Abstract

A laser-speckle method and a white-light image-correlation method are used for strain mapping. A schematic model of the correlation function of two speckle patterns is proposed for investigation of strain influence on displacement-measurement accuracy. A specific software has been developed to calculate by direct correlation the displacement values between two pictures with a grainy pattern at any point on an object’s surface. Its efficiency is demonstrated in several tests. Moreover, theoretical results are checked through experimental measurements. The limitations and performances of both optical techniques are discussed.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Wolna, “Polymer materials in practical uses of photoelasticity,” Opt. Eng. 34, 3427–3432 (1995).
    [CrossRef]
  2. E. A. Patterson, S. Gungor, “A photoelastic study of an angle crack specimen subject to mixed mode I–III displacements,” Eng. Fract. Mech. 56, 767–778 (1997).
    [CrossRef]
  3. F. Simon, S. Morel, G. Valentin, “Photoelastic investigation on the damage process zone in a cracked adhesive joint under shear loading,” in Proceedings of Euromech, S. Aivazzadeh, ed. (Nevers, France, 1997).
  4. A. S. Kobayashi, S. Mall, “Dynamic fracture toughness of Homalite 100,” Exp. Mech. 18, 11–18 (1978).
    [CrossRef]
  5. B. Zhao, A. Asundi, “Evaluating the quality of a mechanical testing system using displacement field contours,” J. Testing Evaluation 27, 290–295 (1999).
    [CrossRef]
  6. T. Nshaninan, R. Dove, K. Rajan, “In situ strain analysis with high spatial resolution: a new failure inspection tool for integrated circuit applications,” Eng. Fail Anal. 3, 109–113 (1996).
    [CrossRef]
  7. P. K. Rastogi, “Principles of holographic interferometry and speckle metrology,” Photomech. Top. Appl. Phys. 77, 103–150 (2000).
  8. J. M. Burch, J. M. J. Tokarski, “Production of multi beam fringes from photographic scatters,” Opt. Acta 15, 101–111 (1968).
  9. D. Zhang, X. Zhang, G. Cheng, “Compression strain measurement by digital speckle correlation,” Exp. Mech. 39, 62–65 (1999).
    [CrossRef]
  10. P. Synnergren, M. Sjödhal, “A stereoscopic digital speckle photography system for 3D displacement field measurements,” Opt. Lasers Eng. 31, 425–443 (1999).
    [CrossRef]
  11. A. Asundi, “Sampled-speckle photography for measurement of deformation,” Opt. Lett. 25, 218–220 (2000).
    [CrossRef]
  12. F. Landa di Scalea, S. S. Hong, G. L. Cloud, “Whole-field measurement in a pin-loaded plate by electronic speckle pattern interferometry and the finite element method,” Exp. Mech. 38, 55–60 (1998).
    [CrossRef]
  13. F. P. Chiang, Q. Wang, F. Lehman, “New developments in full field strain measurements using speckles,” in Nontraditional Methods of Sensing Stress, Strain and Damage in Materials and Structures, G. F. Lucas, D. A. Stubbs, eds. (American Society for Testing and Materials, West Conshohocken, Pa.1997), pp. 156–169.
  14. M. Anwander, B. G. Zagar, B. Weiss, H. Weiss, “Noncontacting strain measurements at high temperatures by the digital laser speckle technique,” Exp. Mech. 40, 98–105 (2000).
    [CrossRef]
  15. R. Feiel, P. Wilksch, “High-resolution laser speckle correlation for displacement and strain measurement,” Appl. Opt. 39, 54–60 (2000).
    [CrossRef]
  16. L. G. Melin, M. Neumeister, K. B. Pettersson, H. Johansson, L. E. Asp, “Evaluation of four composite shear test methods by digital speckle strain mapping and fractographic analysis,” J. Composites Technol. Res. 22, 161–172 (2000).
    [CrossRef]
  17. C. Joenathan, B. Franze, P. Haible, H. J. Tiziani, “Speckle interferometry with temporal phase evaluation for measuring large-object deformation,” Appl. Opt. 37, 2608–2614 (1998).
    [CrossRef]
  18. N. Deng, I. Yamaguchi, “Automatic analysis of speckle photographs with extended range and improved accuracy,” Appl. Opt. 29, 296–303 (1990).
    [CrossRef] [PubMed]
  19. I. Yamaguchi, D. Palazov, E. Natori, J.-I. Kato, “Detection of photothermal effect by laser speckle strain gauge,” Appl. Opt. 36, 2940–2943 (1997).
    [CrossRef] [PubMed]
  20. I. Yamaguchi, “Speckle displacement and decorrelation in the diffraction and image fields for small object deformation,” Opt. Acta 28, 1359–1376 (1981).
    [CrossRef]
  21. J. S. Lyons, J. Liu, M. A. Sutton, “High-temperature deformation measurements using digital-image correlation,” Exp. Mech. 36, 64–70 (1996).
    [CrossRef]
  22. F. P. Chiang, F. Jin, Q. Wang, N. Zhu, “Speckle interferometry,” in Proceedings of the International Union of Theoretical and Applied Mechanics 98, A. Lagarde, ed. (Futuroscope, France, 1998), pp. 177–190.
  23. L. Barham, C. Baher, E. Conley, “Speckle-photography study of nuclear-waste vault deformations,” Exp. Mech. 36, 42–48 (1996).
    [CrossRef]
  24. F. Lagattu, J. Brillaud, M. C. Lafarie-Frenot, “Progress in mechanics of materials by using laser speckle method,” in Proceedings of the International Union of Theoretical and Applied Mechanics 98, A. Lagarde, ed. (Futuroscope, France, 1998), pp. 635–642.
  25. M. Hrabovsky, Z. Baca, P. Horvath, “Theory of speckle displacement and decorrelation and its application in mechanics,” Opt. Lasers Eng. 32, 395–403 (2000).
    [CrossRef]
  26. C. Froehly, R. Desailly, “Polychromatic speckle technique for three-dimensional nondestructive photoelasticimetry,” Opt. Commun. 21, 258–262 (1977).
    [CrossRef]
  27. J. W. Goodman, “Statistical properties of laser speckle patterns,” Top. Appl. Phys. 9, 9–75 (1984).
  28. F. Touchard-Lagattu, M. C. Lafarie-Frenot, “Damage and inelastic deformation mechanisms in thermoset and thermoplastic notched laminates,” Composites Sci. Technol. 56, 557–568 (1996).
    [CrossRef]
  29. A. Asundi, F. P. Chiang, “Theory and applications of the white light speckle method for strain analysis,” Opt. Eng. 21, 570–580 (1982).
    [CrossRef]
  30. K. Machida, “Measurement of stress intensity factors of a mixed-mode interface crack by a speckle photography,” Opt. Rev. 4, 253–260 (1997).
    [CrossRef]
  31. I. Yamaguchi, “Recent progress in speckle metrology,” Int. J. Jpn. Soc. Precis. Eng. 26, 89–95 (1992).
  32. D. J. Chen, F. P. Chiang, Y. S. Tan, H. S. Don, “Digital speckle-displacement measurement using a complex spectrum method,” Appl. Opt. 32, 1839–1849 (1993).
    [CrossRef] [PubMed]

