Abstract

Two laser Doppler microscopes (LDMs) based on an optical heterodyne interferometer have been developed for measuring fluid velocity in a microchannel. One of LDMs receives light from a Zeeman laser, and one easily obtains the standard heterodyne signal because a polarizer is set in front of a photomultiplier tube. The other LDM, with light from a He-Ne laser, employs a diffractive grating as a frequency shifter that is modulated in a sinusoidal movement by a piezoelectric transducer stack. By this modulation the nonstandard heterodyne signal is further processed by a new synthetic heterodyne algorithm. Finally, the phase shift related to the fluid velocity in both LDMs is demodulated by digital postprocessing in fast-Fourier-transform, bandpass filtering, inverse-fast-Fourier-transform, and arctangent algorithms.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Minagawa, E. Okada, “A laser two focus velocimeter with high spatial resolution using confocal optical system,” in Proceedings of the Industrial Electronics, Control, and Instrumentation ’93 International Conference (IEEE, Piscataway, N.J., 1993), Vol. 3, pp. 1527–1530.
  2. E. J. Nijhof, W. S. J. Uijttewaal, R. M. Heethaar, “A laser Doppler system for measuring distributions of blood particles in narrow flow channels,” IEEE Trans. Instrum. 43, 430–435 (1994).
    [CrossRef]
  3. A. K. Tieu, M. R. Mackenzie, E. B. Li, “Measurement in microscopic flow with a solid-state LDA,” Exp. Fluids 19, 293–294 (1995).
    [CrossRef]
  4. H. Mishina, T. Ushizaka, T. Asakura, “A laser Doppler microscope,” Opt. Laser Technol., 121–127 (1976).
    [CrossRef]
  5. H. S. Chuang, Y. L. Lo, “Fluid velocity measurements in scanning micro-channel by a laser Doppler microscope,” submitted to Opt. Lasers Eng.
  6. H. Muller, V. Strunck, D. Dopheide, “The application of quadrature demodulation techniques for the investigation of flows,” Flow Meas. Instrum. 7, 237–245 (1996).
    [CrossRef]
  7. J. Oldengram, “Development of rotating diffraction gratings and their use in laser anemometry,” Opt. Laser Technol., 69–71 (1977).
    [CrossRef]
  8. W. H. Stevenson, “Optical frequency shifting by means of a rotating diffraction grating,” Appl. Opt. 9, 649–652 (1976).
    [CrossRef]
  9. L. E. Drain, The Laser Doppler Technique (Wiley, New York, 1980).
  10. J. P. Campbell, W. H. Steier, “Rotating-waveplate optical-frequency shifting in lithium niobate,” IEEE J. Quantum Electron. QE-7, 450–457 (1971).
    [CrossRef]
  11. Y. L. Lo, C. H. Chuang, “New synthetic-heterodyne demodulation for optical fiber interferometry,” IEEE J. Quantum Electron. 37, 658–663 (2001).
    [CrossRef]
  12. E. Li, K. Tieu, M. Mackenzie, “Interference patterns of two focused Gaussian beams in an LDA measuring volume,” Opt. Lasers Eng. 27, 395–407 (1997).
    [CrossRef]
  13. P. C. Miles, “Geometry of the fringe field formed in the intersection of two Gaussian beams,” Appl. Opt. 35, 5887–5895 (1996).
    [CrossRef] [PubMed]
  14. J. B. Ferguson, R. H. Morris, “Single-mode collapse in a 632.8 nm He–Ne laser,” Appl. Opt. 17, 2924–2929 (1978).
    [CrossRef] [PubMed]
  15. T. Mitsuo, “Spatial-carrier fringe-pattern analysis and its applications to precision interferometry and profilometry: an overview,” Ind. Metrol. 1, 79–99 (1990).
    [CrossRef]

2001 (1)

Y. L. Lo, C. H. Chuang, “New synthetic-heterodyne demodulation for optical fiber interferometry,” IEEE J. Quantum Electron. 37, 658–663 (2001).
[CrossRef]

1997 (1)

E. Li, K. Tieu, M. Mackenzie, “Interference patterns of two focused Gaussian beams in an LDA measuring volume,” Opt. Lasers Eng. 27, 395–407 (1997).
[CrossRef]

1996 (2)

