Abstract

A high-density wavelength division demultiplexer (DEMUX) capable of demultiplexing eight-channel 200-GHz optically spaced signals into a 62.5-µm multimode-fiber array is reported. The wavelength range of operation is from 1549.32 to 1560.61 nm within the International Telecommunication Union grid. The measured wavelength accuracy is within 0.04 nm. The mean insertion loss of this DEMUX is 1.95 dB. Thermal analysis and temperature testing results are reported. The temperature test cycling from 20 °C to 60 °C indicates that the wavelength thermal drift is less than 0.8 pm/°C. Adjacent cross talk is measured to be better than -45 dB. The measured data transmission bit rate of this device is higher than 3.5 Gb/s.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. DeCusatis, “Optical data communication: fundamentals and future directions,” Opt. Eng. 37, 3082–3099 (1998).
    [CrossRef]
  2. R. R. Patel, H. E. Garrett, M. A. Emanuel, M. C. Larson, M. D. Pocha, D. M. Krol, R. J. Deri, M. E. Lowry, “WDM filter modules in compact, low-cost plastic packages for byte-wide multimode fiber ribbon cable data links,” Electron. Lett. 35, 840–841 (1999).
    [CrossRef]
  3. B. E. Lemoff, L. B. Aronson, L. A. Buckman, “Zigzag waveguide demultiplexer for multimode WDM LAN,” Electron. Lett. 34, 1014–1016 (1998).
    [CrossRef]
  4. L. B. Aronson, B. E. Lemoff, L. A. Buckman, “Low-cost multimode WDM for local area networks up to 10Gb/s,” IEEE Photon. Technol. Lett. 10, 1489–1491 (1998).
    [CrossRef]
  5. S.-Y. Hu, J. Ko, E. R. Hegblom, L. A. Coldren, “Multimode WDM optical data links with monolithically integrated multiple-channel VCSEL and photodetector arrays,” IEEE J. Quantum Electron. 34, 1403–1414 (1998).
    [CrossRef]
  6. M. Koga, T. Matsumoto, “A novel optical WDM demultiplexer consisting of a simple optical multimode guide and an electrical neural network,” IEEE Photon. Technol. Lett. 2, 487–489 (1990).
    [CrossRef]
  7. W. J. Tomlinson, “Wavelength multiplexing in multimode optical fibers,” Appl. Opt. 16, 2180–2194 (1977).
    [CrossRef] [PubMed]
  8. R. C. Lasky, U. L. Osterberg, D. P. Stigliani, Optoelectronics for Data Communications (Academic, New York, 1995).
  9. J. Qiao, F. Zhao, R. T. Chen, W. W. Morey, J. W. Horwitz, R. Collins, G. Chang, V. Villavicencio, “Multimode 200-GHz-spaced dense wavelength division demultiplexing for local area networks,” in WDM and Photonic Switching Devices for Network Applications II, R. T. Chen, G. F. Lipscomb, eds., Proc. SPIE4289, 52–58 (2001).
  10. Y. Kanabar, N. Baker, G. J. Cannell, A. Robertson, “High density wavelength division multiplexing for multiple access networks,” in IEE Colloquium on Optical Multiple Access Networks (Institution of Electrical Engineers, London, UK, 1991), pp. 9/1–9/4.
  11. M. C. Hutley, Diffraction Gratings (Academic, New York, 1982).
  12. E. G. Loewen, E. Popov, Diffraction Gratings and Applications (Marcel Dekker, New York, 1997).
  13. “Schott Optical Glass,” Schott Glass Technologies, 400 York Ave., Duryea, Pa. 18642 (1992).
  14. E. G. Churin, P. Bayvel, “Passband flattening and broadening techniques for high spectral efficiency wavelength demultiplexers,” Electron. Lett. 35, 27–28 (1999).
    [CrossRef]
  15. C. Dragone, T. Strasser, G. A. Bogert, L. W. Stulz, P. Chou, “Waveguide grating router with maximally flat passband produced by spatial filtering,” Electron. Lett. 33, 1312–1314 (1997).
    [CrossRef]
  16. A. Rigny, A. Bruno, H. Sik, “Multigrating method for flattened spectral response wavelength multi/demultiplexer,” Electron. Lett. 33, 1701–1702 (1997).
    [CrossRef]
  17. C. P. Botham, “Theory of tapering single-mode optical fibres by controlled core diffusion,” Electron. Lett. 24, 243–244 (1988).
    [CrossRef]
  18. J. S. Harper, C. P. Botham, S. Hornung, “Tapers in single-mode optical fibre by controlled core diffusion,” Electron. Lett. 24, 245–246 (1988).
    [CrossRef]
  19. D. T. Moore, “Gradient-index optics: a review,” Appl. Opt. 19, 1035–1043 (1980).
    [CrossRef] [PubMed]
  20. K. Shiraishi, A. Ogura, K. Matsuura, “Spotsize contraction in standard single-mode fibers by use of a GI-fiber tip with a high focusing parameter,” IEEE Photon. Technol. Lett. 10, 1757–1759 (1998).
    [CrossRef]
  21. W. Bludau, R. Rossberg, “Low-loss laser-to-fiber coupling with negligible optical feedback,” J. Lightwave Technol. LT-3, 294–302 (1985).
    [CrossRef]
  22. K. Shiraishi, “A new lensed-fiber configuration employing cascaded GI-fiber chips,” J. Lightwave Technol. 18, 787–794 (2000).
    [CrossRef]
  23. J. Laude, K. Lange, “Dense wavelength division multiplexer and routers using diffraction grating,” Proc. NFOEC 99 1, 83–88 (1999).
  24. J. Hirsh, V. Y. Kalindjian, F. S. Lin, M. R. Wang, G. Xu, T. Jannson, “High-channel-density broadband wavelength division multiplexers based on periodic grating structures,” in Application and Theory of Periodic Structures, T. Jannson, N. C. Gallagher, eds., Proc. SPIE2532, 171–181 (1995).
  25. B. Chassagne, K. Aubry, L. Fulop, V. Dentan, “Low-loss athermal bulk-optic flat-top passband MUX/DMUX,” Electron. Lett. 38, 235–236 (2002).
    [CrossRef]
  26. S. Janz, M. Pearson, B. Lamontagne, L. Erickson, A. Delăge, P. Cheben, D.-X. Xu, M. Gao, A. Balakrishnan, J. Miller, S. Charbonneau, “Planar waveguide echelle gratings: an embeddable diffractive element for photonic integrated circuits,” in Optical Fiber Communication Conference and Exhibit Technical Digest (Optical Society of America, Washington, D.C., 2002), pp. 69–70.
  27. A. Kaneko, S. Kamei, Y. Inoue, H. Takahashi, A. Sugita, “Athermal silica-based arrayed-waveguide grating (AWG) multiplexers with new low loss groove design,” in Optical Fiber Communication Conference (Optical Society of America, Washington, D.C., 1999), pp. Tu01–1–Tu01–3.
  28. K. Maru, M. Ohkawa, H. Nounen, S. Takasugi, S. Kashimura, H. Okano, H. Uetsuka, “Athermal and center wavelength adjustable arrayed-waveguide grating,” in Optical Fiber Communication Conference (Optical Society of America, Washington, D.C., 2000), pp. 130–132.
  29. N. Keil, H. H. Yao, C. Zawadzki, J. Bauer, M. Bauer, C. Dreyer, J. Schneider, “Athermal all-polymer arrayed-waveguide grating multiplexer,” Electron. Lett. 37, 579–580 (2001).
    [CrossRef]