2000

P. K. Rastogi, “Principles of holographic interferometry and speckle metrology,” Photomech. Top. Appl. Phys. 77, 103–150 (2000).

M. Hrabovsky, Z. Baca, P. Horvath, “Theory of speckle displacement and decorrelation and its application in mechanics,” Opt. Lasers Eng. 32, 395–403 (2000).
[CrossRef]

M. Anwander, B. G. Zagar, B. Weiss, H. Weiss, “Noncontacting strain measurements at high temperatures by the digital laser speckle technique,” Exp. Mech. 40, 98–105 (2000).
[CrossRef]

L. G. Melin, M. Neumeister, K. B. Pettersson, H. Johansson, L. E. Asp, “Evaluation of four composite shear test methods by digital speckle strain mapping and fractographic analysis,” J. Composites Technol. Res. 22, 161–172 (2000).
[CrossRef]

A. Asundi, “Sampled-speckle photography for measurement of deformation,” Opt. Lett. 25, 218–220 (2000).
[CrossRef]

R. Feiel, P. Wilksch, “High-resolution laser speckle correlation for displacement and strain measurement,” Appl. Opt. 39, 54–60 (2000).
[CrossRef]

1999

D. Zhang, X. Zhang, G. Cheng, “Compression strain measurement by digital speckle correlation,” Exp. Mech. 39, 62–65 (1999).
[CrossRef]

P. Synnergren, M. Sjödhal, “A stereoscopic digital speckle photography system for 3D displacement field measurements,” Opt. Lasers Eng. 31, 425–443 (1999).
[CrossRef]

B. Zhao, A. Asundi, “Evaluating the quality of a mechanical testing system using displacement field contours,” J. Testing Evaluation 27, 290–295 (1999).
[CrossRef]