P. C. Miles, “Geometry of the fringe field formed in the intersection of two Gaussian beams,” Appl. Opt. 35, 5887–5895 (1996).
[CrossRef] [PubMed]

H. Muller, V. Strunck, D. Dopheide, “The application of quadrature demodulation techniques for the investigation of flows,” Flow Meas. Instrum. 7, 237–245 (1996).
[CrossRef]

1995 (1)

A. K. Tieu, M. R. Mackenzie, E. B. Li, “Measurement in microscopic flow with a solid-state LDA,” Exp. Fluids 19, 293–294 (1995).
[CrossRef]

1994 (1)

E. J. Nijhof, W. S. J. Uijttewaal, R. M. Heethaar, “A laser Doppler system for measuring distributions of blood particles in narrow flow channels,” IEEE Trans. Instrum. 43, 430–435 (1994).
[CrossRef]

1990 (1)

T. Mitsuo, “Spatial-carrier fringe-pattern analysis and its applications to precision interferometry and profilometry: an overview,” Ind. Metrol. 1, 79–99 (1990).
[CrossRef]

1978 (1)

1977 (1)

J. Oldengram, “Development of rotating diffraction gratings and their use in laser anemometry,” Opt. Laser Technol., 69–71 (1977).
[CrossRef]

1976 (2)

W. H. Stevenson, “Optical frequency shifting by means of a rotating diffraction grating,” Appl. Opt. 9, 649–652 (1976).
[CrossRef]

H. Mishina, T. Ushizaka, T. Asakura, “A laser Doppler microscope,” Opt. Laser Technol., 121–127 (1976).
[CrossRef]

1971 (1)

J. P. Campbell, W. H. Steier, “Rotating-waveplate optical-frequency shifting in lithium niobate,” IEEE J. Quantum Electron. QE-7, 450–457 (1971).
[CrossRef]

Asakura, T.

H. Mishina, T. Ushizaka, T. Asakura, “A laser Doppler microscope,” Opt. Laser Technol., 121–127 (1976).
[CrossRef]

Campbell, J. P.

J. P. Campbell, W. H. Steier, “Rotating-waveplate optical-frequency shifting in lithium niobate,” IEEE J. Quantum Electron. QE-7, 450–457 (1971).
[CrossRef]

Chuang, C. H.

Y. L. Lo, C. H. Chuang, “New synthetic-heterodyne demodulation for optical fiber interferometry,” IEEE J. Quantum Electron. 37, 658–663 (2001).
[CrossRef]

Chuang, H. S.

H. S. Chuang, Y. L. Lo, “Fluid velocity measurements in scanning micro-channel by a laser Doppler microscope,” submitted to Opt. Lasers Eng.

Dopheide, D.

H. Muller, V. Strunck, D. Dopheide, “The application of quadrature demodulation techniques for the investigation of flows,” Flow Meas. Instrum. 7, 237–245 (1996).
[CrossRef]

Drain, L. E.

L. E. Drain, The Laser Doppler Technique (Wiley, New York, 1980).

Ferguson, J. B.

Heethaar, R. M.

E. J. Nijhof, W. S. J. Uijttewaal, R. M. Heethaar, “A laser Doppler system for measuring distributions of blood particles in narrow flow channels,” IEEE Trans. Instrum. 43, 430–435 (1994).
[CrossRef]

Li, E.

E. Li, K. Tieu, M. Mackenzie, “Interference patterns of two focused Gaussian beams in an LDA measuring volume,” Opt. Lasers Eng. 27, 395–407 (1997).
[CrossRef]

Li, E. B.

A. K. Tieu, M. R. Mackenzie, E. B. Li, “Measurement in microscopic flow with a solid-state LDA,” Exp. Fluids 19, 293–294 (1995).
[CrossRef]

Lo, Y. L.

Y. L. Lo, C. H. Chuang, “New synthetic-heterodyne demodulation for optical fiber interferometry,” IEEE J. Quantum Electron. 37, 658–663 (2001).
[CrossRef]

H. S. Chuang, Y. L. Lo, “Fluid velocity measurements in scanning micro-channel by a laser Doppler microscope,” submitted to Opt. Lasers Eng.

Mackenzie, M.

