Abstract

A simple optical coherence tomography system has been developed based on a white-light Linnik interferometric microscope with its reference mirror mounted on a piezoelectric translator. The geometrical extension of the optics allows efficient illumination of this device with a low-power (3-W) light bulb, yielding full-field interferometric images at 50 Hz with a fast CCD camera. Owing to the very broad spectral width of the light source and of the camera response, we achieved axial resolutions equal to 1.1 µm in free space and 0.7 µm through a standard microscope cover plate. Tomographic images of an epithelial cell smear and of an hematological sample are shown.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Lee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, Science 254, 1178–1181 (1991).
    [CrossRef] [PubMed]
  2. B. E. Bouma, G. J. Tearney, eds., Handbook of Optical Coherence Tomography (Marcel Dekker, New York, 2002).
  3. W. Drexler, U. Morgner, F. X. Kartner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 24, 1221–1223 (1999).
    [CrossRef]
  4. E. Beaurepaire, A. C. Boccara, M. Lebec, L. Blanchot, H. Saint-Jalmes, “Full-field optical coherence microscopy,” Opt. Lett. 23, 244–246 (1998).
    [CrossRef]
  5. A. Dubois, A. C. Boccara, M. Lebec, “Real-time reflectivity and topography imagery of depth-resolved microscopic surfaces,” Opt. Lett. 24, 309–311 (1999).
    [CrossRef]
  6. A. Dubois, L. Vabre, A. C. Boccara, E. Beaurepaire, “High-resolution full-field optical coherence tomography with a Linnik microscope,” Appl. Opt. 41, 805–812 (2002).
    [CrossRef] [PubMed]
  7. A. F. Fercher, C. K. Hitzenberger, M. Sticker, E. Moreno-Barriuso, R. Leitgeb, W. Drexler, H. Sattmann, “A thermal light source technique for optical coherence tomography,” Opt. Commun. 185, 57–64 (2000).
    [CrossRef]
  8. T. R. Corle, G. S. Kino, Confocal Scanning Optical Microscopy and Related Systems (Academic, San Diego, Calif., 1996).
  9. A. Harasaki, J. Schmit, J. C. Wyant, “Improved vertical-scanning interferometry,” Appl. Opt. 39, 2107–2115 (2000).
    [CrossRef]
  10. An investigation along the same lines was published while this manuscript was being reviewed (L. Vabre, A. Dubois, A. C. Boccara, “Thermal light full-field optical coherence tomography,” Opt. Lett. 27, 530–532 (2002).
  11. V. P. Linnik, “Ein apparat für mikroskopisch-interferometrische untersuchung reflektierender objekte (mikrointerferometer),” Akad. Nauk.SSSR Dokl. 1, 18–23 (1933).
  12. A. Pförtner, J. Schwider, “Dispersion error in white-light Linnik interferometers and its implications for evaluation procedures,” Appl. Opt. 40, 6223–6228 (2001).
    [CrossRef]
  13. K. G. Larkin, “Efficient nonlinear algorithm for envelope detection in white-light interferometry,” J. Opt. Soc. Am. A 13, 832–843 (1996).
    [CrossRef]
  14. W. H. Steel, Interferometry (Cambridge University, Cambridge, England, 1983), p. 259.

2002

2001

2000

A. F. Fercher, C. K. Hitzenberger, M. Sticker, E. Moreno-Barriuso, R. Leitgeb, W. Drexler, H. Sattmann, “A thermal light source technique for optical coherence tomography,” Opt. Commun. 185, 57–64 (2000).
[CrossRef]

A. Harasaki, J. Schmit, J. C. Wyant, “Improved vertical-scanning interferometry,” Appl. Opt. 39, 2107–2115 (2000).
[CrossRef]

1999

1998

1996

1991

D. Huang, E. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Lee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

1933

V. P. Linnik, “Ein apparat für mikroskopisch-interferometrische untersuchung reflektierender objekte (mikrointerferometer),” Akad. Nauk.SSSR Dokl. 1, 18–23 (1933).

Beaurepaire, E.

Blanchot, L.

Boccara, A. C.

Boppart, S. A.

Chang, W.

D. Huang, E. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Lee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Corle, T. R.

T. R. Corle, G. S. Kino, Confocal Scanning Optical Microscopy and Related Systems (Academic, San Diego, Calif., 1996).

Drexler, W.