1998

C. Joenathan, B. Franze, P. Haible, H. J. Tiziani, “Speckle interferometry with temporal phase evaluation for measuring large-object deformation,” Appl. Opt. 37, 2608–2614 (1998).
[CrossRef]

F. Landa di Scalea, S. S. Hong, G. L. Cloud, “Whole-field measurement in a pin-loaded plate by electronic speckle pattern interferometry and the finite element method,” Exp. Mech. 38, 55–60 (1998).
[CrossRef]

1997

K. Machida, “Measurement of stress intensity factors of a mixed-mode interface crack by a speckle photography,” Opt. Rev. 4, 253–260 (1997).
[CrossRef]

I. Yamaguchi, D. Palazov, E. Natori, J.-I. Kato, “Detection of photothermal effect by laser speckle strain gauge,” Appl. Opt. 36, 2940–2943 (1997).
[CrossRef] [PubMed]

E. A. Patterson, S. Gungor, “A photoelastic study of an angle crack specimen subject to mixed mode I–III displacements,” Eng. Fract. Mech. 56, 767–778 (1997).
[CrossRef]

1996

T. Nshaninan, R. Dove, K. Rajan, “In situ strain analysis with high spatial resolution: a new failure inspection tool for integrated circuit applications,” Eng. Fail Anal. 3, 109–113 (1996).
[CrossRef]

J. S. Lyons, J. Liu, M. A. Sutton, “High-temperature deformation measurements using digital-image correlation,” Exp. Mech. 36, 64–70 (1996).
[CrossRef]

L. Barham, C. Baher, E. Conley, “Speckle-photography study of nuclear-waste vault deformations,” Exp. Mech. 36, 42–48 (1996).
[CrossRef]

F. Touchard-Lagattu, M. C. Lafarie-Frenot, “Damage and inelastic deformation mechanisms in thermoset and thermoplastic notched laminates,” Composites Sci. Technol. 56, 557–568 (1996).
[CrossRef]

1995

M. Wolna, “Polymer materials in practical uses of photoelasticity,” Opt. Eng. 34, 3427–3432 (1995).
[CrossRef]

1993

1992

I. Yamaguchi, “Recent progress in speckle metrology,” Int. J. Jpn. Soc. Precis. Eng. 26, 89–95 (1992).

1990

1984

J. W. Goodman, “Statistical properties of laser speckle patterns,” Top. Appl. Phys. 9, 9–75 (1984).

1982

A. Asundi, F. P. Chiang, “Theory and applications of the white light speckle method for strain analysis,” Opt. Eng. 21, 570–580 (1982).
[CrossRef]

1981

I. Yamaguchi, “Speckle displacement and decorrelation in the diffraction and image fields for small object deformation,” Opt. Acta 28, 1359–1376 (1981).
[CrossRef]

1978

A. S. Kobayashi, S. Mall, “Dynamic fracture toughness of Homalite 100,” Exp. Mech. 18, 11–18 (1978).
[CrossRef]

1977

C. Froehly, R. Desailly, “Polychromatic speckle technique for three-dimensional nondestructive photoelasticimetry,” Opt. Commun. 21, 258–262 (1977).
[CrossRef]

1968

J. M. Burch, J. M. J. Tokarski, “Production of multi beam fringes from photographic scatters,” Opt. Acta 15, 101–111 (1968).

Anwander, M.

M. Anwander, B. G. Zagar, B. Weiss, H. Weiss, “Noncontacting strain measurements at high temperatures by the digital laser speckle technique,” Exp. Mech. 40, 98–105 (2000).
[CrossRef]

Asp, L. E.

L. G. Melin, M. Neumeister, K. B. Pettersson, H. Johansson, L. E. Asp, “Evaluation of four composite shear test methods by digital speckle strain mapping and fractographic analysis,” J. Composites Technol. Res. 22, 161–172 (2000).
[CrossRef]

Asundi, A.

A. Asundi, “Sampled-speckle photography for measurement of deformation,” Opt. Lett. 25, 218–220 (2000).
[CrossRef]

B. Zhao, A. Asundi, “Evaluating the quality of a mechanical testing system using displacement field contours,” J. Testing Evaluation 27, 290–295 (1999).
[CrossRef]

A. Asundi, F. P. Chiang, “Theory and applications of the white light speckle method for strain analysis,” Opt. Eng. 21, 570–580 (1982).
[CrossRef]

Baca, Z.

M. Hrabovsky, Z. Baca, P. Horvath, “Theory of speckle displacement and decorrelation and its application in mechanics,” Opt. Lasers Eng. 32, 395–403 (2000).
[CrossRef]

Baher, C.