E. Li, K. Tieu, M. Mackenzie, “Interference patterns of two focused Gaussian beams in an LDA measuring volume,” Opt. Lasers Eng. 27, 395–407 (1997).
[CrossRef]

Mackenzie, M. R.

A. K. Tieu, M. R. Mackenzie, E. B. Li, “Measurement in microscopic flow with a solid-state LDA,” Exp. Fluids 19, 293–294 (1995).
[CrossRef]

Miles, P. C.

Minagawa, Y.

Y. Minagawa, E. Okada, “A laser two focus velocimeter with high spatial resolution using confocal optical system,” in Proceedings of the Industrial Electronics, Control, and Instrumentation ’93 International Conference (IEEE, Piscataway, N.J., 1993), Vol. 3, pp. 1527–1530.

Mishina, H.

H. Mishina, T. Ushizaka, T. Asakura, “A laser Doppler microscope,” Opt. Laser Technol., 121–127 (1976).
[CrossRef]

Mitsuo, T.

T. Mitsuo, “Spatial-carrier fringe-pattern analysis and its applications to precision interferometry and profilometry: an overview,” Ind. Metrol. 1, 79–99 (1990).
[CrossRef]

Morris, R. H.

Muller, H.

H. Muller, V. Strunck, D. Dopheide, “The application of quadrature demodulation techniques for the investigation of flows,” Flow Meas. Instrum. 7, 237–245 (1996).
[CrossRef]

Nijhof, E. J.

E. J. Nijhof, W. S. J. Uijttewaal, R. M. Heethaar, “A laser Doppler system for measuring distributions of blood particles in narrow flow channels,” IEEE Trans. Instrum. 43, 430–435 (1994).
[CrossRef]

Okada, E.

Y. Minagawa, E. Okada, “A laser two focus velocimeter with high spatial resolution using confocal optical system,” in Proceedings of the Industrial Electronics, Control, and Instrumentation ’93 International Conference (IEEE, Piscataway, N.J., 1993), Vol. 3, pp. 1527–1530.

Oldengram, J.

J. Oldengram, “Development of rotating diffraction gratings and their use in laser anemometry,” Opt. Laser Technol., 69–71 (1977).
[CrossRef]

Steier, W. H.

J. P. Campbell, W. H. Steier, “Rotating-waveplate optical-frequency shifting in lithium niobate,” IEEE J. Quantum Electron. QE-7, 450–457 (1971).
[CrossRef]

Stevenson, W. H.

Strunck, V.

H. Muller, V. Strunck, D. Dopheide, “The application of quadrature demodulation techniques for the investigation of flows,” Flow Meas. Instrum. 7, 237–245 (1996).
[CrossRef]

Tieu, A. K.

A. K. Tieu, M. R. Mackenzie, E. B. Li, “Measurement in microscopic flow with a solid-state LDA,” Exp. Fluids 19, 293–294 (1995).
[CrossRef]

Tieu, K.

E. Li, K. Tieu, M. Mackenzie, “Interference patterns of two focused Gaussian beams in an LDA measuring volume,” Opt. Lasers Eng. 27, 395–407 (1997).
[CrossRef]

Uijttewaal, W. S. J.

E. J. Nijhof, W. S. J. Uijttewaal, R. M. Heethaar, “A laser Doppler system for measuring distributions of blood particles in narrow flow channels,” IEEE Trans. Instrum. 43, 430–435 (1994).
[CrossRef]

Ushizaka, T.

H. Mishina, T. Ushizaka, T. Asakura, “A laser Doppler microscope,” Opt. Laser Technol., 121–127 (1976).
[CrossRef]

Appl. Opt. (3)

Exp. Fluids (1)

A. K. Tieu, M. R. Mackenzie, E. B. Li, “Measurement in microscopic flow with a solid-state LDA,” Exp. Fluids 19, 293–294 (1995).
[CrossRef]

Flow Meas. Instrum. (1)

H. Muller, V. Strunck, D. Dopheide, “The application of quadrature demodulation techniques for the investigation of flows,” Flow Meas. Instrum. 7, 237–245 (1996).
[CrossRef]

IEEE J. Quantum Electron. (2)

J. P. Campbell, W. H. Steier, “Rotating-waveplate optical-frequency shifting in lithium niobate,” IEEE J. Quantum Electron. QE-7, 450–457 (1971).
[CrossRef]