2002 (1)

B. Chassagne, K. Aubry, L. Fulop, V. Dentan, “Low-loss athermal bulk-optic flat-top passband MUX/DMUX,” Electron. Lett. 38, 235–236 (2002).
[CrossRef]

2001 (1)

N. Keil, H. H. Yao, C. Zawadzki, J. Bauer, M. Bauer, C. Dreyer, J. Schneider, “Athermal all-polymer arrayed-waveguide grating multiplexer,” Electron. Lett. 37, 579–580 (2001).
[CrossRef]

2000 (1)

1999 (3)

J. Laude, K. Lange, “Dense wavelength division multiplexer and routers using diffraction grating,” Proc. NFOEC 99 1, 83–88 (1999).

R. R. Patel, H. E. Garrett, M. A. Emanuel, M. C. Larson, M. D. Pocha, D. M. Krol, R. J. Deri, M. E. Lowry, “WDM filter modules in compact, low-cost plastic packages for byte-wide multimode fiber ribbon cable data links,” Electron. Lett. 35, 840–841 (1999).
[CrossRef]

E. G. Churin, P. Bayvel, “Passband flattening and broadening techniques for high spectral efficiency wavelength demultiplexers,” Electron. Lett. 35, 27–28 (1999).
[CrossRef]

1998 (5)

B. E. Lemoff, L. B. Aronson, L. A. Buckman, “Zigzag waveguide demultiplexer for multimode WDM LAN,” Electron. Lett. 34, 1014–1016 (1998).
[CrossRef]

L. B. Aronson, B. E. Lemoff, L. A. Buckman, “Low-cost multimode WDM for local area networks up to 10Gb/s,” IEEE Photon. Technol. Lett. 10, 1489–1491 (1998).
[CrossRef]

S.-Y. Hu, J. Ko, E. R. Hegblom, L. A. Coldren, “Multimode WDM optical data links with monolithically integrated multiple-channel VCSEL and photodetector arrays,” IEEE J. Quantum Electron. 34, 1403–1414 (1998).
[CrossRef]

C. DeCusatis, “Optical data communication: fundamentals and future directions,” Opt. Eng. 37, 3082–3099 (1998).
[CrossRef]

K. Shiraishi, A. Ogura, K. Matsuura, “Spotsize contraction in standard single-mode fibers by use of a GI-fiber tip with a high focusing parameter,” IEEE Photon. Technol. Lett. 10, 1757–1759 (1998).
[CrossRef]

1997 (2)

C. Dragone, T. Strasser, G. A. Bogert, L. W. Stulz, P. Chou, “Waveguide grating router with maximally flat passband produced by spatial filtering,” Electron. Lett. 33, 1312–1314 (1997).
[CrossRef]

A. Rigny, A. Bruno, H. Sik, “Multigrating method for flattened spectral response wavelength multi/demultiplexer,” Electron. Lett. 33, 1701–1702 (1997).
[CrossRef]

1990 (1)

M. Koga, T. Matsumoto, “A novel optical WDM demultiplexer consisting of a simple optical multimode guide and an electrical neural network,” IEEE Photon. Technol. Lett. 2, 487–489 (1990).
[CrossRef]

1988 (2)

C. P. Botham, “Theory of tapering single-mode optical fibres by controlled core diffusion,” Electron. Lett. 24, 243–244 (1988).
[CrossRef]

J. S. Harper, C. P. Botham, S. Hornung, “Tapers in single-mode optical fibre by controlled core diffusion,” Electron. Lett. 24, 245–246 (1988).
[CrossRef]

1985 (1)

W. Bludau, R. Rossberg, “Low-loss laser-to-fiber coupling with negligible optical feedback,” J. Lightwave Technol. LT-3, 294–302 (1985).
[CrossRef]

1980 (1)

1977 (1)

Aronson, L. B.

B. E. Lemoff, L. B. Aronson, L. A. Buckman, “Zigzag waveguide demultiplexer for multimode WDM LAN,” Electron. Lett. 34, 1014–1016 (1998).
[CrossRef]

L. B. Aronson, B. E. Lemoff, L. A. Buckman, “Low-cost multimode WDM for local area networks up to 10Gb/s,” IEEE Photon. Technol. Lett. 10, 1489–1491 (1998).
[CrossRef]

Aubry, K.

B. Chassagne, K. Aubry, L. Fulop, V. Dentan, “Low-loss athermal bulk-optic flat-top passband MUX/DMUX,” Electron. Lett. 38, 235–236 (2002).
[CrossRef]

Baker, N.

Y. Kanabar, N. Baker, G. J. Cannell, A. Robertson, “High density wavelength division multiplexing for multiple access networks,” in IEE Colloquium on Optical Multiple Access Networks (Institution of Electrical Engineers, London, UK, 1991), pp. 9/1–9/4.

Balakrishnan, A.

S. Janz, M. Pearson, B. Lamontagne, L. Erickson, A. Delăge, P. Cheben, D.-X. Xu, M. Gao, A. Balakrishnan, J. Miller, S. Charbonneau, “Planar waveguide echelle gratings: an embeddable diffractive element for photonic integrated circuits,” in Optical Fiber Communication Conference and Exhibit Technical Digest (Optical Society of America, Washington, D.C., 2002), pp. 69–70.