L. Barham, C. Baher, E. Conley, “Speckle-photography study of nuclear-waste vault deformations,” Exp. Mech. 36, 42–48 (1996).
[CrossRef]

Barham, L.

L. Barham, C. Baher, E. Conley, “Speckle-photography study of nuclear-waste vault deformations,” Exp. Mech. 36, 42–48 (1996).
[CrossRef]

Brillaud, J.

F. Lagattu, J. Brillaud, M. C. Lafarie-Frenot, “Progress in mechanics of materials by using laser speckle method,” in Proceedings of the International Union of Theoretical and Applied Mechanics 98, A. Lagarde, ed. (Futuroscope, France, 1998), pp. 635–642.

Burch, J. M.

J. M. Burch, J. M. J. Tokarski, “Production of multi beam fringes from photographic scatters,” Opt. Acta 15, 101–111 (1968).

Chen, D. J.

Cheng, G.

D. Zhang, X. Zhang, G. Cheng, “Compression strain measurement by digital speckle correlation,” Exp. Mech. 39, 62–65 (1999).
[CrossRef]

Chiang, F. P.

D. J. Chen, F. P. Chiang, Y. S. Tan, H. S. Don, “Digital speckle-displacement measurement using a complex spectrum method,” Appl. Opt. 32, 1839–1849 (1993).
[CrossRef] [PubMed]

A. Asundi, F. P. Chiang, “Theory and applications of the white light speckle method for strain analysis,” Opt. Eng. 21, 570–580 (1982).
[CrossRef]

F. P. Chiang, Q. Wang, F. Lehman, “New developments in full field strain measurements using speckles,” in Nontraditional Methods of Sensing Stress, Strain and Damage in Materials and Structures, G. F. Lucas, D. A. Stubbs, eds. (American Society for Testing and Materials, West Conshohocken, Pa.1997), pp. 156–169.

F. P. Chiang, F. Jin, Q. Wang, N. Zhu, “Speckle interferometry,” in Proceedings of the International Union of Theoretical and Applied Mechanics 98, A. Lagarde, ed. (Futuroscope, France, 1998), pp. 177–190.

Cloud, G. L.

F. Landa di Scalea, S. S. Hong, G. L. Cloud, “Whole-field measurement in a pin-loaded plate by electronic speckle pattern interferometry and the finite element method,” Exp. Mech. 38, 55–60 (1998).
[CrossRef]

Conley, E.

L. Barham, C. Baher, E. Conley, “Speckle-photography study of nuclear-waste vault deformations,” Exp. Mech. 36, 42–48 (1996).
[CrossRef]

Deng, N.

Desailly, R.

C. Froehly, R. Desailly, “Polychromatic speckle technique for three-dimensional nondestructive photoelasticimetry,” Opt. Commun. 21, 258–262 (1977).
[CrossRef]

Don, H. S.

Dove, R.

T. Nshaninan, R. Dove, K. Rajan, “In situ strain analysis with high spatial resolution: a new failure inspection tool for integrated circuit applications,” Eng. Fail Anal. 3, 109–113 (1996).
[CrossRef]

Feiel, R.

Franze, B.

Froehly, C.

C. Froehly, R. Desailly, “Polychromatic speckle technique for three-dimensional nondestructive photoelasticimetry,” Opt. Commun. 21, 258–262 (1977).
[CrossRef]

Goodman, J. W.

J. W. Goodman, “Statistical properties of laser speckle patterns,” Top. Appl. Phys. 9, 9–75 (1984).

Gungor, S.

E. A. Patterson, S. Gungor, “A photoelastic study of an angle crack specimen subject to mixed mode I–III displacements,” Eng. Fract. Mech. 56, 767–778 (1997).
[CrossRef]

Haible, P.

Hong, S. S.

F. Landa di Scalea, S. S. Hong, G. L. Cloud, “Whole-field measurement in a pin-loaded plate by electronic speckle pattern interferometry and the finite element method,” Exp. Mech. 38, 55–60 (1998).
[CrossRef]

Horvath, P.

M. Hrabovsky, Z. Baca, P. Horvath, “Theory of speckle displacement and decorrelation and its application in mechanics,” Opt. Lasers Eng. 32, 395–403 (2000).
[CrossRef]

Hrabovsky, M.

M. Hrabovsky, Z. Baca, P. Horvath, “Theory of speckle displacement and decorrelation and its application in mechanics,” Opt. Lasers Eng. 32, 395–403 (2000).
[CrossRef]

Jin, F.