A. F. Fercher, C. K. Hitzenberger, M. Sticker, E. Moreno-Barriuso, R. Leitgeb, W. Drexler, H. Sattmann, “A thermal light source technique for optical coherence tomography,” Opt. Commun. 185, 57–64 (2000).
[CrossRef]

W. Drexler, U. Morgner, F. X. Kartner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 24, 1221–1223 (1999).
[CrossRef]

Dubois, A.

Fercher, A. F.

A. F. Fercher, C. K. Hitzenberger, M. Sticker, E. Moreno-Barriuso, R. Leitgeb, W. Drexler, H. Sattmann, “A thermal light source technique for optical coherence tomography,” Opt. Commun. 185, 57–64 (2000).
[CrossRef]

Flotte, T.

D. Huang, E. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Lee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Fujimoto, J. G.

W. Drexler, U. Morgner, F. X. Kartner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 24, 1221–1223 (1999).
[CrossRef]

D. Huang, E. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Lee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Gregory, K.

D. Huang, E. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Lee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Harasaki, A.

Hitzenberger, C. K.

A. F. Fercher, C. K. Hitzenberger, M. Sticker, E. Moreno-Barriuso, R. Leitgeb, W. Drexler, H. Sattmann, “A thermal light source technique for optical coherence tomography,” Opt. Commun. 185, 57–64 (2000).
[CrossRef]

Huang, D.

D. Huang, E. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Lee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Ippen, E. P.

Kartner, F. X.

Kino, G. S.

T. R. Corle, G. S. Kino, Confocal Scanning Optical Microscopy and Related Systems (Academic, San Diego, Calif., 1996).

Larkin, K. G.

Lebec, M.

Lee, M. R.

D. Huang, E. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Lee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Leitgeb, R.

A. F. Fercher, C. K. Hitzenberger, M. Sticker, E. Moreno-Barriuso, R. Leitgeb, W. Drexler, H. Sattmann, “A thermal light source technique for optical coherence tomography,” Opt. Commun. 185, 57–64 (2000).
[CrossRef]

Li, X. D.

Lin, C. P.

D. Huang, E. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Lee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Linnik, V. P.

V. P. Linnik, “Ein apparat für mikroskopisch-interferometrische untersuchung reflektierender objekte (mikrointerferometer),” Akad. Nauk.SSSR Dokl. 1, 18–23 (1933).

Moreno-Barriuso, E.

A. F. Fercher, C. K. Hitzenberger, M. Sticker, E. Moreno-Barriuso, R. Leitgeb, W. Drexler, H. Sattmann, “A thermal light source technique for optical coherence tomography,” Opt. Commun. 185, 57–64 (2000).
[CrossRef]

Morgner, U.

Pförtner, A.

Pitris, C.

Puliafito, C. A.

D. Huang, E. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Lee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Saint-Jalmes, H.

Sattmann, H.

A. F. Fercher, C. K. Hitzenberger, M. Sticker, E. Moreno-Barriuso, R. Leitgeb, W. Drexler, H. Sattmann, “A thermal light source technique for optical coherence tomography,” Opt. Commun. 185, 57–64 (2000).
[CrossRef]

Schmit, J.

Schuman, J. S.

D. Huang, E. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Lee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Schwider, J.

Steel, W. H.

W. H. Steel, Interferometry (Cambridge University, Cambridge, England, 1983), p. 259.

Sticker, M.

A. F. Fercher, C. K. Hitzenberger, M. Sticker, E. Moreno-Barriuso, R. Leitgeb, W. Drexler, H. Sattmann, “A thermal light source technique for optical coherence tomography,” Opt. Commun. 185, 57–64 (2000).
[CrossRef]

Stinson, W. G.

D. Huang, E. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Lee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Swanson, E.

D. Huang, E. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Lee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Vabre, L.

Wyant, J. C.

Akad. Nauk.SSSR Dokl.

V. P. Linnik, “Ein apparat für mikroskopisch-interferometrische untersuchung reflektierender objekte (mikrointerferometer),” Akad. Nauk.SSSR Dokl. 1, 18–23 (1933).

Appl. Opt.

J. Opt. Soc. Am. A

Opt. Commun.

