Abstract

We have constructed fiber-optic sensors to measure temperature and strain by combining the properties of fiber Bragg gratings with the fluorescent lifetimes of various doped fibers. Sensors have been made with the fiber Bragg grating written directly into the doped fiber to ensure the collocation of the strain and temperature measurement points. Results are compared with those obtained previously from a Bragg grating written into standard photosensitive fiber spliced to doped fiber. Standard deviation errors of 7 μ∊ and 0.8 °C have been obtained for strain and temperature ranges of up to 1860 μ∊ and 120 °C, respectively.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. D. C. Jones, “Review of fibre sensor techniques for temperature-strain discrimination,” in Optical Fiber Sensors, Vol. 16 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 36–39.
  2. W. Jin, W. C. Michie, G. Thursby, M. Konstantaki, B. Culshaw, “Simultaneous measurement of strain and temperature: error analysis,” Opt. Eng. 36, 598–609 (1997).
    [CrossRef]
  3. Y. J. Rao, N. Fisher, P. Henderson, V. Lecouche, C. N. Pannell, D. J. Webb, D. A. Jackson, “Recent developments in fibre optic sensors for point and distributed sensing in large structures,” in European Workshop on Optical Fibre Sensors, B. Culshaw, J. D. C. Jones, eds., Proc. SPIE3483, 138–141 (1998).
  4. Y. J. Rao, “Review article: in-fibre Bragg grating sensors,” Meas. Sci. Technol. 8, 355–375 (1997).
    [CrossRef]
  5. T. R. Parker, M. Farhadiroushan, V. A. Handerek, A. J. Rogers, “A fully distributed simultaneous strain and temperature sensor using spontaneous Brillouin backscatter,” IEEE Photon. Technol. Lett. 9, 979–981 (1997).
    [CrossRef]
  6. J. Jung, H. Nam, J. H. Lee, N. Park, B. Lee, “Simultaneous measurement of strain and temperature by use of a single-fiber Bragg grating and an erbium-doped fiber amplifier,” Appl. Opt. 38, 2749–2751 (1999).
    [CrossRef]
  7. J. Jung, N. Park, B. Lee, “Simultaneous measurement of strain and temperature by use of a single fiber Bragg grating written in an erbium:ytterbium-doped fiber,” Appl. Opt. 39, 1118–1120 (2000).
    [CrossRef]
  8. Y. C. Lai, G. F. Qiu, W. Zhang, L. Zhang, I. Bennion, K. T. V. Grattan, “Simultaneous measurement of temperature and strain by combining active fibre with fibre gratings,” in Proceedings of Sensors and their Applications XI, K. T. V. Grattan, S. H. Khan, eds. (Institute of Physics, London, 2001), pp. 135–139.
  9. K. T. V. Grattan, Z. Y. Zhang, Fiber Optic Fluorescent Thermometry (Chapman & Hall, London, 1995).
  10. S. F. Collins, G. W. Baxter, S. A. Wade, T. Sun, K. T. V. Grattan, Z. Y. Zhang, A. W. Palmer, “Comparison of fluorescence-based temperature sensor schemes: theoretical analysis and experimental validation,” J. Appl. Phys. 84, 4649–4654 (1998).
    [CrossRef]
  11. T. Liu, G. F. Fernando, Z. Y. Zhang, K. T. V. Grattan, “Simultaneous strain and temperature measurements in composites using extrinsic Fabry-Perot interferometric and intrinsic rare-earth doped fibre sensors,” in Sensory Phenomena and Measurement Instrumentation for Smart Structures and Materials, R. O. Claus, W. B. Spillman, eds., Proc. SPIE3330, 332–341 (1998).
  12. T. Sun, Z. Y. Zhang, K. T. V. Grattan, A. W. Palmer, “Intrinsic doped fluorescence decay-time based measurements: strain and temperature characteristics for sensor purposes,” Rev. Sci. Instrum. 69, 4186–4190 (1998).
    [CrossRef]
  13. T. Sun, Z. Y. Zhang, K. T. V. Grattan, A. W. Palmer, “Intrinsic strain and temperature characteristics of Yb-doped silica-based optical fibers,” Rev. Sci. Instrum. 70, 1447–1451 (1999).
    [CrossRef]
  14. A. Arnaud, D. I. Forsyth, T. Sun, Z. Y. Zhang, K. T. V. Grattan, “Strain and temperature effects on erbium-doped fiber for decay-time based sensing,” Rev. Sci. Instrum. 71, 104–108 (2000).
    [CrossRef]
  15. J. H. Sharp, H. C. Seat, “Temperature and strain characteristics of ruby fibre fluorescence emission,” in 14th International Conference on Optical Fiber Sensors, A. G. Mignani, H. C. Lefèvre, eds., Proc. SPIE4185, 54–57 (2000).
  16. S. A. Wade, S. F. Collins, G. W. Baxter, G. Monnom, “Effect of strain on temperature measurements using the fluorescence intensity ratio technique (with Nd3+- and Yb3+-doped silica fibers),” Rev. Sci. Instrum. 72, 3180–3185 (2001).
    [CrossRef]
  17. D. I. Forsyth, S. A. Wade, D. Perciante, K. T. V. Grattan, “Temperature and strain characteristics of the 3F4 and 3H4 energy levels of Tm:Ho co-doped fibre,” in Proceedings of Sensors and their Applications XI, K. T. V. Grattan, S. H. Khan, eds. (Institute of Physics, London, 2001), pp. 365–370.
  18. Th. Tröster, T. Gregorian, W. B. Holzapfel, “Energy levels of Nd3+ and Pr3+ in RCL3 under pressure,” Phys. Rev. B 48, 2960–2967 (1993).
    [CrossRef]
  19. P. M. Farrell, S. A. Wade, G. W. Baxter, S. F. Collins, A. J. Stevenson, K. T. V. Grattan, “On the physical origin of strain sensitivity in optical fibre rare earth fluorescence sensors,” in Proceedings of Sensors and their Applications XI, K. T. V. Grattan, S. H. Khan, eds. (Institute of Physics, London, 2001), pp. 231–236.
  20. S. F. Collins, P. M. Farrell, S. A. Wade, G. W. Baxter, D. A. Simpson, A. J. Stevenson, K. T. V. Grattan, D. I. Forsyth, “Modelling strain dependence of fluorescence from doped optical fibres: application to neodymium,” presented at Conference of Optical Fiber Sensors 2002, Portland, Ore., 6–10 May 2002.
  21. S. A. Wade, D. I. Forsyth, Q. Guofu, K. T. V. Grattan, “Fiber optic sensor for dual measurement of temperature and strain using a combined fluorescent lifetime decay and fiber Bragg grating technique,” Rev. Sci. Instrum. 72, 3186–3190 (2001).
    [CrossRef]
  22. T. Sun, Z. Y. Zhang, K. T. V. Grattan, “Erbium/ytterbium fluorescence based fiber optic temperature sensor system,” Rev. Sci. Instrum. 71, 4017–4022 (2000).
    [CrossRef]
  23. Y. N. Ning, A. Meldrum, W. J. Shi, B. T. Meggitt, A. W. Palmer, K. T. V. Grattan, L. Li, “Bragg grating sensing instrument using a tuneable Fabry-Perot filter to detect wavelength variations,” Meas. Sci. Technol. 9, 599–606 (1998).
    [CrossRef]
  24. Y. M. Gebremichael, B. T. Meggitt, W. J. O. Boyle, W. Li, K. T. V. Grattan, L. Boswell, B. McKinley, K. A. Aarnes, L. Kvenild, “Multiplexed fibre Bragg grating sensor system for structural integrity monitoring in large civil engineering applications,” in Proceedings of Sensors and their Applications XI, K. T. V. Grattan, S. H. Khan, eds. (Institute of Physics, London, 2001), pp. 341–345.
  25. Z. Y. Zhang, K. T. V. Grattan, Y. Hu, A. W. Palmer, B. T. Meggitt, “Prony’s method for exponential lifetime estimations in fluorescence-based thermometers,” Rev. Sci. Instrum. 67, 2590–2594 (1996).
    [CrossRef]
  26. A. Othonos, “Fiber Bragg gratings,” in Optical Fiber Sensor Technology: Advanced Applications, K. T. V. Grattan, B. T. Meggitt, eds. (Kluwer Academic, Dordrecht, The Netherlands, 2000).
  27. Z. Y. Zhang, K. T. V. Grattan, A. W. Palmer, B. T. Meggitt, T. Sun, “Characterization of erbium-doped intrinsic optical fiber sensor probes at high temperatures,” Rev. Sci. Instrum. 69, 2924–2929 (1998).
    [CrossRef]