Bauer, J.

N. Keil, H. H. Yao, C. Zawadzki, J. Bauer, M. Bauer, C. Dreyer, J. Schneider, “Athermal all-polymer arrayed-waveguide grating multiplexer,” Electron. Lett. 37, 579–580 (2001).
[CrossRef]

Bauer, M.

N. Keil, H. H. Yao, C. Zawadzki, J. Bauer, M. Bauer, C. Dreyer, J. Schneider, “Athermal all-polymer arrayed-waveguide grating multiplexer,” Electron. Lett. 37, 579–580 (2001).
[CrossRef]

Bayvel, P.

E. G. Churin, P. Bayvel, “Passband flattening and broadening techniques for high spectral efficiency wavelength demultiplexers,” Electron. Lett. 35, 27–28 (1999).
[CrossRef]

Bludau, W.

W. Bludau, R. Rossberg, “Low-loss laser-to-fiber coupling with negligible optical feedback,” J. Lightwave Technol. LT-3, 294–302 (1985).
[CrossRef]

Bogert, G. A.

C. Dragone, T. Strasser, G. A. Bogert, L. W. Stulz, P. Chou, “Waveguide grating router with maximally flat passband produced by spatial filtering,” Electron. Lett. 33, 1312–1314 (1997).
[CrossRef]

Botham, C. P.

C. P. Botham, “Theory of tapering single-mode optical fibres by controlled core diffusion,” Electron. Lett. 24, 243–244 (1988).
[CrossRef]

J. S. Harper, C. P. Botham, S. Hornung, “Tapers in single-mode optical fibre by controlled core diffusion,” Electron. Lett. 24, 245–246 (1988).
[CrossRef]

Bruno, A.

A. Rigny, A. Bruno, H. Sik, “Multigrating method for flattened spectral response wavelength multi/demultiplexer,” Electron. Lett. 33, 1701–1702 (1997).
[CrossRef]

Buckman, L. A.

L. B. Aronson, B. E. Lemoff, L. A. Buckman, “Low-cost multimode WDM for local area networks up to 10Gb/s,” IEEE Photon. Technol. Lett. 10, 1489–1491 (1998).
[CrossRef]

B. E. Lemoff, L. B. Aronson, L. A. Buckman, “Zigzag waveguide demultiplexer for multimode WDM LAN,” Electron. Lett. 34, 1014–1016 (1998).
[CrossRef]

Cannell, G. J.

Y. Kanabar, N. Baker, G. J. Cannell, A. Robertson, “High density wavelength division multiplexing for multiple access networks,” in IEE Colloquium on Optical Multiple Access Networks (Institution of Electrical Engineers, London, UK, 1991), pp. 9/1–9/4.

Chang, G.

J. Qiao, F. Zhao, R. T. Chen, W. W. Morey, J. W. Horwitz, R. Collins, G. Chang, V. Villavicencio, “Multimode 200-GHz-spaced dense wavelength division demultiplexing for local area networks,” in WDM and Photonic Switching Devices for Network Applications II, R. T. Chen, G. F. Lipscomb, eds., Proc. SPIE4289, 52–58 (2001).

Charbonneau, S.

S. Janz, M. Pearson, B. Lamontagne, L. Erickson, A. Delăge, P. Cheben, D.-X. Xu, M. Gao, A. Balakrishnan, J. Miller, S. Charbonneau, “Planar waveguide echelle gratings: an embeddable diffractive element for photonic integrated circuits,” in Optical Fiber Communication Conference and Exhibit Technical Digest (Optical Society of America, Washington, D.C., 2002), pp. 69–70.

Chassagne, B.

B. Chassagne, K. Aubry, L. Fulop, V. Dentan, “Low-loss athermal bulk-optic flat-top passband MUX/DMUX,” Electron. Lett. 38, 235–236 (2002).
[CrossRef]

Cheben, P.

S. Janz, M. Pearson, B. Lamontagne, L. Erickson, A. Delăge, P. Cheben, D.-X. Xu, M. Gao, A. Balakrishnan, J. Miller, S. Charbonneau, “Planar waveguide echelle gratings: an embeddable diffractive element for photonic integrated circuits,” in Optical Fiber Communication Conference and Exhibit Technical Digest (Optical Society of America, Washington, D.C., 2002), pp. 69–70.

Chen, R. T.

J. Qiao, F. Zhao, R. T. Chen, W. W. Morey, J. W. Horwitz, R. Collins, G. Chang, V. Villavicencio, “Multimode 200-GHz-spaced dense wavelength division demultiplexing for local area networks,” in WDM and Photonic Switching Devices for Network Applications II, R. T. Chen, G. F. Lipscomb, eds., Proc. SPIE4289, 52–58 (2001).

Chou, P.

C. Dragone, T. Strasser, G. A. Bogert, L. W. Stulz, P. Chou, “Waveguide grating router with maximally flat passband produced by spatial filtering,” Electron. Lett. 33, 1312–1314 (1997).
[CrossRef]

Churin, E. G.

E. G. Churin, P. Bayvel, “Passband flattening and broadening techniques for high spectral efficiency wavelength demultiplexers,” Electron. Lett. 35, 27–28 (1999).
[CrossRef]

Coldren, L. A.

S.-Y. Hu, J. Ko, E. R. Hegblom, L. A. Coldren, “Multimode WDM optical data links with monolithically integrated multiple-channel VCSEL and photodetector arrays,” IEEE J. Quantum Electron. 34, 1403–1414 (1998).
[CrossRef]

Collins, R.

J. Qiao, F. Zhao, R. T. Chen, W. W. Morey, J. W. Horwitz, R. Collins, G. Chang, V. Villavicencio, “Multimode 200-GHz-spaced dense wavelength division demultiplexing for local area networks,” in WDM and Photonic Switching Devices for Network Applications II, R. T. Chen, G. F. Lipscomb, eds., Proc. SPIE4289, 52–58 (2001).

DeCusatis, C.

C. DeCusatis, “Optical data communication: fundamentals and future directions,” Opt. Eng. 37, 3082–3099 (1998).
[CrossRef]

Delage, A.

S. Janz, M. Pearson, B. Lamontagne, L. Erickson, A. Delăge, P. Cheben, D.-X. Xu, M. Gao, A. Balakrishnan, J. Miller, S. Charbonneau, “Planar waveguide echelle gratings: an embeddable diffractive element for photonic integrated circuits,” in Optical Fiber Communication Conference and Exhibit Technical Digest (Optical Society of America, Washington, D.C., 2002), pp. 69–70.