A. F. Fercher, C. K. Hitzenberger, M. Sticker, E. Moreno-Barriuso, R. Leitgeb, W. Drexler, H. Sattmann, “A thermal light source technique for optical coherence tomography,” Opt. Commun. 185, 57–64 (2000).
[CrossRef]

Opt. Lett.

Science

D. Huang, E. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Lee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Other

B. E. Bouma, G. J. Tearney, eds., Handbook of Optical Coherence Tomography (Marcel Dekker, New York, 2002).

T. R. Corle, G. S. Kino, Confocal Scanning Optical Microscopy and Related Systems (Academic, San Diego, Calif., 1996).

W. H. Steel, Interferometry (Cambridge University, Cambridge, England, 1983), p. 259.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Experimental setup based on a Linnik microscope: PZT, piezoelectric transducer.

Fig. 2
Fig. 2

Typical fringe pattern observed with a glass plate in the sample arm when the objective axes do not coincide or when the plate is tilted around the X axis.

Fig. 3
Fig. 3

Geometry of the sample plate for system characterization.

Fig. 4
Fig. 4

Principle of fringe formation in the Linnik microscope. The system is optically equivalent to a pair of lenses sharing a common principal plane and shifted laterally by a distance d. The reference mirror and the tilted glass plate are at focal planes to within the depth-of-field distance Δz. The fringe pattern located at infinity is determined from the optical path difference (AA R ) - (AA S ).

Fig. 5
Fig. 5

Typical interferogram obtained by plotting the intensity of a fringe pattern recorded on the tilted glass plate (see Figs. 2 and 3) versus the depth coordinate Z = αY.

Fig. 6
Fig. 6

Effective spectrum of the whole system (source, optics, and CCD) calculated by the Fourier transform of raw interferograms.

Fig. 7
Fig. 7

Tomographic intensity image of the tilted glass plate: gray-scale plot of S int.

Fig. 8
Fig. 8

Phase image of the same tilted plate with the corresponding profile of ϕ.

Fig. 9
Fig. 9

Plot of tomographic intensity S int versus axial position Z on the tilted glass plate. The FWHM is 1.1 µm.

Fig. 10
Fig. 10

Tomographic profiles similar to Fig. 9 taken on a tilted standard microscope cover plate made of 170-µm-thick glass: dotted curve, front surface; solid curve, rear surface. The FWHM are 1.1 and 0.7 µm, respectively, indicating that the insertion of the cover plate in the sample arm improves the dispersion balancing between the two interferometer arms.

Fig. 11
Fig. 11

Tomographic (top) and simple confocal (bottom) images of an epithelial cell smear taken with 10×, 0.24-N.A. objectives without a cover plate. A region of interest of 180 µm × 220 µm has been extracted from the total 400-µm-wide field of view. The sample-objective distance increases from left to right by the following steps (in micrometers): 1, 0.5, 0.5, 1.

Fig. 12
Fig. 12

Tomographic images of a leucocyte in a fixed hematological sample with a standard cover plate. Objectives 20×, 0.40 N.A. A region of interest of 65 µm × 50 µm was taken from the 200-µm field of view. The sample-objective distance decreases by steps of 1 µm from (a) to (h).

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

ds=MN.A.λ2,
Δz=0.45λn1-cos θ0n0.9λN.A.2,
AAR=2ACR=2CRAR=2CRBR+2BRAR, AAS=2ACS=2CSAS=2AB+2BCS,
δ=AAR-AAS=2CRBR-2BCS+2BRAR-2AB =C+2αY+2id)=C+2Yα+d/f,
S=IR+IS+2IRIS1/2 cos ϕ,
Sint=16IRIS=S0-S22+S1-S32,
ϕ=arctanS3-S1S0-S2 mod π.
Sint=32IRIS=S0-S42+S1-S52+S2-S62+S3-S72,
ϕ=arctanS6-S2S0-S4 mod π.
DRexp2 104N
Isat=NsathvQRrefdS2τ,
Imax=1+x2IR, Imin=1-x2IR.
Imax=1+x2IRNsat,
Sintmax=32 IRIS32x1+x4Nsat2.
Sintmin=8IR=8 Nsat1+x2,
DRSN=SintmaxSintmin=4x1+x2Nsat.
x=C-1C+12 with C=ImaxImin1/2,

Metrics