2001 (2)

S. A. Wade, S. F. Collins, G. W. Baxter, G. Monnom, “Effect of strain on temperature measurements using the fluorescence intensity ratio technique (with Nd3+- and Yb3+-doped silica fibers),” Rev. Sci. Instrum. 72, 3180–3185 (2001).
[CrossRef]

S. A. Wade, D. I. Forsyth, Q. Guofu, K. T. V. Grattan, “Fiber optic sensor for dual measurement of temperature and strain using a combined fluorescent lifetime decay and fiber Bragg grating technique,” Rev. Sci. Instrum. 72, 3186–3190 (2001).
[CrossRef]

2000 (3)

T. Sun, Z. Y. Zhang, K. T. V. Grattan, “Erbium/ytterbium fluorescence based fiber optic temperature sensor system,” Rev. Sci. Instrum. 71, 4017–4022 (2000).
[CrossRef]

A. Arnaud, D. I. Forsyth, T. Sun, Z. Y. Zhang, K. T. V. Grattan, “Strain and temperature effects on erbium-doped fiber for decay-time based sensing,” Rev. Sci. Instrum. 71, 104–108 (2000).
[CrossRef]

J. Jung, N. Park, B. Lee, “Simultaneous measurement of strain and temperature by use of a single fiber Bragg grating written in an erbium:ytterbium-doped fiber,” Appl. Opt. 39, 1118–1120 (2000).
[CrossRef]

1999 (2)

J. Jung, H. Nam, J. H. Lee, N. Park, B. Lee, “Simultaneous measurement of strain and temperature by use of a single-fiber Bragg grating and an erbium-doped fiber amplifier,” Appl. Opt. 38, 2749–2751 (1999).
[CrossRef]

T. Sun, Z. Y. Zhang, K. T. V. Grattan, A. W. Palmer, “Intrinsic strain and temperature characteristics of Yb-doped silica-based optical fibers,” Rev. Sci. Instrum. 70, 1447–1451 (1999).
[CrossRef]

1998 (4)

S. F. Collins, G. W. Baxter, S. A. Wade, T. Sun, K. T. V. Grattan, Z. Y. Zhang, A. W. Palmer, “Comparison of fluorescence-based temperature sensor schemes: theoretical analysis and experimental validation,” J. Appl. Phys. 84, 4649–4654 (1998).
[CrossRef]

T. Sun, Z. Y. Zhang, K. T. V. Grattan, A. W. Palmer, “Intrinsic doped fluorescence decay-time based measurements: strain and temperature characteristics for sensor purposes,” Rev. Sci. Instrum. 69, 4186–4190 (1998).
[CrossRef]

Z. Y. Zhang, K. T. V. Grattan, A. W. Palmer, B. T. Meggitt, T. Sun, “Characterization of erbium-doped intrinsic optical fiber sensor probes at high temperatures,” Rev. Sci. Instrum. 69, 2924–2929 (1998).
[CrossRef]

Y. N. Ning, A. Meldrum, W. J. Shi, B. T. Meggitt, A. W. Palmer, K. T. V. Grattan, L. Li, “Bragg grating sensing instrument using a tuneable Fabry-Perot filter to detect wavelength variations,” Meas. Sci. Technol. 9, 599–606 (1998).
[CrossRef]

1997 (3)

W. Jin, W. C. Michie, G. Thursby, M. Konstantaki, B. Culshaw, “Simultaneous measurement of strain and temperature: error analysis,” Opt. Eng. 36, 598–609 (1997).
[CrossRef]

Y. J. Rao, “Review article: in-fibre Bragg grating sensors,” Meas. Sci. Technol. 8, 355–375 (1997).
[CrossRef]

T. R. Parker, M. Farhadiroushan, V. A. Handerek, A. J. Rogers, “A fully distributed simultaneous strain and temperature sensor using spontaneous Brillouin backscatter,” IEEE Photon. Technol. Lett. 9, 979–981 (1997).
[CrossRef]

1996 (1)

Z. Y. Zhang, K. T. V. Grattan, Y. Hu, A. W. Palmer, B. T. Meggitt, “Prony’s method for exponential lifetime estimations in fluorescence-based thermometers,” Rev. Sci. Instrum. 67, 2590–2594 (1996).
[CrossRef]

1993 (1)

Th. Tröster, T. Gregorian, W. B. Holzapfel, “Energy levels of Nd3+ and Pr3+ in RCL3 under pressure,” Phys. Rev. B 48, 2960–2967 (1993).
[CrossRef]

Aarnes, K. A.

Y. M. Gebremichael, B. T. Meggitt, W. J. O. Boyle, W. Li, K. T. V. Grattan, L. Boswell, B. McKinley, K. A. Aarnes, L. Kvenild, “Multiplexed fibre Bragg grating sensor system for structural integrity monitoring in large civil engineering applications,” in Proceedings of Sensors and their Applications XI, K. T. V. Grattan, S. H. Khan, eds. (Institute of Physics, London, 2001), pp. 341–345.

Arnaud, A.

A. Arnaud, D. I. Forsyth, T. Sun, Z. Y. Zhang, K. T. V. Grattan, “Strain and temperature effects on erbium-doped fiber for decay-time based sensing,” Rev. Sci. Instrum. 71, 104–108 (2000).
[CrossRef]

Baxter, G. W.

S. A. Wade, S. F. Collins, G. W. Baxter, G. Monnom, “Effect of strain on temperature measurements using the fluorescence intensity ratio technique (with Nd3+- and Yb3+-doped silica fibers),” Rev. Sci. Instrum. 72, 3180–3185 (2001).
[CrossRef]

S. F. Collins, G. W. Baxter, S. A. Wade, T. Sun, K. T. V. Grattan, Z. Y. Zhang, A. W. Palmer, “Comparison of fluorescence-based temperature sensor schemes: theoretical analysis and experimental validation,” J. Appl. Phys. 84, 4649–4654 (1998).
[CrossRef]

P. M. Farrell, S. A. Wade, G. W. Baxter, S. F. Collins, A. J. Stevenson, K. T. V. Grattan, “On the physical origin of strain sensitivity in optical fibre rare earth fluorescence sensors,” in Proceedings of Sensors and their Applications XI, K. T. V. Grattan, S. H. Khan, eds. (Institute of Physics, London, 2001), pp. 231–236.