Dentan, V.

B. Chassagne, K. Aubry, L. Fulop, V. Dentan, “Low-loss athermal bulk-optic flat-top passband MUX/DMUX,” Electron. Lett. 38, 235–236 (2002).
[CrossRef]

Deri, R. J.

R. R. Patel, H. E. Garrett, M. A. Emanuel, M. C. Larson, M. D. Pocha, D. M. Krol, R. J. Deri, M. E. Lowry, “WDM filter modules in compact, low-cost plastic packages for byte-wide multimode fiber ribbon cable data links,” Electron. Lett. 35, 840–841 (1999).
[CrossRef]

Dragone, C.

C. Dragone, T. Strasser, G. A. Bogert, L. W. Stulz, P. Chou, “Waveguide grating router with maximally flat passband produced by spatial filtering,” Electron. Lett. 33, 1312–1314 (1997).
[CrossRef]

Dreyer, C.

N. Keil, H. H. Yao, C. Zawadzki, J. Bauer, M. Bauer, C. Dreyer, J. Schneider, “Athermal all-polymer arrayed-waveguide grating multiplexer,” Electron. Lett. 37, 579–580 (2001).
[CrossRef]

Emanuel, M. A.

R. R. Patel, H. E. Garrett, M. A. Emanuel, M. C. Larson, M. D. Pocha, D. M. Krol, R. J. Deri, M. E. Lowry, “WDM filter modules in compact, low-cost plastic packages for byte-wide multimode fiber ribbon cable data links,” Electron. Lett. 35, 840–841 (1999).
[CrossRef]

Erickson, L.

S. Janz, M. Pearson, B. Lamontagne, L. Erickson, A. Delăge, P. Cheben, D.-X. Xu, M. Gao, A. Balakrishnan, J. Miller, S. Charbonneau, “Planar waveguide echelle gratings: an embeddable diffractive element for photonic integrated circuits,” in Optical Fiber Communication Conference and Exhibit Technical Digest (Optical Society of America, Washington, D.C., 2002), pp. 69–70.

Fulop, L.

B. Chassagne, K. Aubry, L. Fulop, V. Dentan, “Low-loss athermal bulk-optic flat-top passband MUX/DMUX,” Electron. Lett. 38, 235–236 (2002).
[CrossRef]

Gao, M.

S. Janz, M. Pearson, B. Lamontagne, L. Erickson, A. Delăge, P. Cheben, D.-X. Xu, M. Gao, A. Balakrishnan, J. Miller, S. Charbonneau, “Planar waveguide echelle gratings: an embeddable diffractive element for photonic integrated circuits,” in Optical Fiber Communication Conference and Exhibit Technical Digest (Optical Society of America, Washington, D.C., 2002), pp. 69–70.

Garrett, H. E.

R. R. Patel, H. E. Garrett, M. A. Emanuel, M. C. Larson, M. D. Pocha, D. M. Krol, R. J. Deri, M. E. Lowry, “WDM filter modules in compact, low-cost plastic packages for byte-wide multimode fiber ribbon cable data links,” Electron. Lett. 35, 840–841 (1999).
[CrossRef]

Harper, J. S.

J. S. Harper, C. P. Botham, S. Hornung, “Tapers in single-mode optical fibre by controlled core diffusion,” Electron. Lett. 24, 245–246 (1988).
[CrossRef]

Hegblom, E. R.

S.-Y. Hu, J. Ko, E. R. Hegblom, L. A. Coldren, “Multimode WDM optical data links with monolithically integrated multiple-channel VCSEL and photodetector arrays,” IEEE J. Quantum Electron. 34, 1403–1414 (1998).
[CrossRef]

Hirsh, J.

J. Hirsh, V. Y. Kalindjian, F. S. Lin, M. R. Wang, G. Xu, T. Jannson, “High-channel-density broadband wavelength division multiplexers based on periodic grating structures,” in Application and Theory of Periodic Structures, T. Jannson, N. C. Gallagher, eds., Proc. SPIE2532, 171–181 (1995).

Hornung, S.

J. S. Harper, C. P. Botham, S. Hornung, “Tapers in single-mode optical fibre by controlled core diffusion,” Electron. Lett. 24, 245–246 (1988).
[CrossRef]

Horwitz, J. W.

J. Qiao, F. Zhao, R. T. Chen, W. W. Morey, J. W. Horwitz, R. Collins, G. Chang, V. Villavicencio, “Multimode 200-GHz-spaced dense wavelength division demultiplexing for local area networks,” in WDM and Photonic Switching Devices for Network Applications II, R. T. Chen, G. F. Lipscomb, eds., Proc. SPIE4289, 52–58 (2001).

Hu, S.-Y.

S.-Y. Hu, J. Ko, E. R. Hegblom, L. A. Coldren, “Multimode WDM optical data links with monolithically integrated multiple-channel VCSEL and photodetector arrays,” IEEE J. Quantum Electron. 34, 1403–1414 (1998).
[CrossRef]

Hutley, M. C.

M. C. Hutley, Diffraction Gratings (Academic, New York, 1982).

Inoue, Y.

A. Kaneko, S. Kamei, Y. Inoue, H. Takahashi, A. Sugita, “Athermal silica-based arrayed-waveguide grating (AWG) multiplexers with new low loss groove design,” in Optical Fiber Communication Conference (Optical Society of America, Washington, D.C., 1999), pp. Tu01–1–Tu01–3.

Jannson, T.

J. Hirsh, V. Y. Kalindjian, F. S. Lin, M. R. Wang, G. Xu, T. Jannson, “High-channel-density broadband wavelength division multiplexers based on periodic grating structures,” in Application and Theory of Periodic Structures, T. Jannson, N. C. Gallagher, eds., Proc. SPIE2532, 171–181 (1995).

Janz, S.

S. Janz, M. Pearson, B. Lamontagne, L. Erickson, A. Delăge, P. Cheben, D.-X. Xu, M. Gao, A. Balakrishnan, J. Miller, S. Charbonneau, “Planar waveguide echelle gratings: an embeddable diffractive element for photonic integrated circuits,” in Optical Fiber Communication Conference and Exhibit Technical Digest (Optical Society of America, Washington, D.C., 2002), pp. 69–70.

Kalindjian, V. Y.

