the sodium-tungsten bronzes and tungsten trioxide,” Phys. Rev. B 18, 3827–3837 (1978).
[CrossRef]

Pankov, J. I.

J. I. Pankov, Optical Processes in Semiconductors (Dover, New York, 1971), p. 93.

Parker, M. A.

S. F. Cogan, T. D. Plante, M. A. Parker, R. D. Rauh, “Electrochromic solar attenuation in crystalline and amorphous LixWO3,” Sol. Energy Mater. 14, 185–193 (1986).
[CrossRef]

S. F. Cogan, T. D. Plante, M. A. Parker, R. D. Rauh, “Free-electron electrochromic modulation in crystalline LixWO3,” J. Appl. Phys. 60, 2735–2738 (1986).
[CrossRef]

R. B. Goldner, D. H. Mendelsohn, J. Alexander, W. R. Henderson, D. Fitzpatrick, T. E. Haas, H. H. Sample, R. D. Rauh, M. A. Parker, T. L. Rose, “High near-infrared reflectivity modulation with polycrystalline electrochromic WO3 films,” Appl. Phys. Lett. 43, 1093–1095 (1983).
[CrossRef]

Pereira-Ramas, J. P.

J. P. Pereira-Ramas, R. Baddour-Hadjean, N. Kumagai, K. Tanno, “Improvement of the electrochemical behaviour of WO3 as reversible cathodic material for lithium batteries,” Electrochim. Acta 38, 431–436 (1993).
[CrossRef]

Pertosa, P.

G. Hollinger, P. Pertosa, “Direct observation of the Anderson transition in HxWO3 bronzes by high resolution x-ray photoelectron spectroscopy,” Chem. Phys. Lett. 74, 341–344 (1980).
[CrossRef]

Plante, T. D.

S. F. Cogan, T. D. Plante, M. A. Parker, R. D. Rauh, “Electrochromic solar attenuation in crystalline and amorphous LixWO3,” Sol. Energy Mater. 14, 185–193 (1986).
[CrossRef]

S. F. Cogan, T. D. Plante, M. A. Parker, R. D. Rauh, “Free-electron electrochromic modulation in crystalline LixWO3,” J. Appl. Phys. 60, 2735–2738 (1986).
[CrossRef]

Plotkin, D. I.

S. F. Cogan, R. D. Rauh, J. D. Weswood, D. I. Plotkin, R. B. Jones, “Infrared properties of electrochromic materials,” in Optical Materials Technology for Energy Efficiency and Solar Energy Conversion VIII, C. M. Lampert, ed., SPIE 1149, 2–7 (1989).

Poirier, M.

A. Bryant, M. Poirier, G. Riley, D. L. Lee, J. F. Vetelino, “Gas detection using surface acoustic wave delay lines,” Sens. Actuators 4, 105–111 (1983).
[CrossRef]

Pouchard, M.

J. P. Doumerc, M. Pouchard, P. Hagenmuller, “Chemical bond, crystal structure and the metal–nonmetal transition in oxide bronzes,” in The Metallic and Non-metallic States of Matter, P. P. Edwards, C. N. R. Rao, eds. (Taylor & Francis, London, 1985), Chap. 11, p. 287.

Quillian, R. M. P.

P. G. Dickens, R. M. P. Quillian, M. S. Whittingham, “The reflectance spectra of the tungsten bronzes,” Mater. Res. Bull. 3, 941–950 (1968).
[CrossRef]

Raistrick, I. D.

I. D. Raistrick, “Lithium insertion reactions in tungsten and vanadium oxide bronzes,” Solid State Ionics 9/10, 425–430 (1983).
[CrossRef]

Ratnam, B. A.

R. B. Goldner, A. Brofos, G. Foley, E. L. Goldner, T. E. Haas, W. Henderson, P. Norton, B. A. Ratnam, N. Weis, K. K. Wong, “Optical frequencies free electron scattering studies on electrochromic materials for variable reflectivity windows,” in Optical Materials Technology for Energy Efficiency & Solar Energy Conversion IV, C. W. Lampert, ed., Proc. SPIE502, 54–57 (1984).

Rauh, R. D.

S. F. Cogan, T. D. Plante, M. A. Parker, R. D. Rauh, “Free-electron electrochromic modulation in crystalline LixWO3,” J. Appl. Phys. 60, 2735–2738 (1986).
[CrossRef]

S. F. Cogan, T. D. Plante, M. A. Parker, R. D. Rauh, “Electrochromic solar attenuation in crystalline and amorphous LixWO3,” Sol. Energy Mater. 14, 185–193 (1986).
[CrossRef]

R. B. Goldner, D. H. Mendelsohn, J. Alexander, W. R. Henderson, D. Fitzpatrick, T. E. Haas, H. H. Sample, R. D. Rauh, M. A. Parker, T. L. Rose, “High near-infrared reflectivity modulation with polycrystalline electrochromic WO3 films,” Appl. Phys. Lett. 43, 1093–1095 (1983).
[CrossRef]

S. F. Cogan, R. D. Rauh, J. D. Weswood, D. I. Plotkin, R. B. Jones, “Infrared properties of electrochromic materials,” in Optical Materials Technology for Energy Efficiency and Solar Energy Conversion VIII, C. M. Lampert, ed., SPIE 1149, 2–7 (1989).

Reguzzoni, E.

A. Borghesi, M. Geddo, G. Guizzetti, E. Reguzzoni, A. Stella, F. Levy, “Plasmon and interband transitions in Ti1-xHfxSe2 systems,” Phys. Rev. B 29, 3167–3171 (1984).
[CrossRef]

Riley, G.

A. Bryant, M. Poirier, G. Riley, D. L. Lee, J. F. Vetelino, “Gas detection using surface acoustic wave delay lines,” Sens. Actuators 4, 105–111 (1983).
[CrossRef]

Rose, T. L.

R. B. Goldner, D. H. Mendelsohn, J. Alexander, W. R. Henderson, D. Fitzpatrick, T. E. Haas, H. H. Sample, R. D. Rauh, M. A. Parker, T. L. Rose, “High near-infrared reflectivity modulation with polycrystalline electrochromic WO3 films,” Appl. Phys. Lett. 43, 1093–1095 (1983).
[CrossRef]

Rubin, M.

M. Rubin, “Ion-assisted sputtering of tungsten oxide solar-control films,” J. Vac. Sci. Technol. A 10, 1905–1907 (1992).
[CrossRef]

Salim, M. A.

S. M. A. Durrani, E. E. Khawaja, M. A. Salim, M. F. Al-Kuhaili, A. M. Al-Shukri, “Effect of preparation conditions on the optical and thermochromic properties of thin films of tungsten oxide,” Sol. Energy Mater. Sol. Cells 71, 313–325 (2002).
[CrossRef]

Salje, E.

E. Salje, B. Guttler, “Anderson transition and intermediate polaron formation in WO3-x transport properties and optical absorption,” Philos. Mag. B 50, 607–620 (1984).
[CrossRef]

E. Salje, K. Viswanathan, “Physical properties and phase transitions in WO3,” Acta Crystallogr. Sect. A 31, 356–359 (1975).
[CrossRef]

Sample, H. H.

R. B. Goldner, D. H. Mendelsohn, J. Alexander, W. R. Henderson, D. Fitzpatrick, T. E. Haas, H. H. Sample, R. D. Rauh, M. A. Parker, T. L. Rose, “High near-infrared reflectivity modulation with polycrystalline electrochromic WO3 films,” Appl. Phys. Lett. 43, 1093–1095 (1983).
[CrossRef]

Sano, M.

K. Miyake, H. Kaneko, M. Sano, N. Suedomi, “Physical and electrochromic properties of the amorphous and crystalline tungsten oxide thick films prepared under reducing atmosphere,” J. Appl. Phys. 55, 2747–2753 (1984).
[CrossRef]

Sawada, S.

S. Sawada, G. C. Danielson, “Domain structure of WO3 single crystals,” Phys. Rev. 113, 1005–1013 (1959).
[CrossRef]

Schirmer, O. F.