S. F. Collins, P. M. Farrell, S. A. Wade, G. W. Baxter, D. A. Simpson, A. J. Stevenson, K. T. V. Grattan, D. I. Forsyth, “Modelling strain dependence of fluorescence from doped optical fibres: application to neodymium,” presented at Conference of Optical Fiber Sensors 2002, Portland, Ore., 6–10 May 2002.

Bennion, I.

Y. C. Lai, G. F. Qiu, W. Zhang, L. Zhang, I. Bennion, K. T. V. Grattan, “Simultaneous measurement of temperature and strain by combining active fibre with fibre gratings,” in Proceedings of Sensors and their Applications XI, K. T. V. Grattan, S. H. Khan, eds. (Institute of Physics, London, 2001), pp. 135–139.

Boswell, L.

Y. M. Gebremichael, B. T. Meggitt, W. J. O. Boyle, W. Li, K. T. V. Grattan, L. Boswell, B. McKinley, K. A. Aarnes, L. Kvenild, “Multiplexed fibre Bragg grating sensor system for structural integrity monitoring in large civil engineering applications,” in Proceedings of Sensors and their Applications XI, K. T. V. Grattan, S. H. Khan, eds. (Institute of Physics, London, 2001), pp. 341–345.

Boyle, W. J. O.

Y. M. Gebremichael, B. T. Meggitt, W. J. O. Boyle, W. Li, K. T. V. Grattan, L. Boswell, B. McKinley, K. A. Aarnes, L. Kvenild, “Multiplexed fibre Bragg grating sensor system for structural integrity monitoring in large civil engineering applications,” in Proceedings of Sensors and their Applications XI, K. T. V. Grattan, S. H. Khan, eds. (Institute of Physics, London, 2001), pp. 341–345.

Collins, S. F.

S. A. Wade, S. F. Collins, G. W. Baxter, G. Monnom, “Effect of strain on temperature measurements using the fluorescence intensity ratio technique (with Nd3+- and Yb3+-doped silica fibers),” Rev. Sci. Instrum. 72, 3180–3185 (2001).
[CrossRef]

S. F. Collins, G. W. Baxter, S. A. Wade, T. Sun, K. T. V. Grattan, Z. Y. Zhang, A. W. Palmer, “Comparison of fluorescence-based temperature sensor schemes: theoretical analysis and experimental validation,” J. Appl. Phys. 84, 4649–4654 (1998).
[CrossRef]

P. M. Farrell, S. A. Wade, G. W. Baxter, S. F. Collins, A. J. Stevenson, K. T. V. Grattan, “On the physical origin of strain sensitivity in optical fibre rare earth fluorescence sensors,” in Proceedings of Sensors and their Applications XI, K. T. V. Grattan, S. H. Khan, eds. (Institute of Physics, London, 2001), pp. 231–236.

S. F. Collins, P. M. Farrell, S. A. Wade, G. W. Baxter, D. A. Simpson, A. J. Stevenson, K. T. V. Grattan, D. I. Forsyth, “Modelling strain dependence of fluorescence from doped optical fibres: application to neodymium,” presented at Conference of Optical Fiber Sensors 2002, Portland, Ore., 6–10 May 2002.

Culshaw, B.

W. Jin, W. C. Michie, G. Thursby, M. Konstantaki, B. Culshaw, “Simultaneous measurement of strain and temperature: error analysis,” Opt. Eng. 36, 598–609 (1997).
[CrossRef]

Farhadiroushan, M.

T. R. Parker, M. Farhadiroushan, V. A. Handerek, A. J. Rogers, “A fully distributed simultaneous strain and temperature sensor using spontaneous Brillouin backscatter,” IEEE Photon. Technol. Lett. 9, 979–981 (1997).
[CrossRef]

Farrell, P. M.

S. F. Collins, P. M. Farrell, S. A. Wade, G. W. Baxter, D. A. Simpson, A. J. Stevenson, K. T. V. Grattan, D. I. Forsyth, “Modelling strain dependence of fluorescence from doped optical fibres: application to neodymium,” presented at Conference of Optical Fiber Sensors 2002, Portland, Ore., 6–10 May 2002.

P. M. Farrell, S. A. Wade, G. W. Baxter, S. F. Collins, A. J. Stevenson, K. T. V. Grattan, “On the physical origin of strain sensitivity in optical fibre rare earth fluorescence sensors,” in Proceedings of Sensors and their Applications XI, K. T. V. Grattan, S. H. Khan, eds. (Institute of Physics, London, 2001), pp. 231–236.

Fernando, G. F.

T. Liu, G. F. Fernando, Z. Y. Zhang, K. T. V. Grattan, “Simultaneous strain and temperature measurements in composites using extrinsic Fabry-Perot interferometric and intrinsic rare-earth doped fibre sensors,” in Sensory Phenomena and Measurement Instrumentation for Smart Structures and Materials, R. O. Claus, W. B. Spillman, eds., Proc. SPIE3330, 332–341 (1998).

Fisher, N.

Y. J. Rao, N. Fisher, P. Henderson, V. Lecouche, C. N. Pannell, D. J. Webb, D. A. Jackson, “Recent developments in fibre optic sensors for point and distributed sensing in large structures,” in European Workshop on Optical Fibre Sensors, B. Culshaw, J. D. C. Jones, eds., Proc. SPIE3483, 138–141 (1998).

Forsyth, D. I.

S. A. Wade, D. I. Forsyth, Q. Guofu, K. T. V. Grattan, “Fiber optic sensor for dual measurement of temperature and strain using a combined fluorescent lifetime decay and fiber Bragg grating technique,” Rev. Sci. Instrum. 72, 3186–3190 (2001).
[CrossRef]

A. Arnaud, D. I. Forsyth, T. Sun, Z. Y. Zhang, K. T. V. Grattan, “Strain and temperature effects on erbium-doped fiber for decay-time based sensing,” Rev. Sci. Instrum. 71, 104–108 (2000).
[CrossRef]

D. I. Forsyth, S. A. Wade, D. Perciante, K. T. V. Grattan, “Temperature and strain characteristics of the 3F4 and 3H4 energy levels of Tm:Ho co-doped fibre,” in Proceedings of Sensors and their Applications XI, K. T. V. Grattan, S. H. Khan, eds. (Institute of Physics, London, 2001), pp. 365–370.

S. F. Collins, P. M. Farrell, S. A. Wade, G. W. Baxter, D. A. Simpson, A. J. Stevenson, K. T. V. Grattan, D. I. Forsyth, “Modelling strain dependence of fluorescence from doped optical fibres: application to neodymium,” presented at Conference of Optical Fiber Sensors 2002, Portland, Ore., 6–10 May 2002.

Gebremichael, Y. M.

Y. M. Gebremichael, B. T. Meggitt, W. J. O. Boyle, W. Li, K. T. V. Grattan, L. Boswell, B. McKinley, K. A. Aarnes, L. Kvenild, “Multiplexed fibre Bragg grating sensor system for structural integrity monitoring in large civil engineering applications,” in Proceedings of Sensors and their Applications XI, K. T. V. Grattan, S. H. Khan, eds. (Institute of Physics, London, 2001), pp. 341–345.

Grattan, K. T. V.