J. Hirsh, V. Y. Kalindjian, F. S. Lin, M. R. Wang, G. Xu, T. Jannson, “High-channel-density broadband wavelength division multiplexers based on periodic grating structures,” in Application and Theory of Periodic Structures, T. Jannson, N. C. Gallagher, eds., Proc. SPIE2532, 171–181 (1995).

Kamei, S.

A. Kaneko, S. Kamei, Y. Inoue, H. Takahashi, A. Sugita, “Athermal silica-based arrayed-waveguide grating (AWG) multiplexers with new low loss groove design,” in Optical Fiber Communication Conference (Optical Society of America, Washington, D.C., 1999), pp. Tu01–1–Tu01–3.

Kanabar, Y.

Y. Kanabar, N. Baker, G. J. Cannell, A. Robertson, “High density wavelength division multiplexing for multiple access networks,” in IEE Colloquium on Optical Multiple Access Networks (Institution of Electrical Engineers, London, UK, 1991), pp. 9/1–9/4.

Kaneko, A.

A. Kaneko, S. Kamei, Y. Inoue, H. Takahashi, A. Sugita, “Athermal silica-based arrayed-waveguide grating (AWG) multiplexers with new low loss groove design,” in Optical Fiber Communication Conference (Optical Society of America, Washington, D.C., 1999), pp. Tu01–1–Tu01–3.

Kashimura, S.

K. Maru, M. Ohkawa, H. Nounen, S. Takasugi, S. Kashimura, H. Okano, H. Uetsuka, “Athermal and center wavelength adjustable arrayed-waveguide grating,” in Optical Fiber Communication Conference (Optical Society of America, Washington, D.C., 2000), pp. 130–132.

Keil, N.

N. Keil, H. H. Yao, C. Zawadzki, J. Bauer, M. Bauer, C. Dreyer, J. Schneider, “Athermal all-polymer arrayed-waveguide grating multiplexer,” Electron. Lett. 37, 579–580 (2001).
[CrossRef]

Ko, J.

S.-Y. Hu, J. Ko, E. R. Hegblom, L. A. Coldren, “Multimode WDM optical data links with monolithically integrated multiple-channel VCSEL and photodetector arrays,” IEEE J. Quantum Electron. 34, 1403–1414 (1998).
[CrossRef]

Koga, M.

M. Koga, T. Matsumoto, “A novel optical WDM demultiplexer consisting of a simple optical multimode guide and an electrical neural network,” IEEE Photon. Technol. Lett. 2, 487–489 (1990).
[CrossRef]

Krol, D. M.

R. R. Patel, H. E. Garrett, M. A. Emanuel, M. C. Larson, M. D. Pocha, D. M. Krol, R. J. Deri, M. E. Lowry, “WDM filter modules in compact, low-cost plastic packages for byte-wide multimode fiber ribbon cable data links,” Electron. Lett. 35, 840–841 (1999).
[CrossRef]

Lamontagne, B.

S. Janz, M. Pearson, B. Lamontagne, L. Erickson, A. Delăge, P. Cheben, D.-X. Xu, M. Gao, A. Balakrishnan, J. Miller, S. Charbonneau, “Planar waveguide echelle gratings: an embeddable diffractive element for photonic integrated circuits,” in Optical Fiber Communication Conference and Exhibit Technical Digest (Optical Society of America, Washington, D.C., 2002), pp. 69–70.

Lange, K.

J. Laude, K. Lange, “Dense wavelength division multiplexer and routers using diffraction grating,” Proc. NFOEC 99 1, 83–88 (1999).

Larson, M. C.

R. R. Patel, H. E. Garrett, M. A. Emanuel, M. C. Larson, M. D. Pocha, D. M. Krol, R. J. Deri, M. E. Lowry, “WDM filter modules in compact, low-cost plastic packages for byte-wide multimode fiber ribbon cable data links,” Electron. Lett. 35, 840–841 (1999).
[CrossRef]

Lasky, R. C.

R. C. Lasky, U. L. Osterberg, D. P. Stigliani, Optoelectronics for Data Communications (Academic, New York, 1995).

Laude, J.

J. Laude, K. Lange, “Dense wavelength division multiplexer and routers using diffraction grating,” Proc. NFOEC 99 1, 83–88 (1999).

Lemoff, B. E.

B. E. Lemoff, L. B. Aronson, L. A. Buckman, “Zigzag waveguide demultiplexer for multimode WDM LAN,” Electron. Lett. 34, 1014–1016 (1998).
[CrossRef]

L. B. Aronson, B. E. Lemoff, L. A. Buckman, “Low-cost multimode WDM for local area networks up to 10Gb/s,” IEEE Photon. Technol. Lett. 10, 1489–1491 (1998).
[CrossRef]

Lin, F. S.

J. Hirsh, V. Y. Kalindjian, F. S. Lin, M. R. Wang, G. Xu, T. Jannson, “High-channel-density broadband wavelength division multiplexers based on periodic grating structures,” in Application and Theory of Periodic Structures, T. Jannson, N. C. Gallagher, eds., Proc. SPIE2532, 171–181 (1995).

Loewen, E. G.

E. G. Loewen, E. Popov, Diffraction Gratings and Applications (Marcel Dekker, New York, 1997).

Lowry, M. E.

R. R. Patel, H. E. Garrett, M. A. Emanuel, M. C. Larson, M. D. Pocha, D. M. Krol, R. J. Deri, M. E. Lowry, “WDM filter modules in compact, low-cost plastic packages for byte-wide multimode fiber ribbon cable data links,” Electron. Lett. 35, 840–841 (1999).
[CrossRef]

Maru, K.

K. Maru, M. Ohkawa, H. Nounen, S. Takasugi, S. Kashimura, H. Okano, H. Uetsuka, “Athermal and center wavelength adjustable arrayed-waveguide grating,” in Optical Fiber Communication Conference (Optical Society of America, Washington, D.C., 2000), pp. 130–132.

Matsumoto, T.

M. Koga, T. Matsumoto, “A novel optical WDM demultiplexer consisting of a simple optical multimode guide and an electrical neural network,” IEEE Photon. Technol. Lett. 2, 487–489 (1990).
[CrossRef]

Matsuura, K.

K. Shiraishi, A. Ogura, K. Matsuura, “Spotsize contraction in standard single-mode fibers by use of a GI-fiber tip with a high focusing parameter,” IEEE Photon. Technol. Lett. 10, 1757–1759 (1998).
[CrossRef]

Miller, J.