F. P. Chiang, F. Jin, Q. Wang, N. Zhu, “Speckle interferometry,” in Proceedings of the International Union of Theoretical and Applied Mechanics 98, A. Lagarde, ed. (Futuroscope, France, 1998), pp. 177–190.

Joenathan, C.

Johansson, H.

L. G. Melin, M. Neumeister, K. B. Pettersson, H. Johansson, L. E. Asp, “Evaluation of four composite shear test methods by digital speckle strain mapping and fractographic analysis,” J. Composites Technol. Res. 22, 161–172 (2000).
[CrossRef]

Kato, J.-I.

Kobayashi, A. S.

A. S. Kobayashi, S. Mall, “Dynamic fracture toughness of Homalite 100,” Exp. Mech. 18, 11–18 (1978).
[CrossRef]

Lafarie-Frenot, M. C.

F. Touchard-Lagattu, M. C. Lafarie-Frenot, “Damage and inelastic deformation mechanisms in thermoset and thermoplastic notched laminates,” Composites Sci. Technol. 56, 557–568 (1996).
[CrossRef]

F. Lagattu, J. Brillaud, M. C. Lafarie-Frenot, “Progress in mechanics of materials by using laser speckle method,” in Proceedings of the International Union of Theoretical and Applied Mechanics 98, A. Lagarde, ed. (Futuroscope, France, 1998), pp. 635–642.

Lagattu, F.

F. Lagattu, J. Brillaud, M. C. Lafarie-Frenot, “Progress in mechanics of materials by using laser speckle method,” in Proceedings of the International Union of Theoretical and Applied Mechanics 98, A. Lagarde, ed. (Futuroscope, France, 1998), pp. 635–642.

Landa di Scalea, F.

F. Landa di Scalea, S. S. Hong, G. L. Cloud, “Whole-field measurement in a pin-loaded plate by electronic speckle pattern interferometry and the finite element method,” Exp. Mech. 38, 55–60 (1998).
[CrossRef]

Lehman, F.

F. P. Chiang, Q. Wang, F. Lehman, “New developments in full field strain measurements using speckles,” in Nontraditional Methods of Sensing Stress, Strain and Damage in Materials and Structures, G. F. Lucas, D. A. Stubbs, eds. (American Society for Testing and Materials, West Conshohocken, Pa.1997), pp. 156–169.

Liu, J.

J. S. Lyons, J. Liu, M. A. Sutton, “High-temperature deformation measurements using digital-image correlation,” Exp. Mech. 36, 64–70 (1996).
[CrossRef]

Lyons, J. S.

J. S. Lyons, J. Liu, M. A. Sutton, “High-temperature deformation measurements using digital-image correlation,” Exp. Mech. 36, 64–70 (1996).
[CrossRef]

Machida, K.

K. Machida, “Measurement of stress intensity factors of a mixed-mode interface crack by a speckle photography,” Opt. Rev. 4, 253–260 (1997).
[CrossRef]

Mall, S.

A. S. Kobayashi, S. Mall, “Dynamic fracture toughness of Homalite 100,” Exp. Mech. 18, 11–18 (1978).
[CrossRef]

Melin, L. G.

L. G. Melin, M. Neumeister, K. B. Pettersson, H. Johansson, L. E. Asp, “Evaluation of four composite shear test methods by digital speckle strain mapping and fractographic analysis,” J. Composites Technol. Res. 22, 161–172 (2000).
[CrossRef]

Morel, S.

F. Simon, S. Morel, G. Valentin, “Photoelastic investigation on the damage process zone in a cracked adhesive joint under shear loading,” in Proceedings of Euromech, S. Aivazzadeh, ed. (Nevers, France, 1997).

Natori, E.

Neumeister, M.

L. G. Melin, M. Neumeister, K. B. Pettersson, H. Johansson, L. E. Asp, “Evaluation of four composite shear test methods by digital speckle strain mapping and fractographic analysis,” J. Composites Technol. Res. 22, 161–172 (2000).
[CrossRef]

Nshaninan, T.

T. Nshaninan, R. Dove, K. Rajan, “In situ strain analysis with high spatial resolution: a new failure inspection tool for integrated circuit applications,” Eng. Fail Anal. 3, 109–113 (1996).
[CrossRef]

Palazov, D.

Patterson, E. A.

E. A. Patterson, S. Gungor, “A photoelastic study of an angle crack specimen subject to mixed mode I–III displacements,” Eng. Fract. Mech. 56, 767–778 (1997).
[CrossRef]

Pettersson, K. B.