V. Wittwer, O. F. Schirmer, P. Schlotter, “Disorder dependence and optical detection of the Anderson transition in amorphous HxWO3 bronzes,” Solid State Commun. 25, 977–980 (1978).
[CrossRef]

O. F. Schirmer, V. Wittwer, G. Baur, G. Brandt, “Dependence of WO3 electrochromic absorption on crystallinity,” J. Electrochem. Soc. 124, 749–753 (1977).
[CrossRef]

Schlotter, P.

V. Wittwer, O. F. Schirmer, P. Schlotter, “Disorder dependence and optical detection of the Anderson transition in amorphous HxWO3 bronzes,” Solid State Commun. 25, 977–980 (1978).
[CrossRef]

Schulz, S.

R. B. Goldner, G. Seward, K. Wong, T. Haas, G. H. Foley, R. Chapman, S. Schulz, “Completely solid lithiated smart windows,” Sol. Energy Mater. 19, 17–26 (1989).
[CrossRef]

R. B. Goldner, T. E. Haas, G. Seward, K. K. Wong, P. Norton, G. Foley, G. Berera, G. Wei, S. Schulz, R. Chapman, “Thin film solid state ionic materials for electrochromic Smart Window™ glass,” Solid State Ionics 28–30, 1715–1721 (1988).
[CrossRef]

Schweiger, D.

A. Georg, W. Graf, D. Schweiger, V. Wittwer, P. Nitz, H. R. Wilson, “Switchable glazing with a large dynamic range in total solar energy transmittance,” Sol. Energy 62, 215–228 (1998).
[CrossRef]

Scouler, W. J.

J. Feinleib, W. J. Scouler, A. Ferretti, “Optical properties of the metal ReO3 from 0.1 to 22 eV,” Phys. Rev. 165, 765–774 (1968).
[CrossRef]

Seeger, K.

K. Seeger, Semiconductor Physics (Springer-Verlag, Berlin, 1985), p. 302.

Serra, A.

M. Di Giulio, D. Manno, G. Micocci, A. Serra, A. Tepore, “Gas-sensing properties of sputtered thin films of tungsten oxide,” J. Phys. D 30, 3211–3215 (1997).
[CrossRef]

Seward, G.

R. B. Goldner, G. Seward, K. Wong, T. Haas, G. H. Foley, R. Chapman, S. Schulz, “Completely solid lithiated smart windows,” Sol. Energy Mater. 19, 17–26 (1989).
[CrossRef]

R. B. Goldner, T. E. Haas, G. Seward, K. K. Wong, P. Norton, G. Foley, G. Berera, G. Wei, S. Schulz, R. Chapman, “Thin film solid state ionic materials for electrochromic Smart Window™ glass,” Solid State Ionics 28–30, 1715–1721 (1988).
[CrossRef]

R. B. Goldner, K. Wong, G. Foley, P. Norton, L. Wamboldt, G. Seward, T. Haas, R. Chapman, “Thin films of WO3 for practical electrochromic windows,” Sol. Energy Mater. 16, 365–370 (1987).
[CrossRef]

R. B. Goldner, P. Norton, K. Wong, G. Foley, E. L. Goldner, G. Seward, R. Chapman, “Further evidence for free electrons as dominating the behavior of electrochromic polycrystalline WO3 films,” Appl. Phys. Lett. 47, 536–537 (1985).
[CrossRef]

Shanks, H. R.

J. F. Owen, K. J. Teegarden, H. R. Shanks, “Optical properties of the sodium-tungsten bronzes and tungsten trioxide,” Phys. Rev. B 18, 3827–3837 (1978).
[CrossRef]

J. D. Greiner, H. R. Shanks, D. C. Wallace, “Magnetic susceptibility of the cubic sodium tungsten bronzes,” J. Chem. Phys. 36, 772–776 (1962).
[CrossRef]

Shigesato, Y.

Y. Shigesato, “Photochromic properties of amorphous WO3 films,” Jpn. J. Appl. Phys. 30, 1457–1462 (1991).
[CrossRef]

Shiojiri, M.

M. Shiojiri, T. Miyano, C. Kaito, “Electron microscopic studies of structure and crystallization of amorphous metal oxide films,” Jpn. J. Appl. Phys. 18, 1937–1945 (1979).
[CrossRef]

Sichel, E. K.

E. K. Sichel, J. I. Gittleman, J. Zelez, “Electrochromism in the composite material Au-WO3,” Appl. Phys. Lett. 31, 109–111 (1977).
[CrossRef]

Sienko, M. J.

B. L. Crowder, M. J. Sienko, “Some solid-state studies of tungsten trioxide and their significance to tungsten bronze theory,” J. Chem. Phys. 38, 1576–1583 (1963).
[CrossRef]

Snow, K.

L. J. LeGore, K. Snow, J. D. Galipeau, J. F. Vetelino, “The optimisation of a tungsten trioxide film for application in a surface acoustic wave gas sensor,” Sens. Actuators B 35–36, 164–169 (1996).
[CrossRef]

Spicer, W. E.

T. M. Donovan, W. E. Spicer, J. M. Bennett, E. J. Ashley, “Optical properties of amorphous germanium films,” Phys. Rev. B 2, 397–413 (1970).
[CrossRef]

Spindler, R.

Sprague, J.

C. Bechinger, S. Ferrere, A. Zaban, J. Sprague, B. A. Gregg, “Photoelectrochromic windows and displays,” Nature 383, 608–610 (1996).
[CrossRef]

Stella, A.

A. Borghesi, M. Geddo, G. Guizzetti, E. Reguzzoni, A. Stella, F. Levy, “Plasmon and interband transitions in Ti1-xHfxSe2 systems,” Phys. Rev. B 29, 3167–3171 (1984).
[CrossRef]

Stevens, J. R.

Su, L.

L. Su, L. Zhang, J. Fang, M. Xu, Z. Lu, “Electrochromic and photoelectrochemical behavior of electrodeposited tungsten trioxide films,” Sol. Energy Mater. Sol. Cells 58, 133–140 (1999).
[CrossRef]

L. Su, L. Zhang, J. Fang, M. Xu, Z. Lu, “Electrochromic and photoelectrochemical behavior of electrodeposited tungsten trioxide films,” Sol. Energy Mater. Sol. Cells 58, 133–140 (1999).
[CrossRef]

L. Su, H. Wang, Z. Lu, “All-solid-state electrochromic window of Prussian Blue and electrodeposited WO3 film with poly(ethylene oxide) gel electrolyte,” Mater. Chem. Phys. 56, 266–270 (1998).
[CrossRef]

Suedomi, N.

K. Miyake, H. Kaneko, M. Sano, N. Suedomi, “Physical and electrochromic properties of the amorphous and crystalline tungsten oxide thick films prepared under reducing atmosphere,” J. Appl. Phys. 55, 2747–2753 (1984).
[CrossRef]

Sun, S. S.

S. S. Sun, P. H. Holloway, “Modification of vapor-deposited WO3 electrochromic films by oxygen backfilling,” J. Vac. Sci. Technol. A 1, 529–533 (1983).
[CrossRef]

Susa, M.

S. Hashimoto, H. Matsuoka, H. Kagechika, M. Susa, K. S. Goto, “Degradation of electrochromic amorphous WO3 film in lithium-salt electrolyte,” J. Electrochem. Soc. 137, 1300–1304 (1990).
[CrossRef]

Svensson, J. S. E. M.

J. R. Stevens, J. S. E. M. Svensson, C. G. Granqvist, R. Spindler, “Electrochromism of WO3-based films in contact with a solid Li-doped siloxane elastomer electrolyte,” Appl. Opt. 26, 3489–3490 (1987).
[CrossRef] [PubMed]

J. S. E. M. Svensson, C. G. Granqvist, “Electrochromic coatings for smart windows: crystalline and amorphous WO3 films,” Thin Solid Films 126, 31–36 (1985).
[CrossRef]

J. S. E. M. Svensson, C. G. Granqvist, “Electrochromic coatings for smart windows,” in Optical Materials Technology for Energy Efficiency & Solar Energy Conversion, C. W. Lampert, ed., Proc. SPIE502, 30–37 (1984).