S. Janz, M. Pearson, B. Lamontagne, L. Erickson, A. Delăge, P. Cheben, D.-X. Xu, M. Gao, A. Balakrishnan, J. Miller, S. Charbonneau, “Planar waveguide echelle gratings: an embeddable diffractive element for photonic integrated circuits,” in Optical Fiber Communication Conference and Exhibit Technical Digest (Optical Society of America, Washington, D.C., 2002), pp. 69–70.

Moore, D. T.

Morey, W. W.

J. Qiao, F. Zhao, R. T. Chen, W. W. Morey, J. W. Horwitz, R. Collins, G. Chang, V. Villavicencio, “Multimode 200-GHz-spaced dense wavelength division demultiplexing for local area networks,” in WDM and Photonic Switching Devices for Network Applications II, R. T. Chen, G. F. Lipscomb, eds., Proc. SPIE4289, 52–58 (2001).

Nounen, H.

K. Maru, M. Ohkawa, H. Nounen, S. Takasugi, S. Kashimura, H. Okano, H. Uetsuka, “Athermal and center wavelength adjustable arrayed-waveguide grating,” in Optical Fiber Communication Conference (Optical Society of America, Washington, D.C., 2000), pp. 130–132.

Ogura, A.

K. Shiraishi, A. Ogura, K. Matsuura, “Spotsize contraction in standard single-mode fibers by use of a GI-fiber tip with a high focusing parameter,” IEEE Photon. Technol. Lett. 10, 1757–1759 (1998).
[CrossRef]

Ohkawa, M.

K. Maru, M. Ohkawa, H. Nounen, S. Takasugi, S. Kashimura, H. Okano, H. Uetsuka, “Athermal and center wavelength adjustable arrayed-waveguide grating,” in Optical Fiber Communication Conference (Optical Society of America, Washington, D.C., 2000), pp. 130–132.

Okano, H.

K. Maru, M. Ohkawa, H. Nounen, S. Takasugi, S. Kashimura, H. Okano, H. Uetsuka, “Athermal and center wavelength adjustable arrayed-waveguide grating,” in Optical Fiber Communication Conference (Optical Society of America, Washington, D.C., 2000), pp. 130–132.

Osterberg, U. L.

R. C. Lasky, U. L. Osterberg, D. P. Stigliani, Optoelectronics for Data Communications (Academic, New York, 1995).

Patel, R. R.

R. R. Patel, H. E. Garrett, M. A. Emanuel, M. C. Larson, M. D. Pocha, D. M. Krol, R. J. Deri, M. E. Lowry, “WDM filter modules in compact, low-cost plastic packages for byte-wide multimode fiber ribbon cable data links,” Electron. Lett. 35, 840–841 (1999).
[CrossRef]

Pearson, M.

S. Janz, M. Pearson, B. Lamontagne, L. Erickson, A. Delăge, P. Cheben, D.-X. Xu, M. Gao, A. Balakrishnan, J. Miller, S. Charbonneau, “Planar waveguide echelle gratings: an embeddable diffractive element for photonic integrated circuits,” in Optical Fiber Communication Conference and Exhibit Technical Digest (Optical Society of America, Washington, D.C., 2002), pp. 69–70.

Pocha, M. D.

R. R. Patel, H. E. Garrett, M. A. Emanuel, M. C. Larson, M. D. Pocha, D. M. Krol, R. J. Deri, M. E. Lowry, “WDM filter modules in compact, low-cost plastic packages for byte-wide multimode fiber ribbon cable data links,” Electron. Lett. 35, 840–841 (1999).
[CrossRef]

Popov, E.

E. G. Loewen, E. Popov, Diffraction Gratings and Applications (Marcel Dekker, New York, 1997).

Qiao, J.

J. Qiao, F. Zhao, R. T. Chen, W. W. Morey, J. W. Horwitz, R. Collins, G. Chang, V. Villavicencio, “Multimode 200-GHz-spaced dense wavelength division demultiplexing for local area networks,” in WDM and Photonic Switching Devices for Network Applications II, R. T. Chen, G. F. Lipscomb, eds., Proc. SPIE4289, 52–58 (2001).

Rigny, A.

A. Rigny, A. Bruno, H. Sik, “Multigrating method for flattened spectral response wavelength multi/demultiplexer,” Electron. Lett. 33, 1701–1702 (1997).
[CrossRef]

Robertson, A.

Y. Kanabar, N. Baker, G. J. Cannell, A. Robertson, “High density wavelength division multiplexing for multiple access networks,” in IEE Colloquium on Optical Multiple Access Networks (Institution of Electrical Engineers, London, UK, 1991), pp. 9/1–9/4.

Rossberg, R.

W. Bludau, R. Rossberg, “Low-loss laser-to-fiber coupling with negligible optical feedback,” J. Lightwave Technol. LT-3, 294–302 (1985).
[CrossRef]

Schneider, J.

N. Keil, H. H. Yao, C. Zawadzki, J. Bauer, M. Bauer, C. Dreyer, J. Schneider, “Athermal all-polymer arrayed-waveguide grating multiplexer,” Electron. Lett. 37, 579–580 (2001).
[CrossRef]

Shiraishi, K.

K. Shiraishi, “A new lensed-fiber configuration employing cascaded GI-fiber chips,” J. Lightwave Technol. 18, 787–794 (2000).
[CrossRef]

K. Shiraishi, A. Ogura, K. Matsuura, “Spotsize contraction in standard single-mode fibers by use of a GI-fiber tip with a high focusing parameter,” IEEE Photon. Technol. Lett. 10, 1757–1759 (1998).
[CrossRef]

Sik, H.

A. Rigny, A. Bruno, H. Sik, “Multigrating method for flattened spectral response wavelength multi/demultiplexer,” Electron. Lett. 33, 1701–1702 (1997).
[CrossRef]

Stigliani, D. P.

R. C. Lasky, U. L. Osterberg, D. P. Stigliani, Optoelectronics for Data Communications (Academic, New York, 1995).

Strasser, T.

C. Dragone, T. Strasser, G. A. Bogert, L. W. Stulz, P. Chou, “Waveguide grating router with maximally flat passband produced by spatial filtering,” Electron. Lett. 33, 1312–1314 (1997).
[CrossRef]

Stulz, L. W.