S. A. Wade, D. I. Forsyth, Q. Guofu, K. T. V. Grattan, “Fiber optic sensor for dual measurement of temperature and strain using a combined fluorescent lifetime decay and fiber Bragg grating technique,” Rev. Sci. Instrum. 72, 3186–3190 (2001).
[CrossRef]

T. Sun, Z. Y. Zhang, K. T. V. Grattan, “Erbium/ytterbium fluorescence based fiber optic temperature sensor system,” Rev. Sci. Instrum. 71, 4017–4022 (2000).
[CrossRef]

A. Arnaud, D. I. Forsyth, T. Sun, Z. Y. Zhang, K. T. V. Grattan, “Strain and temperature effects on erbium-doped fiber for decay-time based sensing,” Rev. Sci. Instrum. 71, 104–108 (2000).
[CrossRef]

T. Sun, Z. Y. Zhang, K. T. V. Grattan, A. W. Palmer, “Intrinsic strain and temperature characteristics of Yb-doped silica-based optical fibers,” Rev. Sci. Instrum. 70, 1447–1451 (1999).
[CrossRef]

T. Sun, Z. Y. Zhang, K. T. V. Grattan, A. W. Palmer, “Intrinsic doped fluorescence decay-time based measurements: strain and temperature characteristics for sensor purposes,” Rev. Sci. Instrum. 69, 4186–4190 (1998).
[CrossRef]

S. F. Collins, G. W. Baxter, S. A. Wade, T. Sun, K. T. V. Grattan, Z. Y. Zhang, A. W. Palmer, “Comparison of fluorescence-based temperature sensor schemes: theoretical analysis and experimental validation,” J. Appl. Phys. 84, 4649–4654 (1998).
[CrossRef]

Y. N. Ning, A. Meldrum, W. J. Shi, B. T. Meggitt, A. W. Palmer, K. T. V. Grattan, L. Li, “Bragg grating sensing instrument using a tuneable Fabry-Perot filter to detect wavelength variations,” Meas. Sci. Technol. 9, 599–606 (1998).
[CrossRef]

Z. Y. Zhang, K. T. V. Grattan, A. W. Palmer, B. T. Meggitt, T. Sun, “Characterization of erbium-doped intrinsic optical fiber sensor probes at high temperatures,” Rev. Sci. Instrum. 69, 2924–2929 (1998).
[CrossRef]

Z. Y. Zhang, K. T. V. Grattan, Y. Hu, A. W. Palmer, B. T. Meggitt, “Prony’s method for exponential lifetime estimations in fluorescence-based thermometers,” Rev. Sci. Instrum. 67, 2590–2594 (1996).
[CrossRef]

Y. M. Gebremichael, B. T. Meggitt, W. J. O. Boyle, W. Li, K. T. V. Grattan, L. Boswell, B. McKinley, K. A. Aarnes, L. Kvenild, “Multiplexed fibre Bragg grating sensor system for structural integrity monitoring in large civil engineering applications,” in Proceedings of Sensors and their Applications XI, K. T. V. Grattan, S. H. Khan, eds. (Institute of Physics, London, 2001), pp. 341–345.

P. M. Farrell, S. A. Wade, G. W. Baxter, S. F. Collins, A. J. Stevenson, K. T. V. Grattan, “On the physical origin of strain sensitivity in optical fibre rare earth fluorescence sensors,” in Proceedings of Sensors and their Applications XI, K. T. V. Grattan, S. H. Khan, eds. (Institute of Physics, London, 2001), pp. 231–236.

S. F. Collins, P. M. Farrell, S. A. Wade, G. W. Baxter, D. A. Simpson, A. J. Stevenson, K. T. V. Grattan, D. I. Forsyth, “Modelling strain dependence of fluorescence from doped optical fibres: application to neodymium,” presented at Conference of Optical Fiber Sensors 2002, Portland, Ore., 6–10 May 2002.

T. Liu, G. F. Fernando, Z. Y. Zhang, K. T. V. Grattan, “Simultaneous strain and temperature measurements in composites using extrinsic Fabry-Perot interferometric and intrinsic rare-earth doped fibre sensors,” in Sensory Phenomena and Measurement Instrumentation for Smart Structures and Materials, R. O. Claus, W. B. Spillman, eds., Proc. SPIE3330, 332–341 (1998).

D. I. Forsyth, S. A. Wade, D. Perciante, K. T. V. Grattan, “Temperature and strain characteristics of the 3F4 and 3H4 energy levels of Tm:Ho co-doped fibre,” in Proceedings of Sensors and their Applications XI, K. T. V. Grattan, S. H. Khan, eds. (Institute of Physics, London, 2001), pp. 365–370.

Y. C. Lai, G. F. Qiu, W. Zhang, L. Zhang, I. Bennion, K. T. V. Grattan, “Simultaneous measurement of temperature and strain by combining active fibre with fibre gratings,” in Proceedings of Sensors and their Applications XI, K. T. V. Grattan, S. H. Khan, eds. (Institute of Physics, London, 2001), pp. 135–139.

K. T. V. Grattan, Z. Y. Zhang, Fiber Optic Fluorescent Thermometry (Chapman & Hall, London, 1995).

Gregorian, T.

Th. Tröster, T. Gregorian, W. B. Holzapfel, “Energy levels of Nd3+ and Pr3+ in RCL3 under pressure,” Phys. Rev. B 48, 2960–2967 (1993).
[CrossRef]

Guofu, Q.

S. A. Wade, D. I. Forsyth, Q. Guofu, K. T. V. Grattan, “Fiber optic sensor for dual measurement of temperature and strain using a combined fluorescent lifetime decay and fiber Bragg grating technique,” Rev. Sci. Instrum. 72, 3186–3190 (2001).
[CrossRef]

Handerek, V. A.

T. R. Parker, M. Farhadiroushan, V. A. Handerek, A. J. Rogers, “A fully distributed simultaneous strain and temperature sensor using spontaneous Brillouin backscatter,” IEEE Photon. Technol. Lett. 9, 979–981 (1997).
[CrossRef]

Henderson, P.

Y. J. Rao, N. Fisher, P. Henderson, V. Lecouche, C. N. Pannell, D. J. Webb, D. A. Jackson, “Recent developments in fibre optic sensors for point and distributed sensing in large structures,” in European Workshop on Optical Fibre Sensors, B. Culshaw, J. D. C. Jones, eds., Proc. SPIE3483, 138–141 (1998).

Holzapfel, W. B.

Th. Tröster, T. Gregorian, W. B. Holzapfel, “Energy levels of Nd3+ and Pr3+ in RCL3 under pressure,” Phys. Rev. B 48, 2960–2967 (1993).
[CrossRef]

Hu, Y.

Z. Y. Zhang, K. T. V. Grattan, Y. Hu, A. W. Palmer, B. T. Meggitt, “Prony’s method for exponential lifetime estimations in fluorescence-based thermometers,” Rev. Sci. Instrum. 67, 2590–2594 (1996).
[CrossRef]

Jackson, D. A.

Y. J. Rao, N. Fisher, P. Henderson, V. Lecouche, C. N. Pannell, D. J. Webb, D. A. Jackson, “Recent developments in fibre optic sensors for point and distributed sensing in large structures,” in European Workshop on Optical Fibre Sensors, B. Culshaw, J. D. C. Jones, eds., Proc. SPIE3483, 138–141 (1998).

Jin, W.

W. Jin, W. C. Michie, G. Thursby, M. Konstantaki, B. Culshaw, “Simultaneous measurement of strain and temperature: error analysis,” Opt. Eng. 36, 598–609 (1997).
[CrossRef]

Jones, J. D. C.

J. D. C. Jones, “Review of fibre sensor techniques for temperature-strain discrimination,” in Optical Fiber Sensors, Vol. 16 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 36–39.

Jung, J.

Konstantaki, M.

W. Jin, W. C. Michie, G. Thursby, M. Konstantaki, B. Culshaw, “Simultaneous measurement of strain and temperature: error analysis,” Opt. Eng. 36, 598–609 (1997).
[CrossRef]

Kvenild, L.