Y. L. Lo, C. H. Chuang, “New synthetic-heterodyne demodulation for optical fiber interferometry,” IEEE J. Quantum Electron. 37, 658–663 (2001).
[CrossRef]

IEEE Trans. Instrum. (1)

E. J. Nijhof, W. S. J. Uijttewaal, R. M. Heethaar, “A laser Doppler system for measuring distributions of blood particles in narrow flow channels,” IEEE Trans. Instrum. 43, 430–435 (1994).
[CrossRef]

Ind. Metrol. (1)

T. Mitsuo, “Spatial-carrier fringe-pattern analysis and its applications to precision interferometry and profilometry: an overview,” Ind. Metrol. 1, 79–99 (1990).
[CrossRef]

Opt. Laser Technol. (2)

H. Mishina, T. Ushizaka, T. Asakura, “A laser Doppler microscope,” Opt. Laser Technol., 121–127 (1976).
[CrossRef]

J. Oldengram, “Development of rotating diffraction gratings and their use in laser anemometry,” Opt. Laser Technol., 69–71 (1977).
[CrossRef]

Opt. Lasers Eng. (1)

E. Li, K. Tieu, M. Mackenzie, “Interference patterns of two focused Gaussian beams in an LDA measuring volume,” Opt. Lasers Eng. 27, 395–407 (1997).
[CrossRef]

Other (3)

L. E. Drain, The Laser Doppler Technique (Wiley, New York, 1980).

H. S. Chuang, Y. L. Lo, “Fluid velocity measurements in scanning micro-channel by a laser Doppler microscope,” submitted to Opt. Lasers Eng.

Y. Minagawa, E. Okada, “A laser two focus velocimeter with high spatial resolution using confocal optical system,” in Proceedings of the Industrial Electronics, Control, and Instrumentation ’93 International Conference (IEEE, Piscataway, N.J., 1993), Vol. 3, pp. 1527–1530.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Interference pattern intersected by two laser beams.

Fig. 2
Fig. 2

Schematic of the first LDM: B.S.’s, beam splitters; P.B.S., polarizing beam splitter; PMT, photomultiplier tube.

Fig. 3
Fig. 3

Schematic of the second LDM: PZT, piezoelectric transducer; other abbreviations as for Fig. 2.

Fig. 4
Fig. 4

Block diagram of the new synthetic heterodyne algorithm.

Fig. 5
Fig. 5

Configuration of the capillary setup.

Fig. 6
Fig. 6

Experimental results with the first LDM: (a) sensing signal, (b) FFT of the sensing signal before the bandpass filter, (c) FFT of the sensing signal after bandpass filtering.

Fig. 7
Fig. 7

Comparison of fluid velocities of the first LDM and the gauge from a LC pump: diamonds, data 1; squares, data 2.

Fig. 8
Fig. 8

Experimental results with the second LDM: (a) sensing signal, (b) FFT of the sensing signal.

Fig. 9
Fig. 9

Simulation of various phase-shift time functions.

Fig. 10
Fig. 10

Signal processing by the new synthetic heterodyne algorithm.

Fig. 11
Fig. 11

Phase shift demodulated by the second LDM.

Fig. 12
Fig. 12

Comparison of fluid velocities measured by the second LDM, fringe counting, and the gauge from a LC pump: diamonds, second LDM; squares, fringe counting.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

fD=V cos βΔZ=2Vλcos β sinα2,
Ist=as+bs cos2πfct+Δϕt =as+bs cos2πfct+2πfDt,
Irt=ar+br cos2πfct,
Ist=--½C expiΔϕexp-i2πf-fctdt+-½C exp-iΔϕexp-i2πf+fctdtexpi2πftdf=C cos2πfct+Δϕ+iC sin2πfct+Δϕ.
Ist=as+bs cosϕc cosωct+Δϕ=as+bs cosϕc cosωct+2πfDt,
I1-bsJ2ϕccosωctcosΔϕ,
I2bsJ3ϕc-J1ϕcsinωctsinΔϕ,
Iresult=I1+I2 =CcosωctcosΔϕ+sinωctsinΔϕ =C cosωct-Δϕ,
Vmax=dΔϕ/2πΔZdt,

Metrics