C. Dragone, T. Strasser, G. A. Bogert, L. W. Stulz, P. Chou, “Waveguide grating router with maximally flat passband produced by spatial filtering,” Electron. Lett. 33, 1312–1314 (1997).
[CrossRef]

Sugita, A.

A. Kaneko, S. Kamei, Y. Inoue, H. Takahashi, A. Sugita, “Athermal silica-based arrayed-waveguide grating (AWG) multiplexers with new low loss groove design,” in Optical Fiber Communication Conference (Optical Society of America, Washington, D.C., 1999), pp. Tu01–1–Tu01–3.

Takahashi, H.

A. Kaneko, S. Kamei, Y. Inoue, H. Takahashi, A. Sugita, “Athermal silica-based arrayed-waveguide grating (AWG) multiplexers with new low loss groove design,” in Optical Fiber Communication Conference (Optical Society of America, Washington, D.C., 1999), pp. Tu01–1–Tu01–3.

Takasugi, S.

K. Maru, M. Ohkawa, H. Nounen, S. Takasugi, S. Kashimura, H. Okano, H. Uetsuka, “Athermal and center wavelength adjustable arrayed-waveguide grating,” in Optical Fiber Communication Conference (Optical Society of America, Washington, D.C., 2000), pp. 130–132.

Tomlinson, W. J.

Uetsuka, H.

K. Maru, M. Ohkawa, H. Nounen, S. Takasugi, S. Kashimura, H. Okano, H. Uetsuka, “Athermal and center wavelength adjustable arrayed-waveguide grating,” in Optical Fiber Communication Conference (Optical Society of America, Washington, D.C., 2000), pp. 130–132.

Villavicencio, V.

J. Qiao, F. Zhao, R. T. Chen, W. W. Morey, J. W. Horwitz, R. Collins, G. Chang, V. Villavicencio, “Multimode 200-GHz-spaced dense wavelength division demultiplexing for local area networks,” in WDM and Photonic Switching Devices for Network Applications II, R. T. Chen, G. F. Lipscomb, eds., Proc. SPIE4289, 52–58 (2001).

Wang, M. R.

J. Hirsh, V. Y. Kalindjian, F. S. Lin, M. R. Wang, G. Xu, T. Jannson, “High-channel-density broadband wavelength division multiplexers based on periodic grating structures,” in Application and Theory of Periodic Structures, T. Jannson, N. C. Gallagher, eds., Proc. SPIE2532, 171–181 (1995).

Xu, D.-X.

S. Janz, M. Pearson, B. Lamontagne, L. Erickson, A. Delăge, P. Cheben, D.-X. Xu, M. Gao, A. Balakrishnan, J. Miller, S. Charbonneau, “Planar waveguide echelle gratings: an embeddable diffractive element for photonic integrated circuits,” in Optical Fiber Communication Conference and Exhibit Technical Digest (Optical Society of America, Washington, D.C., 2002), pp. 69–70.

Xu, G.

J. Hirsh, V. Y. Kalindjian, F. S. Lin, M. R. Wang, G. Xu, T. Jannson, “High-channel-density broadband wavelength division multiplexers based on periodic grating structures,” in Application and Theory of Periodic Structures, T. Jannson, N. C. Gallagher, eds., Proc. SPIE2532, 171–181 (1995).

Yao, H. H.

N. Keil, H. H. Yao, C. Zawadzki, J. Bauer, M. Bauer, C. Dreyer, J. Schneider, “Athermal all-polymer arrayed-waveguide grating multiplexer,” Electron. Lett. 37, 579–580 (2001).
[CrossRef]

Zawadzki, C.

N. Keil, H. H. Yao, C. Zawadzki, J. Bauer, M. Bauer, C. Dreyer, J. Schneider, “Athermal all-polymer arrayed-waveguide grating multiplexer,” Electron. Lett. 37, 579–580 (2001).
[CrossRef]

Zhao, F.

J. Qiao, F. Zhao, R. T. Chen, W. W. Morey, J. W. Horwitz, R. Collins, G. Chang, V. Villavicencio, “Multimode 200-GHz-spaced dense wavelength division demultiplexing for local area networks,” in WDM and Photonic Switching Devices for Network Applications II, R. T. Chen, G. F. Lipscomb, eds., Proc. SPIE4289, 52–58 (2001).

Appl. Opt. (2)

Electron. Lett. (9)

R. R. Patel, H. E. Garrett, M. A. Emanuel, M. C. Larson, M. D. Pocha, D. M. Krol, R. J. Deri, M. E. Lowry, “WDM filter modules in compact, low-cost plastic packages for byte-wide multimode fiber ribbon cable data links,” Electron. Lett. 35, 840–841 (1999).
[CrossRef]

B. E. Lemoff, L. B. Aronson, L. A. Buckman, “Zigzag waveguide demultiplexer for multimode WDM LAN,” Electron. Lett. 34, 1014–1016 (1998).
[CrossRef]

N. Keil, H. H. Yao, C. Zawadzki, J. Bauer, M. Bauer, C. Dreyer, J. Schneider, “Athermal all-polymer arrayed-waveguide grating multiplexer,” Electron. Lett. 37, 579–580 (2001).
[CrossRef]

E. G. Churin, P. Bayvel, “Passband flattening and broadening techniques for high spectral efficiency wavelength demultiplexers,” Electron. Lett. 35, 27–28 (1999).
[CrossRef]

C. Dragone, T. Strasser, G. A. Bogert, L. W. Stulz, P. Chou, “Waveguide grating router with maximally flat passband produced by spatial filtering,” Electron. Lett. 33, 1312–1314 (1997).
[CrossRef]

A. Rigny, A. Bruno, H. Sik, “Multigrating method for flattened spectral response wavelength multi/demultiplexer,” Electron. Lett. 33, 1701–1702 (1997).
[CrossRef]

C. P. Botham, “Theory of tapering single-mode optical fibres by controlled core diffusion,” Electron. Lett. 24, 243–244 (1988).
[CrossRef]

J. S. Harper, C. P. Botham, S. Hornung, “Tapers in single-mode optical fibre by controlled core diffusion,” Electron. Lett. 24, 245–246 (1988).
[CrossRef]

B. Chassagne, K. Aubry, L. Fulop, V. Dentan, “Low-loss athermal bulk-optic flat-top passband MUX/DMUX,” Electron. Lett. 38, 235–236 (2002).
[CrossRef]

IEEE J. Quantum Electron. (1)