L. G. Melin, M. Neumeister, K. B. Pettersson, H. Johansson, L. E. Asp, “Evaluation of four composite shear test methods by digital speckle strain mapping and fractographic analysis,” J. Composites Technol. Res. 22, 161–172 (2000).
[CrossRef]

Rajan, K.

T. Nshaninan, R. Dove, K. Rajan, “In situ strain analysis with high spatial resolution: a new failure inspection tool for integrated circuit applications,” Eng. Fail Anal. 3, 109–113 (1996).
[CrossRef]

Rastogi, P. K.

P. K. Rastogi, “Principles of holographic interferometry and speckle metrology,” Photomech. Top. Appl. Phys. 77, 103–150 (2000).

Simon, F.

F. Simon, S. Morel, G. Valentin, “Photoelastic investigation on the damage process zone in a cracked adhesive joint under shear loading,” in Proceedings of Euromech, S. Aivazzadeh, ed. (Nevers, France, 1997).

Sjödhal, M.

P. Synnergren, M. Sjödhal, “A stereoscopic digital speckle photography system for 3D displacement field measurements,” Opt. Lasers Eng. 31, 425–443 (1999).
[CrossRef]

Sutton, M. A.

J. S. Lyons, J. Liu, M. A. Sutton, “High-temperature deformation measurements using digital-image correlation,” Exp. Mech. 36, 64–70 (1996).
[CrossRef]

Synnergren, P.

P. Synnergren, M. Sjödhal, “A stereoscopic digital speckle photography system for 3D displacement field measurements,” Opt. Lasers Eng. 31, 425–443 (1999).
[CrossRef]

Tan, Y. S.

Tiziani, H. J.

Tokarski, J. M. J.

J. M. Burch, J. M. J. Tokarski, “Production of multi beam fringes from photographic scatters,” Opt. Acta 15, 101–111 (1968).

Touchard-Lagattu, F.

F. Touchard-Lagattu, M. C. Lafarie-Frenot, “Damage and inelastic deformation mechanisms in thermoset and thermoplastic notched laminates,” Composites Sci. Technol. 56, 557–568 (1996).
[CrossRef]

Valentin, G.

F. Simon, S. Morel, G. Valentin, “Photoelastic investigation on the damage process zone in a cracked adhesive joint under shear loading,” in Proceedings of Euromech, S. Aivazzadeh, ed. (Nevers, France, 1997).

Wang, Q.

F. P. Chiang, Q. Wang, F. Lehman, “New developments in full field strain measurements using speckles,” in Nontraditional Methods of Sensing Stress, Strain and Damage in Materials and Structures, G. F. Lucas, D. A. Stubbs, eds. (American Society for Testing and Materials, West Conshohocken, Pa.1997), pp. 156–169.

F. P. Chiang, F. Jin, Q. Wang, N. Zhu, “Speckle interferometry,” in Proceedings of the International Union of Theoretical and Applied Mechanics 98, A. Lagarde, ed. (Futuroscope, France, 1998), pp. 177–190.

Weiss, B.

M. Anwander, B. G. Zagar, B. Weiss, H. Weiss, “Noncontacting strain measurements at high temperatures by the digital laser speckle technique,” Exp. Mech. 40, 98–105 (2000).
[CrossRef]

Weiss, H.

M. Anwander, B. G. Zagar, B. Weiss, H. Weiss, “Noncontacting strain measurements at high temperatures by the digital laser speckle technique,” Exp. Mech. 40, 98–105 (2000).
[CrossRef]

Wilksch, P.

Wolna, M.

M. Wolna, “Polymer materials in practical uses of photoelasticity,” Opt. Eng. 34, 3427–3432 (1995).
[CrossRef]

Yamaguchi, I.

I. Yamaguchi, D. Palazov, E. Natori, J.-I. Kato, “Detection of photothermal effect by laser speckle strain gauge,” Appl. Opt. 36, 2940–2943 (1997).
[CrossRef] [PubMed]

I. Yamaguchi, “Recent progress in speckle metrology,” Int. J. Jpn. Soc. Precis. Eng. 26, 89–95 (1992).

N. Deng, I. Yamaguchi, “Automatic analysis of speckle photographs with extended range and improved accuracy,” Appl. Opt. 29, 296–303 (1990).
[CrossRef] [PubMed]

I. Yamaguchi, “Speckle displacement and decorrelation in the diffraction and image fields for small object deformation,” Opt. Acta 28, 1359–1376 (1981).
[CrossRef]

Zagar, B. G.