Tanaka, M.

T. Yoshimura, M. Watanabe, Y. Koike, K. Kiyota, M. Tanaka, “Enhancement in oscillator strength of color centers in electrochromic thin films deposited from WO2 powder,” J. Appl. Phys. 53, 7314–7320 (1982).
[CrossRef]

Tanno, K.

J. P. Pereira-Ramas, R. Baddour-Hadjean, N. Kumagai, K. Tanno, “Improvement of the electrochemical behaviour of WO3 as reversible cathodic material for lithium batteries,” Electrochim. Acta 38, 431–436 (1993).
[CrossRef]

Teegarden, K. J.

J. F. Owen, K. J. Teegarden, H. R. Shanks, “Optical properties of the sodium-tungsten bronzes and tungsten trioxide,” Phys. Rev. B 18, 3827–3837 (1978).
[CrossRef]

Temmink, A.

C. Ottermann, A. Temmink, K. Bange, “Correlation of injected charge to optical constants (n, k) of electrochromic films,” in Optical Materials Technology for Energy Efficiency and Solar Energy Conversion IX, C. G. Granqvist, C. M. Lampert, eds., Proc. SPIE1272, 111–121 (1990).

Tepore, A.

M. Di Giulio, D. Manno, G. Micocci, A. Serra, A. Tepore, “Gas-sensing properties of sputtered thin films of tungsten oxide,” J. Phys. D 30, 3211–3215 (1997).
[CrossRef]

Thi Bao Ngoc, N.

N. Van Nha, N. Thi Bao Ngoc, N. Van Hung, “The preparation and gas sensitive property of Pt-WO3 thin film,” Thin Solid Films 334, 113–116 (1998).
[CrossRef]

Thomas, C. B.

M. R. Goulding, C. B. Thomas, R. J. Hurditch, “A comparison of thermo and photochromic behavior in films of amorphous WO3,” Solid State Commun. 46, 451–453 (1983).
[CrossRef]

Toyoda, T.

T. Toyoda, “The optical dispersion parameters in WO3 thin films,” J. Appl. Phys. 63, 5166–5168 (1988).
[CrossRef]

Tracy, C. E.

S. H. Lee, H. M. Cheong, C. E. Tracy, A. Mascarenhas, D. K. Benson, S. K. Deb, “Raman spectroscopic studies of electrochromic a-WO3,” Electrochim. Acta 44, 3111–3115 (1999).
[CrossRef]

J. G. Zhang, D. K. Benson, C. E. Tracy, S. K. Deb, A. W. Czanderna, C. Bechinger, “Chromic mechanism in amorphous WO3 films,” J. Electrochem. Soc. 144, 2022–2025 (1997).
[CrossRef]

D. K. Benson, C. E. Tracy, G. A. Hishmeh, P. E. Ciszek, S. H. Lee, D. P. Haberman, “Low-cost, fiber-optic hydrogen gas detector using guided-wave, surface-plasmon resonance in chemochromic thin films,” in Advanced Sensors and Monitors for Process Industries and the Environment, W. A. de Groot, ed., Proc. SPIE3535, 185–191 (1998).

Travlos, A.

A. Travlos, “Physical properties of thin films of sodium tungsten bronzes,” Ph.D. dissertation (University of London, London, 1984).

Tubbs, M. R.

M. R. Tubbs, “MoO3 layers-optical properties, color centres, and holographic recording,” Phys. Status Solidi A 21, 253–260 (1974).
[CrossRef]

M. R. Tubbs, “Dispersion effects in interference methods for the measurement of refractive index,” J. Phys. Chem. Solids 30, 2323–2325 (1969).
[CrossRef]

Unger, H. G.

H. G. Unger, Planar Optical Waveguides and Fibers (Oxford U. Press, London, 1977).

Van Hung, N.

N. Van Nha, N. Thi Bao Ngoc, N. Van Hung, “The preparation and gas sensitive property of Pt-WO3 thin film,” Thin Solid Films 334, 113–116 (1998).
[CrossRef]

Van Nha, N.

N. Van Nha, N. Thi Bao Ngoc, N. Van Hung, “The preparation and gas sensitive property of Pt-WO3 thin film,” Thin Solid Films 334, 113–116 (1998).
[CrossRef]

Vetelino, J. F.

L. J. LeGore, K. Snow, J. D. Galipeau, J. F. Vetelino, “The optimisation of a tungsten trioxide film for application in a surface acoustic wave gas sensor,” Sens. Actuators B 35–36, 164–169 (1996).
[CrossRef]

A. Bryant, M. Poirier, G. Riley, D. L. Lee, J. F. Vetelino, “Gas detection using surface acoustic wave delay lines,” Sens. Actuators 4, 105–111 (1983).
[CrossRef]

Viswanathan, K.

E. Salje, K. Viswanathan, “Physical properties and phase transitions in WO3,” Acta Crystallogr. Sect. A 31, 356–359 (1975).
[CrossRef]

Wallace, D. C.

J. D. Greiner, H. R. Shanks, D. C. Wallace, “Magnetic susceptibility of the cubic sodium tungsten bronzes,” J. Chem. Phys. 36, 772–776 (1962).
[CrossRef]

Wamboldt, L.

R. B. Goldner, K. Wong, G. Foley, P. Norton, L. Wamboldt, G. Seward, T. Haas, R. Chapman, “Thin films of WO3 for practical electrochromic windows,” Sol. Energy Mater. 16, 365–370 (1987).
[CrossRef]

Wang, H.

L. Su, H. Wang, Z. Lu, “All-solid-state electrochromic window of Prussian Blue and electrodeposited WO3 film with poly(ethylene oxide) gel electrolyte,” Mater. Chem. Phys. 56, 266–270 (1998).
[CrossRef]

Washida, H.

H. Morita, H. Washida, “Electrochromism of atmospheric evaporated tungsten oxide films,” Jpn. J. Appl. Phys. 23, 754–759 (1984).
[CrossRef]

Watanabe, M.

T. Yoshimura, M. Watanabe, Y. Koike, K. Kiyota, M. Tanaka, “Enhancement in oscillator strength of color centers in electrochromic thin films deposited from WO2 powder,” J. Appl. Phys. 53, 7314–7320 (1982).
[CrossRef]

Wei, G.

R. B. Goldner, T. E. Haas, G. Seward, K. K. Wong, P. Norton, G. Foley, G. Berera, G. Wei, S. Schulz, R. Chapman, “Thin film solid state ionic materials for electrochromic Smart Window™ glass,” Solid State Ionics 28–30, 1715–1721 (1988).
[CrossRef]

Weis, N.

R. B. Goldner, A. Brofos, G. Foley, E. L. Goldner, T. E. Haas, W. Henderson, P. Norton, B. A. Ratnam, N. Weis, K. K. Wong, “Optical frequencies free electron scattering studies on electrochromic materials for variable reflectivity windows,” in Optical Materials Technology for Energy Efficiency & Solar Energy Conversion IV, C. W. Lampert, ed., Proc. SPIE502, 54–57 (1984).

Weller, M. T.

P. G. Dickens, S. C. Baker, M. T. Weller, “Hydrogen insertion in oxides,” Solid State Ionics 18/19, 89–97 (1986).
[CrossRef]

Wemple, S. H.

S. H. Wemple, M. DiDomenico, “Behavior of the electronic dielectric constant in covalent and ionic materials,” Phys. Rev. B 3, 1338–1350 (1971).
[CrossRef]

Wessel, S. A.

Q. Zhong, S. A. Wessel, B. Heinrich, K. Colbow, “The electrochromic properties and mechanism of HxWO3 and LixWO3,” Sol. Energy Mater. 20, 289–296 (1990).
[CrossRef]

Weswood, J. D.

S. F. Cogan, R. D. Rauh, J. D. Weswood, D. I. Plotkin, R. B. Jones, “Infrared properties of electrochromic materials,” in Optical Materials Technology for Energy Efficiency and Solar Energy Conversion VIII, C. M. Lampert, ed., SPIE 1149, 2–7 (1989).