S.-Y. Hu, J. Ko, E. R. Hegblom, L. A. Coldren, “Multimode WDM optical data links with monolithically integrated multiple-channel VCSEL and photodetector arrays,” IEEE J. Quantum Electron. 34, 1403–1414 (1998).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

M. Koga, T. Matsumoto, “A novel optical WDM demultiplexer consisting of a simple optical multimode guide and an electrical neural network,” IEEE Photon. Technol. Lett. 2, 487–489 (1990).
[CrossRef]

K. Shiraishi, A. Ogura, K. Matsuura, “Spotsize contraction in standard single-mode fibers by use of a GI-fiber tip with a high focusing parameter,” IEEE Photon. Technol. Lett. 10, 1757–1759 (1998).
[CrossRef]

L. B. Aronson, B. E. Lemoff, L. A. Buckman, “Low-cost multimode WDM for local area networks up to 10Gb/s,” IEEE Photon. Technol. Lett. 10, 1489–1491 (1998).
[CrossRef]

J. Lightwave Technol. (2)

W. Bludau, R. Rossberg, “Low-loss laser-to-fiber coupling with negligible optical feedback,” J. Lightwave Technol. LT-3, 294–302 (1985).
[CrossRef]

K. Shiraishi, “A new lensed-fiber configuration employing cascaded GI-fiber chips,” J. Lightwave Technol. 18, 787–794 (2000).
[CrossRef]

Opt. Eng. (1)

C. DeCusatis, “Optical data communication: fundamentals and future directions,” Opt. Eng. 37, 3082–3099 (1998).
[CrossRef]

Proc. NFOEC 99 (1)

J. Laude, K. Lange, “Dense wavelength division multiplexer and routers using diffraction grating,” Proc. NFOEC 99 1, 83–88 (1999).

Other (10)

J. Hirsh, V. Y. Kalindjian, F. S. Lin, M. R. Wang, G. Xu, T. Jannson, “High-channel-density broadband wavelength division multiplexers based on periodic grating structures,” in Application and Theory of Periodic Structures, T. Jannson, N. C. Gallagher, eds., Proc. SPIE2532, 171–181 (1995).

S. Janz, M. Pearson, B. Lamontagne, L. Erickson, A. Delăge, P. Cheben, D.-X. Xu, M. Gao, A. Balakrishnan, J. Miller, S. Charbonneau, “Planar waveguide echelle gratings: an embeddable diffractive element for photonic integrated circuits,” in Optical Fiber Communication Conference and Exhibit Technical Digest (Optical Society of America, Washington, D.C., 2002), pp. 69–70.

A. Kaneko, S. Kamei, Y. Inoue, H. Takahashi, A. Sugita, “Athermal silica-based arrayed-waveguide grating (AWG) multiplexers with new low loss groove design,” in Optical Fiber Communication Conference (Optical Society of America, Washington, D.C., 1999), pp. Tu01–1–Tu01–3.

K. Maru, M. Ohkawa, H. Nounen, S. Takasugi, S. Kashimura, H. Okano, H. Uetsuka, “Athermal and center wavelength adjustable arrayed-waveguide grating,” in Optical Fiber Communication Conference (Optical Society of America, Washington, D.C., 2000), pp. 130–132.

R. C. Lasky, U. L. Osterberg, D. P. Stigliani, Optoelectronics for Data Communications (Academic, New York, 1995).

J. Qiao, F. Zhao, R. T. Chen, W. W. Morey, J. W. Horwitz, R. Collins, G. Chang, V. Villavicencio, “Multimode 200-GHz-spaced dense wavelength division demultiplexing for local area networks,” in WDM and Photonic Switching Devices for Network Applications II, R. T. Chen, G. F. Lipscomb, eds., Proc. SPIE4289, 52–58 (2001).

Y. Kanabar, N. Baker, G. J. Cannell, A. Robertson, “High density wavelength division multiplexing for multiple access networks,” in IEE Colloquium on Optical Multiple Access Networks (Institution of Electrical Engineers, London, UK, 1991), pp. 9/1–9/4.

M. C. Hutley, Diffraction Gratings (Academic, New York, 1982).

E. G. Loewen, E. Popov, Diffraction Gratings and Applications (Marcel Dekker, New York, 1997).

“Schott Optical Glass,” Schott Glass Technologies, 400 York Ave., Duryea, Pa. 18642 (1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Diffraction efficiency of the 22nd echelle grating.

Fig. 2
Fig. 2

Blazed grating used in the Littrow mounting.

Fig. 3
Fig. 3

Geometrical layout of the eight-channel multimode DEMUX.

Fig. 4
Fig. 4

Cross section of the optics of the eight-channel DEMUX.

Fig. 5
Fig. 5

Simplified cross-sectional view of the section of a DEMUX that includes the lens and the fiber holder.

Fig. 6
Fig. 6

Inside of the fully packaged eight-channel multimode-in, multimode-out DEMUX.

Fig. 7
Fig. 7

Insertion loss variation plotted against channel frequency at 20 °C and 60 °C.

Fig. 8
Fig. 8

Output spectrum of a passband-broadened DEMUX.

Fig. 9
Fig. 9

Experimental setup for data transmission bit rate testing. RF, radio frequency.

Fig. 10
Fig. 10

Experiments confirmed a 3.5-Gb/s data transmission bit rate. The signal-to-noise ratio of the eye diagram was 8.7:1.

Fig. 11
Fig. 11

Illustration of the overlap region of a receiving fiber and the input spot.

Fig. 12
Fig. 12

Simulation result shows ±10-µm image-shift tolerance within 1-dB passband.

Tables (1)

Tables Icon

Table 1 Device Parameters of the Multimode Demultiplexer

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

m=λ1λ2-λ1.
nΛsin θi+sin θd=mλ,
dθddλ=sin θi+sin θdλ cos θd.
dθddλ=2 tan θdλ.
θi-ϕ=θd+ϕ;
ϕ=θi-θd2 or θd=θi-2ϕ.
f=ΔyΔλλ2 tan θd.
Λ=Λ01+βΔT,
Δλ=βλΔT.
Δfb=-Δzm.
Δx=12DΔTβL-βM,
Δy=2Δλ tan θdifffλ,
Δy=2βΔTf tan θdiff.
Δτg=n0f tanNAtanθd2c,
Δτm=Ln18c Δ2,
Δτ=Δτg2+Δτm21/2.
BR=14Δτ.
η=s fx, ydss fx, yds,

Metrics