M. Anwander, B. G. Zagar, B. Weiss, H. Weiss, “Noncontacting strain measurements at high temperatures by the digital laser speckle technique,” Exp. Mech. 40, 98–105 (2000).
[CrossRef]

Zhang, D.

D. Zhang, X. Zhang, G. Cheng, “Compression strain measurement by digital speckle correlation,” Exp. Mech. 39, 62–65 (1999).
[CrossRef]

Zhang, X.

D. Zhang, X. Zhang, G. Cheng, “Compression strain measurement by digital speckle correlation,” Exp. Mech. 39, 62–65 (1999).
[CrossRef]

Zhao, B.

B. Zhao, A. Asundi, “Evaluating the quality of a mechanical testing system using displacement field contours,” J. Testing Evaluation 27, 290–295 (1999).
[CrossRef]

Zhu, N.

F. P. Chiang, F. Jin, Q. Wang, N. Zhu, “Speckle interferometry,” in Proceedings of the International Union of Theoretical and Applied Mechanics 98, A. Lagarde, ed. (Futuroscope, France, 1998), pp. 177–190.

Appl. Opt.

Composites Sci. Technol.

F. Touchard-Lagattu, M. C. Lafarie-Frenot, “Damage and inelastic deformation mechanisms in thermoset and thermoplastic notched laminates,” Composites Sci. Technol. 56, 557–568 (1996).
[CrossRef]

Eng. Fail Anal.

T. Nshaninan, R. Dove, K. Rajan, “In situ strain analysis with high spatial resolution: a new failure inspection tool for integrated circuit applications,” Eng. Fail Anal. 3, 109–113 (1996).
[CrossRef]

Eng. Fract. Mech.

E. A. Patterson, S. Gungor, “A photoelastic study of an angle crack specimen subject to mixed mode I–III displacements,” Eng. Fract. Mech. 56, 767–778 (1997).
[CrossRef]

Exp. Mech.

A. S. Kobayashi, S. Mall, “Dynamic fracture toughness of Homalite 100,” Exp. Mech. 18, 11–18 (1978).
[CrossRef]

D. Zhang, X. Zhang, G. Cheng, “Compression strain measurement by digital speckle correlation,” Exp. Mech. 39, 62–65 (1999).
[CrossRef]

F. Landa di Scalea, S. S. Hong, G. L. Cloud, “Whole-field measurement in a pin-loaded plate by electronic speckle pattern interferometry and the finite element method,” Exp. Mech. 38, 55–60 (1998).
[CrossRef]

M. Anwander, B. G. Zagar, B. Weiss, H. Weiss, “Noncontacting strain measurements at high temperatures by the digital laser speckle technique,” Exp. Mech. 40, 98–105 (2000).
[CrossRef]

J. S. Lyons, J. Liu, M. A. Sutton, “High-temperature deformation measurements using digital-image correlation,” Exp. Mech. 36, 64–70 (1996).
[CrossRef]

L. Barham, C. Baher, E. Conley, “Speckle-photography study of nuclear-waste vault deformations,” Exp. Mech. 36, 42–48 (1996).
[CrossRef]

Int. J. Jpn. Soc. Precis. Eng.

I. Yamaguchi, “Recent progress in speckle metrology,” Int. J. Jpn. Soc. Precis. Eng. 26, 89–95 (1992).

J. Composites Technol. Res.

L. G. Melin, M. Neumeister, K. B. Pettersson, H. Johansson, L. E. Asp, “Evaluation of four composite shear test methods by digital speckle strain mapping and fractographic analysis,” J. Composites Technol. Res. 22, 161–172 (2000).
[CrossRef]

J. Testing Evaluation

B. Zhao, A. Asundi, “Evaluating the quality of a mechanical testing system using displacement field contours,” J. Testing Evaluation 27, 290–295 (1999).
[CrossRef]

Opt. Acta

J. M. Burch, J. M. J. Tokarski, “Production of multi beam fringes from photographic scatters,” Opt. Acta 15, 101–111 (1968).

I. Yamaguchi, “Speckle displacement and decorrelation in the diffraction and image fields for small object deformation,” Opt. Acta 28, 1359–1376 (1981).
[CrossRef]

Opt. Commun.

C. Froehly, R. Desailly, “Polychromatic speckle technique for three-dimensional nondestructive photoelasticimetry,” Opt. Commun. 21, 258–262 (1977).
[CrossRef]

Opt. Eng.