Whittingham, M. S.

P. G. Dickens, R. M. P. Quillian, M. S. Whittingham, “The reflectance spectra of the tungsten bronzes,” Mater. Res. Bull. 3, 941–950 (1968).
[CrossRef]

Wilson, H. R.

A. Georg, W. Graf, D. Schweiger, V. Wittwer, P. Nitz, H. R. Wilson, “Switchable glazing with a large dynamic range in total solar energy transmittance,” Sol. Energy 62, 215–228 (1998).
[CrossRef]

Wittwer, V.

A. Georg, W. Graf, R. Neumann, V. Wittwer, “Mechanism of the gasochromic coloration of porous WO3 films,” Solid State Ionics 127, 319–328 (2000).
[CrossRef]

A. Georg, W. Graf, R. Neumann, V. Wittwer, “Stability of gasochromic WO3 films,” Sol. Energy Mater. Sol. Cells 63, 165–176 (2000).
[CrossRef]

A. Georg, W. Graf, D. Schweiger, V. Wittwer, P. Nitz, H. R. Wilson, “Switchable glazing with a large dynamic range in total solar energy transmittance,” Sol. Energy 62, 215–228 (1998).
[CrossRef]

A. Georg, W. Graf, V. Wittwer, “Comparison of electrical conductivity and optical properties of substoichiometrically and electrochemically colored WOx films of different crystallinity,” Sol. Energy Mater. Sol. Cells 51, 353–370 (1998).
[CrossRef]

J. Gottsche, A. Hinsch, V. Wittwer, “Electrochromic mixed WO3–TiO2 thin films produced by sputtering and the sol-gel technique: a comparison,” Sol. Energy Mater. Sol. Cells 31, 415–428 (1993).
[CrossRef]

V. Wittwer, O. F. Schirmer, P. Schlotter, “Disorder dependence and optical detection of the Anderson transition in amorphous HxWO3 bronzes,” Solid State Commun. 25, 977–980 (1978).
[CrossRef]

O. F. Schirmer, V. Wittwer, G. Baur, G. Brandt, “Dependence of WO3 electrochromic absorption on crystallinity,” J. Electrochem. Soc. 124, 749–753 (1977).
[CrossRef]

Wong, K.

R. B. Goldner, G. Seward, K. Wong, T. Haas, G. H. Foley, R. Chapman, S. Schulz, “Completely solid lithiated smart windows,” Sol. Energy Mater. 19, 17–26 (1989).
[CrossRef]

R. B. Goldner, K. Wong, G. Foley, P. Norton, L. Wamboldt, G. Seward, T. Haas, R. Chapman, “Thin films of WO3 for practical electrochromic windows,” Sol. Energy Mater. 16, 365–370 (1987).
[CrossRef]

R. B. Goldner, P. Norton, K. Wong, G. Foley, E. L. Goldner, G. Seward, R. Chapman, “Further evidence for free electrons as dominating the behavior of electrochromic polycrystalline WO3 films,” Appl. Phys. Lett. 47, 536–537 (1985).
[CrossRef]

Wong, K. K.

F. O. Arntz, R. B. Goldner, B. Morel, T. E. Hass, K. K. Wong, “Near-infrared reflectance modulation with electrochromic crystalline WO3 films deposited on ambient temperature glass substrates by an oxygen ion-assisted technique,” J. Appl. Phys. 67, 3177–3179 (1990).
[CrossRef]

R. B. Goldner, T. E. Haas, G. Seward, K. K. Wong, P. Norton, G. Foley, G. Berera, G. Wei, S. Schulz, R. Chapman, “Thin film solid state ionic materials for electrochromic Smart Window™ glass,” Solid State Ionics 28–30, 1715–1721 (1988).
[CrossRef]

R. B. Goldner, A. Brofos, G. Foley, E. L. Goldner, T. E. Haas, W. Henderson, P. Norton, B. A. Ratnam, N. Weis, K. K. Wong, “Optical frequencies free electron scattering studies on electrochromic materials for variable reflectivity windows,” in Optical Materials Technology for Energy Efficiency & Solar Energy Conversion IV, C. W. Lampert, ed., Proc. SPIE502, 54–57 (1984).

Xu, M.

L. Su, L. Zhang, J. Fang, M. Xu, Z. Lu, “Electrochromic and photoelectrochemical behavior of electrodeposited tungsten trioxide films,” Sol. Energy Mater. Sol. Cells 58, 133–140 (1999).
[CrossRef]

L. Su, L. Zhang, J. Fang, M. Xu, Z. Lu, “Electrochromic and photoelectrochemical behavior of electrodeposited tungsten trioxide films,” Sol. Energy Mater. Sol. Cells 58, 133–140 (1999).
[CrossRef]

Yao, J. N.

J. N. Yao, K. Hashimoto, A. Fujishima, “Photochromism induced in an electrolytically pretreated MoO3 thin film by visible light,” Nature 355, 624–626 (1992).
[CrossRef]

Yasui, I.

T. Nanba, I. Yasui, “X-ray diffraction study of microstructure of amorphous tungsten trioxide films prepared by electron beam vacuum evaporation,” J. Solid State Chem. 83, 304–315 (1989).
[CrossRef]

Yoshiike, N.

N. Yoshiike, S. Kondo, “Electrochemical properties of WO3. x(H2O). 1. The influences of water adsorption and hydroxylation,” J. Electrochem. Soc. 130, 2283–2287 (1983).
[CrossRef]

Yoshimura, T.

T. Yoshimura, “Oscillator strength of small-polaron absorption in WOx electrochromic thin films,” J. Appl. Phys. 57, 911–919 (1985).
[CrossRef]

T. Yoshimura, M. Watanabe, Y. Koike, K. Kiyota, M. Tanaka, “Enhancement in oscillator strength of color centers in electrochromic thin films deposited from WO2 powder,” J. Appl. Phys. 53, 7314–7320 (1982).
[CrossRef]

Zaban, A.

C. Bechinger, S. Ferrere, A. Zaban, J. Sprague, B. A. Gregg, “Photoelectrochromic windows and displays,” Nature 383, 608–610 (1996).
[CrossRef]

Zelez, J.

E. K. Sichel, J. I. Gittleman, J. Zelez, “Electrochromism in the composite material Au-WO3,” Appl. Phys. Lett. 31, 109–111 (1977).
[CrossRef]

Zhang, J. G.

J. G. Zhang, D. K. Benson, C. E. Tracy, S. K. Deb, A. W. Czanderna, C. Bechinger, “Chromic mechanism in amorphous WO3 films,” J. Electrochem. Soc. 144, 2022–2025 (1997).
[CrossRef]

C. Bechinger, M. S. Burdis, J. G. Zhang, “Comparison between electrochromic and photochromic coloration efficiency of tungsten oxide thin films,” Solid State Commun. 101, 753–756 (1997).
[CrossRef]

C. Bechinger, M. S. Burdis, J. G. Zhang, “Comparison between electrochromic and photochromic coloration efficiency of tungsten oxide thin films,” Solid State Commun. 101, 753–756 (1997).
[CrossRef]

Zhang, L.

L. Su, L. Zhang, J. Fang, M. Xu, Z. Lu, “Electrochromic and photoelectrochemical behavior of electrodeposited tungsten trioxide films,” Sol. Energy Mater. Sol. Cells 58, 133–140 (1999).
[CrossRef]

L. Su, L. Zhang, J. Fang, M. Xu, Z. Lu, “Electrochromic and photoelectrochemical behavior of electrodeposited tungsten trioxide films,” Sol. Energy Mater. Sol. Cells 58, 133–140 (1999).
[CrossRef]

Zhong, Q.