Y. M. Gebremichael, B. T. Meggitt, W. J. O. Boyle, W. Li, K. T. V. Grattan, L. Boswell, B. McKinley, K. A. Aarnes, L. Kvenild, “Multiplexed fibre Bragg grating sensor system for structural integrity monitoring in large civil engineering applications,” in Proceedings of Sensors and their Applications XI, K. T. V. Grattan, S. H. Khan, eds. (Institute of Physics, London, 2001), pp. 341–345.

Lai, Y. C.

Y. C. Lai, G. F. Qiu, W. Zhang, L. Zhang, I. Bennion, K. T. V. Grattan, “Simultaneous measurement of temperature and strain by combining active fibre with fibre gratings,” in Proceedings of Sensors and their Applications XI, K. T. V. Grattan, S. H. Khan, eds. (Institute of Physics, London, 2001), pp. 135–139.

Lecouche, V.

Y. J. Rao, N. Fisher, P. Henderson, V. Lecouche, C. N. Pannell, D. J. Webb, D. A. Jackson, “Recent developments in fibre optic sensors for point and distributed sensing in large structures,” in European Workshop on Optical Fibre Sensors, B. Culshaw, J. D. C. Jones, eds., Proc. SPIE3483, 138–141 (1998).

Lee, B.

Lee, J. H.

Li, L.

Y. N. Ning, A. Meldrum, W. J. Shi, B. T. Meggitt, A. W. Palmer, K. T. V. Grattan, L. Li, “Bragg grating sensing instrument using a tuneable Fabry-Perot filter to detect wavelength variations,” Meas. Sci. Technol. 9, 599–606 (1998).
[CrossRef]

Li, W.

Y. M. Gebremichael, B. T. Meggitt, W. J. O. Boyle, W. Li, K. T. V. Grattan, L. Boswell, B. McKinley, K. A. Aarnes, L. Kvenild, “Multiplexed fibre Bragg grating sensor system for structural integrity monitoring in large civil engineering applications,” in Proceedings of Sensors and their Applications XI, K. T. V. Grattan, S. H. Khan, eds. (Institute of Physics, London, 2001), pp. 341–345.

Liu, T.

T. Liu, G. F. Fernando, Z. Y. Zhang, K. T. V. Grattan, “Simultaneous strain and temperature measurements in composites using extrinsic Fabry-Perot interferometric and intrinsic rare-earth doped fibre sensors,” in Sensory Phenomena and Measurement Instrumentation for Smart Structures and Materials, R. O. Claus, W. B. Spillman, eds., Proc. SPIE3330, 332–341 (1998).

McKinley, B.

Y. M. Gebremichael, B. T. Meggitt, W. J. O. Boyle, W. Li, K. T. V. Grattan, L. Boswell, B. McKinley, K. A. Aarnes, L. Kvenild, “Multiplexed fibre Bragg grating sensor system for structural integrity monitoring in large civil engineering applications,” in Proceedings of Sensors and their Applications XI, K. T. V. Grattan, S. H. Khan, eds. (Institute of Physics, London, 2001), pp. 341–345.

Meggitt, B. T.

Y. N. Ning, A. Meldrum, W. J. Shi, B. T. Meggitt, A. W. Palmer, K. T. V. Grattan, L. Li, “Bragg grating sensing instrument using a tuneable Fabry-Perot filter to detect wavelength variations,” Meas. Sci. Technol. 9, 599–606 (1998).
[CrossRef]

Z. Y. Zhang, K. T. V. Grattan, A. W. Palmer, B. T. Meggitt, T. Sun, “Characterization of erbium-doped intrinsic optical fiber sensor probes at high temperatures,” Rev. Sci. Instrum. 69, 2924–2929 (1998).
[CrossRef]

Z. Y. Zhang, K. T. V. Grattan, Y. Hu, A. W. Palmer, B. T. Meggitt, “Prony’s method for exponential lifetime estimations in fluorescence-based thermometers,” Rev. Sci. Instrum. 67, 2590–2594 (1996).
[CrossRef]

Y. M. Gebremichael, B. T. Meggitt, W. J. O. Boyle, W. Li, K. T. V. Grattan, L. Boswell, B. McKinley, K. A. Aarnes, L. Kvenild, “Multiplexed fibre Bragg grating sensor system for structural integrity monitoring in large civil engineering applications,” in Proceedings of Sensors and their Applications XI, K. T. V. Grattan, S. H. Khan, eds. (Institute of Physics, London, 2001), pp. 341–345.

Meldrum, A.

Y. N. Ning, A. Meldrum, W. J. Shi, B. T. Meggitt, A. W. Palmer, K. T. V. Grattan, L. Li, “Bragg grating sensing instrument using a tuneable Fabry-Perot filter to detect wavelength variations,” Meas. Sci. Technol. 9, 599–606 (1998).
[CrossRef]

Michie, W. C.

W. Jin, W. C. Michie, G. Thursby, M. Konstantaki, B. Culshaw, “Simultaneous measurement of strain and temperature: error analysis,” Opt. Eng. 36, 598–609 (1997).
[CrossRef]

Monnom, G.

S. A. Wade, S. F. Collins, G. W. Baxter, G. Monnom, “Effect of strain on temperature measurements using the fluorescence intensity ratio technique (with Nd3+- and Yb3+-doped silica fibers),” Rev. Sci. Instrum. 72, 3180–3185 (2001).
[CrossRef]

Nam, H.

Ning, Y. N.

Y. N. Ning, A. Meldrum, W. J. Shi, B. T. Meggitt, A. W. Palmer, K. T. V. Grattan, L. Li, “Bragg grating sensing instrument using a tuneable Fabry-Perot filter to detect wavelength variations,” Meas. Sci. Technol. 9, 599–606 (1998).
[CrossRef]

Othonos, A.

A. Othonos, “Fiber Bragg gratings,” in Optical Fiber Sensor Technology: Advanced Applications, K. T. V. Grattan, B. T. Meggitt, eds. (Kluwer Academic, Dordrecht, The Netherlands, 2000).

Palmer, A. W.

T. Sun, Z. Y. Zhang, K. T. V. Grattan, A. W. Palmer, “Intrinsic strain and temperature characteristics of Yb-doped silica-based optical fibers,” Rev. Sci. Instrum. 70, 1447–1451 (1999).
[CrossRef]

T. Sun, Z. Y. Zhang, K. T. V. Grattan, A. W. Palmer, “Intrinsic doped fluorescence decay-time based measurements: strain and temperature characteristics for sensor purposes,” Rev. Sci. Instrum. 69, 4186–4190 (1998).
[CrossRef]

S. F. Collins, G. W. Baxter, S. A. Wade, T. Sun, K. T. V. Grattan, Z. Y. Zhang, A. W. Palmer, “Comparison of fluorescence-based temperature sensor schemes: theoretical analysis and experimental validation,” J. Appl. Phys. 84, 4649–4654 (1998).
[CrossRef]

Z. Y. Zhang, K. T. V. Grattan, A. W. Palmer, B. T. Meggitt, T. Sun, “Characterization of erbium-doped intrinsic optical fiber sensor probes at high temperatures,” Rev. Sci. Instrum. 69, 2924–2929 (1998).
[CrossRef]

Y. N. Ning, A. Meldrum, W. J. Shi, B. T. Meggitt, A. W. Palmer, K. T. V. Grattan, L. Li, “Bragg grating sensing instrument using a tuneable Fabry-Perot filter to detect wavelength variations,” Meas. Sci. Technol. 9, 599–606 (1998).
[CrossRef]

Z. Y. Zhang, K. T. V. Grattan, Y. Hu, A. W. Palmer, B. T. Meggitt, “Prony’s method for exponential lifetime estimations in fluorescence-based thermometers,” Rev. Sci. Instrum. 67, 2590–2594 (1996).
[CrossRef]

Pannell, C. N.