A. Asundi, F. P. Chiang, “Theory and applications of the white light speckle method for strain analysis,” Opt. Eng. 21, 570–580 (1982).
[CrossRef]

M. Wolna, “Polymer materials in practical uses of photoelasticity,” Opt. Eng. 34, 3427–3432 (1995).
[CrossRef]

Opt. Lasers Eng.

P. Synnergren, M. Sjödhal, “A stereoscopic digital speckle photography system for 3D displacement field measurements,” Opt. Lasers Eng. 31, 425–443 (1999).
[CrossRef]

M. Hrabovsky, Z. Baca, P. Horvath, “Theory of speckle displacement and decorrelation and its application in mechanics,” Opt. Lasers Eng. 32, 395–403 (2000).
[CrossRef]

Opt. Lett.

Opt. Rev.

K. Machida, “Measurement of stress intensity factors of a mixed-mode interface crack by a speckle photography,” Opt. Rev. 4, 253–260 (1997).
[CrossRef]

Photomech. Top. Appl. Phys.

P. K. Rastogi, “Principles of holographic interferometry and speckle metrology,” Photomech. Top. Appl. Phys. 77, 103–150 (2000).

Top. Appl. Phys.

J. W. Goodman, “Statistical properties of laser speckle patterns,” Top. Appl. Phys. 9, 9–75 (1984).

Other

F. Lagattu, J. Brillaud, M. C. Lafarie-Frenot, “Progress in mechanics of materials by using laser speckle method,” in Proceedings of the International Union of Theoretical and Applied Mechanics 98, A. Lagarde, ed. (Futuroscope, France, 1998), pp. 635–642.

F. Simon, S. Morel, G. Valentin, “Photoelastic investigation on the damage process zone in a cracked adhesive joint under shear loading,” in Proceedings of Euromech, S. Aivazzadeh, ed. (Nevers, France, 1997).

F. P. Chiang, Q. Wang, F. Lehman, “New developments in full field strain measurements using speckles,” in Nontraditional Methods of Sensing Stress, Strain and Damage in Materials and Structures, G. F. Lucas, D. A. Stubbs, eds. (American Society for Testing and Materials, West Conshohocken, Pa.1997), pp. 156–169.

F. P. Chiang, F. Jin, Q. Wang, N. Zhu, “Speckle interferometry,” in Proceedings of the International Union of Theoretical and Applied Mechanics 98, A. Lagarde, ed. (Futuroscope, France, 1998), pp. 177–190.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Schematic representation of undeformed subwindow 1 and deformed subwindow 2 (when a unidirectional model is used).

Fig. 2
Fig. 2

Autocorrelation function C(x) versus the shift x normalized by the average grain diameter φ.

Fig. 3
Fig. 3

Combined effect of strain ε and total number of grains N t on the maximum value of the correlation peak.

Fig. 4
Fig. 4

Schematic representation of the l length subwindow.

Fig. 5
Fig. 5

Visualization of the correlation area depending on the strain value: (a) ε = 5%; (b) ε = 10%.

Fig. 6
Fig. 6

Shape of the correlation peak for different values of ψ = N t /N e .

Fig. 7
Fig. 7

Mechanical device for applying a tensile-flexural loading.

Fig. 8
Fig. 8

Optical setup used to record digital pictures.

Fig. 9
Fig. 9

Simplified flow chart of the granu.exe software designed for displacement calculations by direct correlation.

Fig. 10
Fig. 10

Schematic representation of different steps executed by the granu.exe software.

Fig. 11
Fig. 11

Standard deviation, i.e., the dispersion of displacement measurement versus longitudinal strain values.

Fig. 12
Fig. 12

Examples of correlation peaks experimentally obtained for different strain values: The calculation is performed in the 7 pixel × 7 pixel region around the correlation peak crest with a subwindow size of 35 pixels × 35 pixels.

Tables (2)

Tables Icon

Table 1 Maximum Strain Value εmax for a Different Total Number of Grains in the Subwindow

Tables Icon

Table 2 Experimental Results for Different Strain Values Depending on the Correlation Subwindow Size

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Cx=1+sin2π xφπ xφ2.
dCx=1+1Lsin2πξε+xφπξε+xφ2dξ.
Cx=1+1L -L/2L/2sin2πξε+xφπξε+xφ2dξ.
Cx=1+1Nt-Nt/2Nt/2sin2πnε+xφπnε+xφ2dn.
Cmax=C0=1+1Nt-Nt/2Nt/2sin2πnεπnε2dn.
ε=φl/2=2Ne,
Cx=1+12ψ-ψ+ψsin2πv+xφπv+xφ2dv,

Metrics