Q. Zhong, S. A. Wessel, B. Heinrich, K. Colbow, “The electrochromic properties and mechanism of HxWO3 and LixWO3,” Sol. Energy Mater. 20, 289–296 (1990).
[CrossRef]

Acta Crystallogr. Sect. A (1)

E. Salje, K. Viswanathan, “Physical properties and phase transitions in WO3,” Acta Crystallogr. Sect. A 31, 356–359 (1975).
[CrossRef]

Adv. Mater. (1)

K. Bange, T. Gambke, “Electrochromic materials for optical switching devices,” Adv. Mater. 2, 10–16 (1990).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. A (1)

C. G. Granqvist, “Transparent conductive electrodes for electrochromic devices: a review,” Appl. Phys. A 57, 19–24 (1993).
[CrossRef]

Appl. Phys. Lett. (3)

R. B. Goldner, D. H. Mendelsohn, J. Alexander, W. R. Henderson, D. Fitzpatrick, T. E. Haas, H. H. Sample, R. D. Rauh, M. A. Parker, T. L. Rose, “High near-infrared reflectivity modulation with polycrystalline electrochromic WO3 films,” Appl. Phys. Lett. 43, 1093–1095 (1983).
[CrossRef]

E. K. Sichel, J. I. Gittleman, J. Zelez, “Electrochromism in the composite material Au-WO3,” Appl. Phys. Lett. 31, 109–111 (1977).
[CrossRef]

R. B. Goldner, P. Norton, K. Wong, G. Foley, E. L. Goldner, G. Seward, R. Chapman, “Further evidence for free electrons as dominating the behavior of electrochromic polycrystalline WO3 films,” Appl. Phys. Lett. 47, 536–537 (1985).
[CrossRef]

Bull. Soc. Chim. Fr. (1)

J. B. Goodenough, “Transition-metal oxides with metallic conductivity,” Bull. Soc. Chim. Fr. 4, 1200–1207 (1975).

Chem. Phys. Lett. (1)

G. Hollinger, P. Pertosa, “Direct observation of the Anderson transition in HxWO3 bronzes by high resolution x-ray photoelectron spectroscopy,” Chem. Phys. Lett. 74, 341–344 (1980).
[CrossRef]

Electrochim. Acta (2)

S. H. Lee, H. M. Cheong, C. E. Tracy, A. Mascarenhas, D. K. Benson, S. K. Deb, “Raman spectroscopic studies of electrochromic a-WO3,” Electrochim. Acta 44, 3111–3115 (1999).
[CrossRef]

J. P. Pereira-Ramas, R. Baddour-Hadjean, N. Kumagai, K. Tanno, “Improvement of the electrochemical behaviour of WO3 as reversible cathodic material for lithium batteries,” Electrochim. Acta 38, 431–436 (1993).
[CrossRef]

J. App. Phys. (1)

D. Davazoglou, A. Donnadieu, “Study of optical dispersion parameters of WO3 polycrystalline thin films,” J. App. Phys. 72, 1502–1511 (1992).
[CrossRef]

J. Appl. Opt. (1)

M. DiDomenico, “Material dispersion in optical fiber waveguides,” J. Appl. Opt. 11, 652–654 (1972).
[CrossRef]

J. Appl. Phys. (9)

T. Toyoda, “The optical dispersion parameters in WO3 thin films,” J. Appl. Phys. 63, 5166–5168 (1988).
[CrossRef]

F. O. Arntz, R. B. Goldner, B. Morel, T. E. Hass, K. K. Wong, “Near-infrared reflectance modulation with electrochromic crystalline WO3 films deposited on ambient temperature glass substrates by an oxygen ion-assisted technique,” J. Appl. Phys. 67, 3177–3179 (1990).
[CrossRef]

T. Yoshimura, M. Watanabe, Y. Koike, K. Kiyota, M. Tanaka, “Enhancement in oscillator strength of color centers in electrochromic thin films deposited from WO2 powder,” J. Appl. Phys. 53, 7314–7320 (1982).
[CrossRef]

S. F. Cogan, T. D. Plante, M. A. Parker, R. D. Rauh, “Free-electron electrochromic modulation in crystalline LixWO3,” J. Appl. Phys. 60, 2735–2738 (1986).
[CrossRef]

K. Miyake, H. Kaneko, M. Sano, N. Suedomi, “Physical and electrochromic properties of the amorphous and crystalline tungsten oxide thick films prepared under reducing atmosphere,” J. Appl. Phys. 55, 2747–2753 (1984).
[CrossRef]

T. Yoshimura, “Oscillator strength of small-polaron absorption in WOx electrochromic thin films,” J. Appl. Phys. 57, 911–919 (1985).
[CrossRef]

P. Gerard, A. Deneuville, “Color in tungsten trioxide thin films,” J. Appl. Phys. 48, 4252–4255 (1977).
[CrossRef]

M. Green, Z. Hussain, “Optical properties of lithium tungsten bronze thin films,” J. Appl. Phys. 74, 3451–3458 (1993).
[CrossRef]

M. Green, Z. Hussain, “Optical properties of dilute hydrogen tungsten bronze thin films,” J. Appl. Phys. 69, 7788–7796 (1991).
[CrossRef]

J. Chem. Phys. (2)

J. D. Greiner, H. R. Shanks, D. C. Wallace, “Magnetic susceptibility of the cubic sodium tungsten bronzes,” J. Chem. Phys. 36, 772–776 (1962).
[CrossRef]

B. L. Crowder, M. J. Sienko, “Some solid-state studies of tungsten trioxide and their significance to tungsten bronze theory,” J. Chem. Phys. 38, 1576–1583 (1963).
[CrossRef]

J. Electrochem. Soc. (7)

D. H. Mendelsohn, R. B. Goldner, “Ellipsometry measurements as direct evidence of the Drude model for polycrystalline electrochromic WO3 films,” J. Electrochem. Soc. 131, 857–860 (1984).
[CrossRef]

J. G. Zhang, D. K. Benson, C. E. Tracy, S. K. Deb, A. W. Czanderna, C. Bechinger, “Chromic mechanism in amorphous WO3 films,” J. Electrochem. Soc. 144, 2022–2025 (1997).
[CrossRef]

N. Yoshiike, S. Kondo, “Electrochemical properties of WO3. x(H2O). 1. The influences of water adsorption and hydroxylation,” J. Electrochem. Soc. 130, 2283–2287 (1983).
[CrossRef]

O. F. Schirmer, V. Wittwer, G. Baur, G. Brandt, “Dependence of WO3 electrochromic absorption on crystallinity,” J. Electrochem. Soc. 124, 749–753 (1977).
[CrossRef]

S. Hashimoto, H. Matsuoka, H. Kagechika, M. Susa, K. S. Goto, “Degradation of electrochromic amorphous WO3 film in lithium-salt electrolyte,” J. Electrochem. Soc. 137, 1300–1304 (1990).
[CrossRef]

T. Maruyama, S. Arai, “Electrochromic properties of tungsten trioxide thin films prepared by chemical vapor deposition,” J. Electrochem. Soc. 141, 1021–1024 (1994).
[CrossRef]

T. Maruyama, T. Kanagawa, “Electrochromic properties of tungsten trioxide thin films prepared by photochemical vapor deposition,” J. Electrochem. Soc. 141, 2435–2438 (1994).
[CrossRef]

J. Electron. Mater. (1)

A. Deneuville, P. Gerard, “Influence of substoichiometry, hydrogen content and crystallinity on the optical and electrical properties of HxWOy thin films,” J. Electron. Mater. 7, 559–587 (1978).
[CrossRef]

J. Phys. C (1)

D. W. Bullett, “Bulk and surface electron states in WO3 and tungsten bronzes,” J. Phys. C 16, 2197–2207 (1983).
[CrossRef]

J. Phys. Chem. (1)

I. Bedja, S. Hotchandani, P. V. Kamat, “Photoelectrochemistry of quantized WO3 colloids electron storage, electrochromic, and photoelectrochromic effects,” J. Phys. Chem. 97, 11064–11070 (1993).
[CrossRef]

J. Phys. Chem. Solids (2)

P. R. Collins, W. J. Fredericks, “Absorption spectra and oscillator strength of KBr:Pb,” J. Phys. Chem. Solids 47, 529–532 (1986).
[CrossRef]