Y. J. Rao, N. Fisher, P. Henderson, V. Lecouche, C. N. Pannell, D. J. Webb, D. A. Jackson, “Recent developments in fibre optic sensors for point and distributed sensing in large structures,” in European Workshop on Optical Fibre Sensors, B. Culshaw, J. D. C. Jones, eds., Proc. SPIE3483, 138–141 (1998).

Park, N.

Parker, T. R.

T. R. Parker, M. Farhadiroushan, V. A. Handerek, A. J. Rogers, “A fully distributed simultaneous strain and temperature sensor using spontaneous Brillouin backscatter,” IEEE Photon. Technol. Lett. 9, 979–981 (1997).
[CrossRef]

Perciante, D.

D. I. Forsyth, S. A. Wade, D. Perciante, K. T. V. Grattan, “Temperature and strain characteristics of the 3F4 and 3H4 energy levels of Tm:Ho co-doped fibre,” in Proceedings of Sensors and their Applications XI, K. T. V. Grattan, S. H. Khan, eds. (Institute of Physics, London, 2001), pp. 365–370.

Qiu, G. F.

Y. C. Lai, G. F. Qiu, W. Zhang, L. Zhang, I. Bennion, K. T. V. Grattan, “Simultaneous measurement of temperature and strain by combining active fibre with fibre gratings,” in Proceedings of Sensors and their Applications XI, K. T. V. Grattan, S. H. Khan, eds. (Institute of Physics, London, 2001), pp. 135–139.

Rao, Y. J.

Y. J. Rao, “Review article: in-fibre Bragg grating sensors,” Meas. Sci. Technol. 8, 355–375 (1997).
[CrossRef]

Y. J. Rao, N. Fisher, P. Henderson, V. Lecouche, C. N. Pannell, D. J. Webb, D. A. Jackson, “Recent developments in fibre optic sensors for point and distributed sensing in large structures,” in European Workshop on Optical Fibre Sensors, B. Culshaw, J. D. C. Jones, eds., Proc. SPIE3483, 138–141 (1998).

Rogers, A. J.

T. R. Parker, M. Farhadiroushan, V. A. Handerek, A. J. Rogers, “A fully distributed simultaneous strain and temperature sensor using spontaneous Brillouin backscatter,” IEEE Photon. Technol. Lett. 9, 979–981 (1997).
[CrossRef]

Seat, H. C.

J. H. Sharp, H. C. Seat, “Temperature and strain characteristics of ruby fibre fluorescence emission,” in 14th International Conference on Optical Fiber Sensors, A. G. Mignani, H. C. Lefèvre, eds., Proc. SPIE4185, 54–57 (2000).

Sharp, J. H.

J. H. Sharp, H. C. Seat, “Temperature and strain characteristics of ruby fibre fluorescence emission,” in 14th International Conference on Optical Fiber Sensors, A. G. Mignani, H. C. Lefèvre, eds., Proc. SPIE4185, 54–57 (2000).

Shi, W. J.

Y. N. Ning, A. Meldrum, W. J. Shi, B. T. Meggitt, A. W. Palmer, K. T. V. Grattan, L. Li, “Bragg grating sensing instrument using a tuneable Fabry-Perot filter to detect wavelength variations,” Meas. Sci. Technol. 9, 599–606 (1998).
[CrossRef]

Simpson, D. A.

S. F. Collins, P. M. Farrell, S. A. Wade, G. W. Baxter, D. A. Simpson, A. J. Stevenson, K. T. V. Grattan, D. I. Forsyth, “Modelling strain dependence of fluorescence from doped optical fibres: application to neodymium,” presented at Conference of Optical Fiber Sensors 2002, Portland, Ore., 6–10 May 2002.

Stevenson, A. J.

S. F. Collins, P. M. Farrell, S. A. Wade, G. W. Baxter, D. A. Simpson, A. J. Stevenson, K. T. V. Grattan, D. I. Forsyth, “Modelling strain dependence of fluorescence from doped optical fibres: application to neodymium,” presented at Conference of Optical Fiber Sensors 2002, Portland, Ore., 6–10 May 2002.

P. M. Farrell, S. A. Wade, G. W. Baxter, S. F. Collins, A. J. Stevenson, K. T. V. Grattan, “On the physical origin of strain sensitivity in optical fibre rare earth fluorescence sensors,” in Proceedings of Sensors and their Applications XI, K. T. V. Grattan, S. H. Khan, eds. (Institute of Physics, London, 2001), pp. 231–236.

Sun, T.

T. Sun, Z. Y. Zhang, K. T. V. Grattan, “Erbium/ytterbium fluorescence based fiber optic temperature sensor system,” Rev. Sci. Instrum. 71, 4017–4022 (2000).
[CrossRef]

A. Arnaud, D. I. Forsyth, T. Sun, Z. Y. Zhang, K. T. V. Grattan, “Strain and temperature effects on erbium-doped fiber for decay-time based sensing,” Rev. Sci. Instrum. 71, 104–108 (2000).
[CrossRef]

T. Sun, Z. Y. Zhang, K. T. V. Grattan, A. W. Palmer, “Intrinsic strain and temperature characteristics of Yb-doped silica-based optical fibers,” Rev. Sci. Instrum. 70, 1447–1451 (1999).
[CrossRef]

T. Sun, Z. Y. Zhang, K. T. V. Grattan, A. W. Palmer, “Intrinsic doped fluorescence decay-time based measurements: strain and temperature characteristics for sensor purposes,” Rev. Sci. Instrum. 69, 4186–4190 (1998).
[CrossRef]

S. F. Collins, G. W. Baxter, S. A. Wade, T. Sun, K. T. V. Grattan, Z. Y. Zhang, A. W. Palmer, “Comparison of fluorescence-based temperature sensor schemes: theoretical analysis and experimental validation,” J. Appl. Phys. 84, 4649–4654 (1998).
[CrossRef]

Z. Y. Zhang, K. T. V. Grattan, A. W. Palmer, B. T. Meggitt, T. Sun, “Characterization of erbium-doped intrinsic optical fiber sensor probes at high temperatures,” Rev. Sci. Instrum. 69, 2924–2929 (1998).
[CrossRef]

Thursby, G.

W. Jin, W. C. Michie, G. Thursby, M. Konstantaki, B. Culshaw, “Simultaneous measurement of strain and temperature: error analysis,” Opt. Eng. 36, 598–609 (1997).
[CrossRef]

Tröster, Th.

Th. Tröster, T. Gregorian, W. B. Holzapfel, “Energy levels of Nd3+ and Pr3+ in RCL3 under pressure,” Phys. Rev. B 48, 2960–2967 (1993).
[CrossRef]

Wade, S. A.