M. R. Tubbs, “Dispersion effects in interference methods for the measurement of refractive index,” J. Phys. Chem. Solids 30, 2323–2325 (1969).
[CrossRef]

J. Phys. D (1)

M. Di Giulio, D. Manno, G. Micocci, A. Serra, A. Tepore, “Gas-sensing properties of sputtered thin films of tungsten oxide,” J. Phys. D 30, 3211–3215 (1997).
[CrossRef]

J. Solid State Chem. (1)

T. Nanba, I. Yasui, “X-ray diffraction study of microstructure of amorphous tungsten trioxide films prepared by electron beam vacuum evaporation,” J. Solid State Chem. 83, 304–315 (1989).
[CrossRef]

J. Vac. Sci. Technol. A (2)

M. Rubin, “Ion-assisted sputtering of tungsten oxide solar-control films,” J. Vac. Sci. Technol. A 10, 1905–1907 (1992).
[CrossRef]

S. S. Sun, P. H. Holloway, “Modification of vapor-deposited WO3 electrochromic films by oxygen backfilling,” J. Vac. Sci. Technol. A 1, 529–533 (1983).
[CrossRef]

Jpn. J. Appl. Phys. (4)

H. Morita, H. Washida, “Electrochromism of atmospheric evaporated tungsten oxide films,” Jpn. J. Appl. Phys. 23, 754–759 (1984).
[CrossRef]

H. Morita, “Coloration and decoloration in atmospheric-evaporated tungsten-oxide films (AETOF) utilizing lithium ions,” Jpn. J. Appl. Phys. 24, 750–754 (1985).
[CrossRef]

M. Shiojiri, T. Miyano, C. Kaito, “Electron microscopic studies of structure and crystallization of amorphous metal oxide films,” Jpn. J. Appl. Phys. 18, 1937–1945 (1979).
[CrossRef]

Y. Shigesato, “Photochromic properties of amorphous WO3 films,” Jpn. J. Appl. Phys. 30, 1457–1462 (1991).
[CrossRef]

Mater. Chem. Phys. (1)

L. Su, H. Wang, Z. Lu, “All-solid-state electrochromic window of Prussian Blue and electrodeposited WO3 film with poly(ethylene oxide) gel electrolyte,” Mater. Chem. Phys. 56, 266–270 (1998).
[CrossRef]

Mater. Res. Bull. (1)

P. G. Dickens, R. M. P. Quillian, M. S. Whittingham, “The reflectance spectra of the tungsten bronzes,” Mater. Res. Bull. 3, 941–950 (1968).
[CrossRef]

Mater. Sci. Eng. A (1)

C. G. Granqvist, “Electrochromic materials: metal oxide nanocomposites with variable optical properties,” Mater. Sci. Eng. A 168, 209–215 (1993).
[CrossRef]

Nature (2)

C. Bechinger, S. Ferrere, A. Zaban, J. Sprague, B. A. Gregg, “Photoelectrochromic windows and displays,” Nature 383, 608–610 (1996).
[CrossRef]

J. N. Yao, K. Hashimoto, A. Fujishima, “Photochromism induced in an electrolytically pretreated MoO3 thin film by visible light,” Nature 355, 624–626 (1992).
[CrossRef]

Opt. Eng. (1)

T. Nishide, F. Mizukami, “Refractive indices of the tungsten oxide films prepared by sol-gel and sputtering processes,” Opt. Eng. 34, 3329–3333 (1995).
[CrossRef]

Philos. Mag. (1)

S. K. Deb, “Optical and photoelectric properties and colour centres in thin films of tungsten oxide,” Philos. Mag. 27, 801–821 (1973).
[CrossRef]

Philos. Mag. B (1)

E. Salje, B. Guttler, “Anderson transition and intermediate polaron formation in WO3-x transport properties and optical absorption,” Philos. Mag. B 50, 607–620 (1984).
[CrossRef]

Phys. Rev. (3)

L. F. Mattheiss, “Band structure and Fermi surface of ReO3,” Phys. Rev. 181, 987–1000 (1969).
[CrossRef]

S. Sawada, G. C. Danielson, “Domain structure of WO3 single crystals,” Phys. Rev. 113, 1005–1013 (1959).
[CrossRef]

J. Feinleib, W. J. Scouler, A. Ferretti, “Optical properties of the metal ReO3 from 0.1 to 22 eV,” Phys. Rev. 165, 765–774 (1968).
[CrossRef]

Phys. Rev. B (7)

S. K. Deb, “Electron spin resonance of defects in single crystal and thin films of tungsten trioxide,” Phys. Rev. B 16, 1020–1024 (1977).
[CrossRef]

A. Borghesi, M. Geddo, G. Guizzetti, E. Reguzzoni, A. Stella, F. Levy, “Plasmon and interband transitions in Ti1-xHfxSe2 systems,” Phys. Rev. B 29, 3167–3171 (1984).
[CrossRef]

S. H. Wemple, M. DiDomenico, “Behavior of the electronic dielectric constant in covalent and ionic materials,” Phys. Rev. B 3, 1338–1350 (1971).
[CrossRef]

P. A. Lightsey, D. A. Lilienfeld, D. F. Holcomb, “Transport properties of cubic NaxWO3 near the insulator-metal transition,” Phys. Rev. B 14, 4730–4732 (1976).
[CrossRef]

P. A. Lightsey, “Percolation view of transport properties in NaxWO3,” Phys. Rev. B 8, 3586–3589 (1973).
[CrossRef]

J. F. Owen, K. J. Teegarden, H. R. Shanks, “Optical properties of the sodium-tungsten bronzes and tungsten trioxide,” Phys. Rev. B 18, 3827–3837 (1978).
[CrossRef]

T. M. Donovan, W. E. Spicer, J. M. Bennett, E. J. Ashley, “Optical properties of amorphous germanium films,” Phys. Rev. B 2, 397–413 (1970).
[CrossRef]

Phys. Status Solidi A (1)

M. R. Tubbs, “MoO3 layers-optical properties, color centres, and holographic recording,” Phys. Status Solidi A 21, 253–260 (1974).
[CrossRef]

Proc. Soc. Inf. Disp. (1)

K. Matsuhiro, Y. Masuda, “Transmissive electrochromic display using a porous crystalline WO3 counter electrode,” Proc. Soc. Inf. Disp. 21/22, 101–105 (1980).

RCA Rev. (1)

B. W. Faughnan, R. S. Crandall, P. M. Heyman, “Electrochromism in WO3 amorphous films,” RCA Rev. 36, 177–200 (1975).

Rev. Pure Appl. Chem. (1)

G. Hagg, A. Magneli, “Recent structure investigations of oxygen compounds of molybdenum and tungsten,” Rev. Pure Appl. Chem. 4, 235–249 (1954).

Sens. Actuators (1)

A. Bryant, M. Poirier, G. Riley, D. L. Lee, J. F. Vetelino, “Gas detection using surface acoustic wave delay lines,” Sens. Actuators 4, 105–111 (1983).
[CrossRef]

Sens. Actuators B (1)

L. J. LeGore, K. Snow, J. D. Galipeau, J. F. Vetelino, “The optimisation of a tungsten trioxide film for application in a surface acoustic wave gas sensor,” Sens. Actuators B 35–36, 164–169 (1996).
[CrossRef]

Sol. Energy (1)

A. Georg, W. Graf, D. Schweiger, V. Wittwer, P. Nitz, H. R. Wilson, “Switchable glazing with a large dynamic range in total solar energy transmittance,” Sol. Energy 62, 215–228 (1998).
[CrossRef]

Sol. Energy Mater. (6)

R. B. Goldner, G. Seward, K. Wong, T. Haas, G. H. Foley, R. Chapman, S. Schulz, “Completely solid lithiated smart windows,” Sol. Energy Mater. 19, 17–26 (1989).
[CrossRef]

T. Kamimori, J. Nagai, M. Mizuhashi, “Electrochromic devices for transmissive and reflective light control,” Sol. Energy Mater. 16, 27–38 (1987).
[CrossRef]

Q. Zhong, S. A. Wessel, B. Heinrich, K. Colbow, “The electrochromic properties and mechanism of HxWO3 and LixWO3,” Sol. Energy Mater. 20, 289–296 (1990).
[CrossRef]

C. M. Lampert, “Electrochromic materials and devices for energy efficient windows,” Sol. Energy Mater. 11, 1–27 (1984).
[CrossRef]

R. B. Goldner, K. Wong, G. Foley, P. Norton, L. Wamboldt, G. Seward, T. Haas, R. Chapman, “Thin films of WO3 for practical electrochromic windows,” Sol. Energy Mater. 16, 365–370 (1987).
[CrossRef]

S. F. Cogan, T. D. Plante, M. A. Parker, R. D. Rauh, “Electrochromic solar attenuation in crystalline and amorphous LixWO3,” Sol. Energy Mater. 14, 185–193 (1986).
[CrossRef]

Sol. Energy Mater. Sol. Cells (7)

L. Su, L. Zhang, J. Fang, M. Xu, Z. Lu, “Electrochromic and photoelectrochemical behavior of electrodeposited tungsten trioxide films,” Sol. Energy Mater. Sol. Cells 58, 133–140 (1999).
[CrossRef]

A. Georg, W. Graf, R. Neumann, V. Wittwer, “Stability of gasochromic WO3 films,” Sol. Energy Mater. Sol. Cells 63, 165–176 (2000).
[CrossRef]

S. K. Deb, “Opportunities and challenges of electrochromic pohenomena in transition metal oxides,” Sol. Energy Mater. Sol. Cells 25, 327–338 (1992).
[CrossRef]

S. M. A. Durrani, E. E. Khawaja, M. A. Salim, M. F. Al-Kuhaili, A. M. Al-Shukri, “Effect of preparation conditions on the optical and thermochromic properties of thin films of tungsten oxide,” Sol. Energy Mater. Sol. Cells 71, 313–325 (2002).
[CrossRef]

L. Su, L. Zhang, J. Fang, M. Xu, Z. Lu, “Electrochromic and photoelectrochemical behavior of electrodeposited tungsten trioxide films,” Sol. Energy Mater. Sol. Cells 58, 133–140 (1999).
[CrossRef]

J. Gottsche, A. Hinsch, V. Wittwer, “Electrochromic mixed WO3–TiO2 thin films produced by sputtering and the sol-gel technique: a comparison,” Sol. Energy Mater. Sol. Cells 31, 415–428 (1993).
[CrossRef]

A. Georg, W. Graf, V. Wittwer, “Comparison of electrical conductivity and optical properties of substoichiometrically and electrochemically colored WOx films of different crystallinity,” Sol. Energy Mater. Sol. Cells 51, 353–370 (1998).
[CrossRef]

Solid State Commun. (5)

C. Bechinger, M. S. Burdis, J. G. Zhang, “Comparison between electrochromic and photochromic coloration efficiency of tungsten oxide thin films,” Solid State Commun. 101, 753–756 (1997).
[CrossRef]

M. R. Goulding, C. B. Thomas, R. J. Hurditch, “A comparison of thermo and photochromic behavior in films of amorphous WO3,” Solid State Commun. 46, 451–453 (1983).
[CrossRef]

L. Kopp, B. N. Harmon, S. H. Liu, “Band structure of cubic NaxWO3,” Solid State Commun. 22, 677–679 (1977).
[CrossRef]

V. Wittwer, O. F. Schirmer, P. Schlotter, “Disorder dependence and optical detection of the Anderson transition in amorphous HxWO3 bronzes,” Solid State Commun. 25, 977–980 (1978).
[CrossRef]

C. Bechinger, M. S. Burdis, J. G. Zhang, “Comparison between electrochromic and photochromic coloration efficiency of tungsten oxide thin films,” Solid State Commun. 101, 753–756 (1997).
[CrossRef]

Solid State Ionics (5)

P. G. Dickens, S. C. Baker, M. T. Weller, “Hydrogen insertion in oxides,” Solid State Ionics 18/19, 89–97 (1986).
[CrossRef]

M. Green, K. Kang, “Sodium tungsten bronze thin films: variation of chemical potential with sodium concentration,” Solid State Ionics 8, 281–289 (1983).
[CrossRef]

I. D. Raistrick, “Lithium insertion reactions in tungsten and vanadium oxide bronzes,” Solid State Ionics 9/10, 425–430 (1983).
[CrossRef]

R. B. Goldner, T. E. Haas, G. Seward, K. K. Wong, P. Norton, G. Foley, G. Berera, G. Wei, S. Schulz, R. Chapman, “Thin film solid state ionic materials for electrochromic Smart Window™ glass,” Solid State Ionics 28–30, 1715–1721 (1988).
[CrossRef]

A. Georg, W. Graf, R. Neumann, V. Wittwer, “Mechanism of the gasochromic coloration of porous WO3 films,” Solid State Ionics 127, 319–328 (2000).
[CrossRef]

Tech. Phys. Lett. (1)

A. I. Gavrilyuk, G. M. Gusinskii, T. G. Lanskaya, “Determination of the oscillator strength of an optical transition for color centers in WO3 thin films,” Tech. Phys. Lett. 20, 295–297 (1994).

Thin Solid Films (5)

P. Gerard, A. Deneuville, R. Courths, “Characterization of amorphpous WO3 thin films before and after coloration,” Thin Solid Films 71, 221–236 (1980).
[CrossRef]

J. S. E. M. Svensson, C. G. Granqvist, “Electrochromic coatings for smart windows: crystalline and amorphous WO3 films,” Thin Solid Films 126, 31–36 (1985).
[CrossRef]

N. Van Nha, N. Thi Bao Ngoc, N. Van Hung, “The preparation and gas sensitive property of Pt-WO3 thin film,” Thin Solid Films 334, 113–116 (1998).
[CrossRef]

A. Agrawal, H. Habibi, “Effect of heat treatment on the structure, composition and electrochromic properties of evaporated tungsten oxide films,” Thin Solid Films 169, 257–270 (1989).
[CrossRef]

P. Delichere, P. Falaras, M. Froment, A. Hugot-Le Goff, “Electrochromism in anodic WO3 films. 1. Preparation and physicochemical properties of films in the virgin and colored states,” Thin Solid Films 161, 35–46 (1988).
[CrossRef]

Vacuum (1)

A. Azens, M. Kitenbergs, U. Kanders, “Evaporation of tungsten oxide: a mass-spectrometric study of the vapor contents,” Vacuum 46, 745–747 (1995).
[CrossRef]

Other (22)

H. E. Bennett, J. M. Bennett, “Precision measurements in thin film optics,” in Physics of Thin Films, G. Hass, R. E. Fhun, eds. (Academic, New York, 1967), Vol. 4, p. 42.

R. B. Goldner, A. Brofos, G. Foley, E. L. Goldner, T. E. Haas, W. Henderson, P. Norton, B. A. Ratnam, N. Weis, K. K. Wong, “Optical frequencies free electron scattering studies on electrochromic materials for variable reflectivity windows,” in Optical Materials Technology for Energy Efficiency & Solar Energy Conversion IV, C. W. Lampert, ed., Proc. SPIE502, 54–57 (1984).

C. Ottermann, A. Temmink, K. Bange, “Correlation of injected charge to optical constants (n, k) of electrochromic films,” in Optical Materials Technology for Energy Efficiency and Solar Energy Conversion IX, C. G. Granqvist, C. M. Lampert, eds., Proc. SPIE1272, 111–121 (1990).

S. F. Cogan, R. D. Rauh, J. D. Weswood, D. I. Plotkin, R. B. Jones, “Infrared properties of electrochromic materials,” in Optical Materials Technology for Energy Efficiency and Solar Energy Conversion VIII, C. M. Lampert, ed., SPIE 1149, 2–7 (1989).

A. Travlos, “Physical properties of thin films of sodium tungsten bronzes,” Ph.D. dissertation (University of London, London, 1984).