S. A. Wade, S. F. Collins, G. W. Baxter, G. Monnom, “Effect of strain on temperature measurements using the fluorescence intensity ratio technique (with Nd3+- and Yb3+-doped silica fibers),” Rev. Sci. Instrum. 72, 3180–3185 (2001).
[CrossRef]

S. A. Wade, D. I. Forsyth, Q. Guofu, K. T. V. Grattan, “Fiber optic sensor for dual measurement of temperature and strain using a combined fluorescent lifetime decay and fiber Bragg grating technique,” Rev. Sci. Instrum. 72, 3186–3190 (2001).
[CrossRef]

S. F. Collins, G. W. Baxter, S. A. Wade, T. Sun, K. T. V. Grattan, Z. Y. Zhang, A. W. Palmer, “Comparison of fluorescence-based temperature sensor schemes: theoretical analysis and experimental validation,” J. Appl. Phys. 84, 4649–4654 (1998).
[CrossRef]

D. I. Forsyth, S. A. Wade, D. Perciante, K. T. V. Grattan, “Temperature and strain characteristics of the 3F4 and 3H4 energy levels of Tm:Ho co-doped fibre,” in Proceedings of Sensors and their Applications XI, K. T. V. Grattan, S. H. Khan, eds. (Institute of Physics, London, 2001), pp. 365–370.

S. F. Collins, P. M. Farrell, S. A. Wade, G. W. Baxter, D. A. Simpson, A. J. Stevenson, K. T. V. Grattan, D. I. Forsyth, “Modelling strain dependence of fluorescence from doped optical fibres: application to neodymium,” presented at Conference of Optical Fiber Sensors 2002, Portland, Ore., 6–10 May 2002.

P. M. Farrell, S. A. Wade, G. W. Baxter, S. F. Collins, A. J. Stevenson, K. T. V. Grattan, “On the physical origin of strain sensitivity in optical fibre rare earth fluorescence sensors,” in Proceedings of Sensors and their Applications XI, K. T. V. Grattan, S. H. Khan, eds. (Institute of Physics, London, 2001), pp. 231–236.

Webb, D. J.

Y. J. Rao, N. Fisher, P. Henderson, V. Lecouche, C. N. Pannell, D. J. Webb, D. A. Jackson, “Recent developments in fibre optic sensors for point and distributed sensing in large structures,” in European Workshop on Optical Fibre Sensors, B. Culshaw, J. D. C. Jones, eds., Proc. SPIE3483, 138–141 (1998).

Zhang, L.

Y. C. Lai, G. F. Qiu, W. Zhang, L. Zhang, I. Bennion, K. T. V. Grattan, “Simultaneous measurement of temperature and strain by combining active fibre with fibre gratings,” in Proceedings of Sensors and their Applications XI, K. T. V. Grattan, S. H. Khan, eds. (Institute of Physics, London, 2001), pp. 135–139.

Zhang, W.

Y. C. Lai, G. F. Qiu, W. Zhang, L. Zhang, I. Bennion, K. T. V. Grattan, “Simultaneous measurement of temperature and strain by combining active fibre with fibre gratings,” in Proceedings of Sensors and their Applications XI, K. T. V. Grattan, S. H. Khan, eds. (Institute of Physics, London, 2001), pp. 135–139.

Zhang, Z. Y.

A. Arnaud, D. I. Forsyth, T. Sun, Z. Y. Zhang, K. T. V. Grattan, “Strain and temperature effects on erbium-doped fiber for decay-time based sensing,” Rev. Sci. Instrum. 71, 104–108 (2000).
[CrossRef]

T. Sun, Z. Y. Zhang, K. T. V. Grattan, “Erbium/ytterbium fluorescence based fiber optic temperature sensor system,” Rev. Sci. Instrum. 71, 4017–4022 (2000).
[CrossRef]

T. Sun, Z. Y. Zhang, K. T. V. Grattan, A. W. Palmer, “Intrinsic strain and temperature characteristics of Yb-doped silica-based optical fibers,” Rev. Sci. Instrum. 70, 1447–1451 (1999).
[CrossRef]

T. Sun, Z. Y. Zhang, K. T. V. Grattan, A. W. Palmer, “Intrinsic doped fluorescence decay-time based measurements: strain and temperature characteristics for sensor purposes,” Rev. Sci. Instrum. 69, 4186–4190 (1998).
[CrossRef]

S. F. Collins, G. W. Baxter, S. A. Wade, T. Sun, K. T. V. Grattan, Z. Y. Zhang, A. W. Palmer, “Comparison of fluorescence-based temperature sensor schemes: theoretical analysis and experimental validation,” J. Appl. Phys. 84, 4649–4654 (1998).
[CrossRef]

Z. Y. Zhang, K. T. V. Grattan, A. W. Palmer, B. T. Meggitt, T. Sun, “Characterization of erbium-doped intrinsic optical fiber sensor probes at high temperatures,” Rev. Sci. Instrum. 69, 2924–2929 (1998).
[CrossRef]

Z. Y. Zhang, K. T. V. Grattan, Y. Hu, A. W. Palmer, B. T. Meggitt, “Prony’s method for exponential lifetime estimations in fluorescence-based thermometers,” Rev. Sci. Instrum. 67, 2590–2594 (1996).
[CrossRef]

T. Liu, G. F. Fernando, Z. Y. Zhang, K. T. V. Grattan, “Simultaneous strain and temperature measurements in composites using extrinsic Fabry-Perot interferometric and intrinsic rare-earth doped fibre sensors,” in Sensory Phenomena and Measurement Instrumentation for Smart Structures and Materials, R. O. Claus, W. B. Spillman, eds., Proc. SPIE3330, 332–341 (1998).

K. T. V. Grattan, Z. Y. Zhang, Fiber Optic Fluorescent Thermometry (Chapman & Hall, London, 1995).

Appl. Opt. (2)

IEEE Photon. Technol. Lett. (1)

T. R. Parker, M. Farhadiroushan, V. A. Handerek, A. J. Rogers, “A fully distributed simultaneous strain and temperature sensor using spontaneous Brillouin backscatter,” IEEE Photon. Technol. Lett. 9, 979–981 (1997).
[CrossRef]

J. Appl. Phys. (1)

S. F. Collins, G. W. Baxter, S. A. Wade, T. Sun, K. T. V. Grattan, Z. Y. Zhang, A. W. Palmer, “Comparison of fluorescence-based temperature sensor schemes: theoretical analysis and experimental validation,” J. Appl. Phys. 84, 4649–4654 (1998).
[CrossRef]

Meas. Sci. Technol. (2)

Y. J. Rao, “Review article: in-fibre Bragg grating sensors,” Meas. Sci. Technol. 8, 355–375 (1997).
[CrossRef]

Y. N. Ning, A. Meldrum, W. J. Shi, B. T. Meggitt, A. W. Palmer, K. T. V. Grattan, L. Li, “Bragg grating sensing instrument using a tuneable Fabry-Perot filter to detect wavelength variations,” Meas. Sci. Technol. 9, 599–606 (1998).
[CrossRef]

Opt. Eng. (1)

W. Jin, W. C. Michie, G. Thursby, M. Konstantaki, B. Culshaw, “Simultaneous measurement of strain and temperature: error analysis,” Opt. Eng. 36, 598–609 (1997).
[CrossRef]

Phys. Rev. B (1)

Th. Tröster, T. Gregorian, W. B. Holzapfel, “Energy levels of Nd3+ and Pr3+ in RCL3 under pressure,” Phys. Rev. B 48, 2960–2967 (1993).
[CrossRef]

Rev. Sci. Instrum. (8)

S. A. Wade, D. I. Forsyth, Q. Guofu, K. T. V. Grattan, “Fiber optic sensor for dual measurement of temperature and strain using a combined fluorescent lifetime decay and fiber Bragg grating technique,” Rev. Sci. Instrum. 72, 3186–3190 (2001).
[CrossRef]