K. S. Kang, “Electrochromic display: sodium insertion in tungsten trioxide films,” Ph.D. dissertation (University of London, London, 1979).

D. K. Benson, C. E. Tracy, G. A. Hishmeh, P. E. Ciszek, S. H. Lee, D. P. Haberman, “Low-cost, fiber-optic hydrogen gas detector using guided-wave, surface-plasmon resonance in chemochromic thin films,” in Advanced Sensors and Monitors for Process Industries and the Environment, W. A. de Groot, ed., Proc. SPIE3535, 185–191 (1998).

S. K. Deb, “Some perspectives on electrochromic device research,” in Materials and Optics for Solar Energy Conversion and Advanced Lighting Technology, C. W. Lampert, S. Holly, eds., Proc. SPIE692, 19–31 (1986).

Z. Hussain, “Optical and electrochromic properties of oxide bronze thin films,” Ph.D. dissertation (University of London, London, 2001).

J. I. Pankove, ed., Display Devices (Springer-Verlag, Berlin, 1980), p. 191.

I. F. Chang, “Electrochromic and electrochemichromic materials and phenomena,” in Non-emissive Electrooptic Displays, A. R. Kmetz, F. K. Von Willisen, eds. (Plenum, New York, 1976).

C. G. Granqvist, Handbook of Inorganic Electrochromic Materials (Elsevier, Amsterdam, 1995).

J. S. E. M. Svensson, C. G. Granqvist, “Electrochromic coatings for smart windows,” in Optical Materials Technology for Energy Efficiency & Solar Energy Conversion, C. W. Lampert, ed., Proc. SPIE502, 30–37 (1984).

J. A. Duffy, Energy Levels in Inorganic Solids (Wiley, New York, 1990), p. 182.

J. P. Doumerc, M. Pouchard, P. Hagenmuller, “Chemical bond, crystal structure and the metal–nonmetal transition in oxide bronzes,” in The Metallic and Non-metallic States of Matter, P. P. Edwards, C. N. R. Rao, eds. (Taylor & Francis, London, 1985), Chap. 11, p. 287.

P. D. Cikmach, “Electrochromism and charge carrier localization in WO3,” Ph.D dissertation (Latrian State University, Riga, Latvia, 1985; in Russian).

F. Abeles, “Optical properties of metals,” in Optical Properties of Solids, F. Abeles, ed. (North-Holland, Amsterdam, 1972), Chap. 3, p. 93.

F. Abelès, “Methods for determining optical parameters of thin films,” in Progress in Optics, E. Wolf, ed. (Wiley, New York, 1963), Vol. II, p. 268.

J. I. Pankov, Optical Processes in Semiconductors (Dover, New York, 1971), p. 93.

N. F. Mott, E. A. Davis, Electronic Process in Noncrystalline Materials (Clarendon, Oxford, 1979), p. 15.

K. Seeger, Semiconductor Physics (Springer-Verlag, Berlin, 1985), p. 302.

H. G. Unger, Planar Optical Waveguides and Fibers (Oxford U. Press, London, 1977).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Schematic ray diagrams for the transmission process: (a) Silica plate covered with film and (b) reference base silica plate. (c) Specular reflection in the final stage, where I o is an incident light intensity and I obs denotes the observed light intensity.

Fig. 2
Fig. 2

Reflectivity versus photon energy h ν of H x WO3 bronze thin films: x = 0.0, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.10, 0.11, 0.13, 0.14.

Fig. 3
Fig. 3

Reflectivity versus photon energy h ν of Li x WO3 bronze thin films: x = 0.04, 0.06, 0.07, 0.08, 0.10, 0.13, 0.15, 0.16, 0.20, 0.23, 0.25.

Fig. 4
Fig. 4

Real part of refractive index n versus wavelength λ of H x WO3 bronze thin films: x = 0.0, 0.04, 0.05, 0.06, 0.07, and 0.08.

Fig. 5
Fig. 5

Real part of refractive index n versus wavelength λ of H x WO3 bronze thin films: x = 0.09, 0.10, 0.11, 0.13, 0.14.

Fig. 6
Fig. 6

Real part of refractive index n versus wavelength λ of Li x WO3 bronze thin films: x = 0.04, 0.06, 0.07, 0.08, 0.10, 0.13.

Fig. 7
Fig. 7

Real part of refractive index n versus wavelength λ of Li x WO3 bronze thin films: x = 0.15, 0.16, 0.20, 0.23, 0.25.

Fig. 8
Fig. 8

Plot of (n 2 - 1)-1 versus (h ν)2 of H x WO3 bronze thin films: x = 0.04, 0.05, 0.06, 0.07, 0.08. Dotted curves, least-squares fits.

Fig. 9
Fig. 9

Plot of (n 2 - 1)-1 versus (h ν)2 of H x WO3 bronze thin films: x = 0.09, 0.10, 0.11, 0.13, 0.14. Dotted curves, least-squares fits.

Fig. 10
Fig. 10

Plot of (n 2 - 1)-1 versus (h ν)2 of Li x WO3 bronze thin films: x = 0.04, 0.06, 0.07, 0.08, 0.10, 0.13. Dotted curves, least-squares fits.

Fig. 11
Fig. 11

Plot of (n 2 - 1)-1 versus (h ν)2 of Li x WO3 bronze thin films: x = 0.15, 0.16, 0.20, 0.23, 0.25. Dotted curves, least-squares fits.

Fig. 12
Fig. 12

Plot of screened plasma frequency ν p versus concentration x 1/2 of H x WO3 and Li x WO3 bronze thin films.

Tables (4)

Tables Icon

Table 1 Modified Drude–Zener Model Parameters for HxWO3 Thin Filmsa

Tables Icon

Table 2 Modified Drude–Zener Model Parameters for LixWO3 Thin Filmsa

Tables Icon

Table 3 Wemple-Didomenico Single-Oscillator Model Parameters for HxWO3 Thin Filmsa

Tables Icon

Table 4 Wemple-Didomenico Single-Oscillator Model Parameters for LixWO3 Thin Filmsa

Equations (41)

Equations on this page are rendered with MathJax. Learn more.

C1, indium tin oxide, MxWO3 bronze |LiClO4|Pt, C2,
colorlessWO3+xM++xe-MxWO3 blue color,
x=NTMAρfVf,
x=NTMAρsVG,
QT=Itf,
NT=QT/e,
x=xρfVfρsVG
Vf=VG+VGB,
x=x ρfρs1+VGBVG.
VG  L3, VGB  L2l.
VGBVG=constant lL
VGBVG=σL.
x=xρfρs1+σL,
x=ItfMeVfAρs1+σL.
I=10-5 A/cm2, M=144 g/mol, e=1.6×10-19 Coulomb, A=6.023×1023, ρs=7.3 g/cm3, σ=44 Å±3 Å, L=50 Å±10 Å,
x=6.19×10-15 cm3/stfVfs/cm3
x=6.19×10-15tf/Vf,
Tf=Tobs1-RsAf1+Rs1-Tobs
Rf=Robs-Tf2Rs1-RfRs,
Rs=ns-12ns-120.035.
1-RfRs1.
Tf=0.96Tobs,
Rf=Robs-0.035Tf2.
d=12mλn2-sin2 ϕ1/2,
d=m2nλmax,
d=m+1/22nλmin,
2nd=λ2-1-λ1-1-1,
n=n-λ dndλ
1-R1+R=2n1+n2.
εtotal1-ne2x4π2εome*νp2+εhf,
νp2=Zx,
Z=e24πεonπme*1+εhf.
Z=0.884×10301μ*1+εhfs-2,
νp=0.94×1015xμ*1+εhf1/2 Hz,
νp=31.4×103xμ*1+εhf1/2 cm-1.
hνp=hνrminεhf-1εhf1/2,
h2νp2=15.13xμ*1+εhfeV2,
μ*=15.13xh2νp21+εhf.
n2E-1=EdEa/Ea2-E2+E1/E2.
n2E-1=EaEdEa2-E2,
n2ν-1-1=Ea/Ed-hν2/EaEd,

Metrics