T. Sun, Z. Y. Zhang, K. T. V. Grattan, “Erbium/ytterbium fluorescence based fiber optic temperature sensor system,” Rev. Sci. Instrum. 71, 4017–4022 (2000).
[CrossRef]

Z. Y. Zhang, K. T. V. Grattan, Y. Hu, A. W. Palmer, B. T. Meggitt, “Prony’s method for exponential lifetime estimations in fluorescence-based thermometers,” Rev. Sci. Instrum. 67, 2590–2594 (1996).
[CrossRef]

Z. Y. Zhang, K. T. V. Grattan, A. W. Palmer, B. T. Meggitt, T. Sun, “Characterization of erbium-doped intrinsic optical fiber sensor probes at high temperatures,” Rev. Sci. Instrum. 69, 2924–2929 (1998).
[CrossRef]

S. A. Wade, S. F. Collins, G. W. Baxter, G. Monnom, “Effect of strain on temperature measurements using the fluorescence intensity ratio technique (with Nd3+- and Yb3+-doped silica fibers),” Rev. Sci. Instrum. 72, 3180–3185 (2001).
[CrossRef]

T. Sun, Z. Y. Zhang, K. T. V. Grattan, A. W. Palmer, “Intrinsic doped fluorescence decay-time based measurements: strain and temperature characteristics for sensor purposes,” Rev. Sci. Instrum. 69, 4186–4190 (1998).
[CrossRef]

T. Sun, Z. Y. Zhang, K. T. V. Grattan, A. W. Palmer, “Intrinsic strain and temperature characteristics of Yb-doped silica-based optical fibers,” Rev. Sci. Instrum. 70, 1447–1451 (1999).
[CrossRef]

A. Arnaud, D. I. Forsyth, T. Sun, Z. Y. Zhang, K. T. V. Grattan, “Strain and temperature effects on erbium-doped fiber for decay-time based sensing,” Rev. Sci. Instrum. 71, 104–108 (2000).
[CrossRef]

Other (11)

J. H. Sharp, H. C. Seat, “Temperature and strain characteristics of ruby fibre fluorescence emission,” in 14th International Conference on Optical Fiber Sensors, A. G. Mignani, H. C. Lefèvre, eds., Proc. SPIE4185, 54–57 (2000).

D. I. Forsyth, S. A. Wade, D. Perciante, K. T. V. Grattan, “Temperature and strain characteristics of the 3F4 and 3H4 energy levels of Tm:Ho co-doped fibre,” in Proceedings of Sensors and their Applications XI, K. T. V. Grattan, S. H. Khan, eds. (Institute of Physics, London, 2001), pp. 365–370.

T. Liu, G. F. Fernando, Z. Y. Zhang, K. T. V. Grattan, “Simultaneous strain and temperature measurements in composites using extrinsic Fabry-Perot interferometric and intrinsic rare-earth doped fibre sensors,” in Sensory Phenomena and Measurement Instrumentation for Smart Structures and Materials, R. O. Claus, W. B. Spillman, eds., Proc. SPIE3330, 332–341 (1998).

Y. J. Rao, N. Fisher, P. Henderson, V. Lecouche, C. N. Pannell, D. J. Webb, D. A. Jackson, “Recent developments in fibre optic sensors for point and distributed sensing in large structures,” in European Workshop on Optical Fibre Sensors, B. Culshaw, J. D. C. Jones, eds., Proc. SPIE3483, 138–141 (1998).

J. D. C. Jones, “Review of fibre sensor techniques for temperature-strain discrimination,” in Optical Fiber Sensors, Vol. 16 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 36–39.

Y. C. Lai, G. F. Qiu, W. Zhang, L. Zhang, I. Bennion, K. T. V. Grattan, “Simultaneous measurement of temperature and strain by combining active fibre with fibre gratings,” in Proceedings of Sensors and their Applications XI, K. T. V. Grattan, S. H. Khan, eds. (Institute of Physics, London, 2001), pp. 135–139.

K. T. V. Grattan, Z. Y. Zhang, Fiber Optic Fluorescent Thermometry (Chapman & Hall, London, 1995).

A. Othonos, “Fiber Bragg gratings,” in Optical Fiber Sensor Technology: Advanced Applications, K. T. V. Grattan, B. T. Meggitt, eds. (Kluwer Academic, Dordrecht, The Netherlands, 2000).

Y. M. Gebremichael, B. T. Meggitt, W. J. O. Boyle, W. Li, K. T. V. Grattan, L. Boswell, B. McKinley, K. A. Aarnes, L. Kvenild, “Multiplexed fibre Bragg grating sensor system for structural integrity monitoring in large civil engineering applications,” in Proceedings of Sensors and their Applications XI, K. T. V. Grattan, S. H. Khan, eds. (Institute of Physics, London, 2001), pp. 341–345.

P. M. Farrell, S. A. Wade, G. W. Baxter, S. F. Collins, A. J. Stevenson, K. T. V. Grattan, “On the physical origin of strain sensitivity in optical fibre rare earth fluorescence sensors,” in Proceedings of Sensors and their Applications XI, K. T. V. Grattan, S. H. Khan, eds. (Institute of Physics, London, 2001), pp. 231–236.

S. F. Collins, P. M. Farrell, S. A. Wade, G. W. Baxter, D. A. Simpson, A. J. Stevenson, K. T. V. Grattan, D. I. Forsyth, “Modelling strain dependence of fluorescence from doped optical fibres: application to neodymium,” presented at Conference of Optical Fiber Sensors 2002, Portland, Ore., 6–10 May 2002.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Experimental arrangement used for the temperature and strain calibration of the sensors (sensors 1, 2, and 3 shown as insets). OSA, optical spectrum analyzer.

Fig. 2
Fig. 2

Fluorescence spectra from all three sensors showing intensity dips that are due to the FBG reflection.

Fig. 3
Fig. 3

Fluorescent lifetime versus temperature calibration data for sensor 3 at minimum and maximum applied strains together with linear fits to the data.

Fig. 4
Fig. 4

Shifts in the FBG wavelength with strain for sensor 3 for a range of temperatures tested.

Fig. 5
Fig. 5

Comparison of the strain sensitivities of fluorescent lifetimes over the full temperature ranges for all three sensors.

Fig. 6
Fig. 6

(a) Fluorescent lifetime versus temperature data obtained at minimum applied strain (221 μ∊). (b) Difference between the experimental data and the linear fit for sensor 3.

Fig. 7
Fig. 7

Temperature characteristics of the fluorescent lifetime of all sensors for an extended temperature range.

Fig. 8
Fig. 8

(a) Fluorescent lifetime correction of Bragg shifts at constant temperature (30 °C) and (b) at constant strain (221 μ∊) for sensor 3. The values obtained from FBG data alone are displayed as filled triangles, and the values obtained with the combined FBG and fluorescence lifetime approach are shown as filled circles. The straight lines show the constant temperature (30 °C) and strain (221-μ∊) values to which the sensor was exposed.

Tables (3)

Tables Icon

Table 1 Temperature and Strain Coefficients of the Fluorescence Lifetime and the FBG Wavelength for all Three Sensors

Tables Icon

Table 2 Standard Deviation of Differences between Temperature and Strain Values Calculated with Measurements from the Optical Sensors and the Known Parameters Applied During the Tests

Tables Icon

Table 3 Average r2 Values Obtained for Linear Fits to Lifetimes Versus Temperature Data for all Three Sensors, Indicating the Linearity of the Fits

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ΔτΔλ=K1TK1K2TK2 T,
T=1K1TK2-K2TK1K2-K1-K2TK1T ΔτΔλ,
=m.g/AY,

Metrics