Abstract

Interface reflection has been demonstrated to play an important role in GaAs multilayer homojunction far-infrared (FIR) detectors. A transfer matrix method that is able to provide a true optical field distribution within an FIR detector has been employed to optimize photon absorption and structure. The dependence of photon absorption on the reflectivity and the phase shift of the bottom mirror in a resonant-cavity-enhanced GaAs FIR detector has been investigated. Weak wavelength selectivity has been observed for both resonant and off-resonant FIR, which is a unique advantage for detector application. In comparison with the experimental result, a 20.8% increase in quantum efficiency was found in an optimized FIR detector.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. W. Werner, “The Atlas SIRTF,” Infrared Phys. Technol. 35, 539–550 (1994).
    [CrossRef]
  2. A. G. U. Perera, in Physics of Thin Films, M. H. Francombe, J. L. Vossen, eds. (Academic, New York, 1995), Vol. 21, pp. 1–75.
  3. W. Z. Shen, A. G. U. Perera, H. C. Liu, M. Buchanan, W. J. Schaff, “Bias effects in high performance GaAs homojunction far-infrared detectors,” Appl. Phys. Lett. 71, 2677–2679 (1997).
    [CrossRef]
  4. M. S. Ünlü, S. Strite, “Resonant cavity enhanced photonic devices,” J. Appl. Phys. 78, 607–639 (1995).
    [CrossRef]
  5. J. A. Jervase, Y. Zebda, “Characteristic analysis of resonant-cavity-enhanced (RCE) photodetectors,” IEEE J. Quantum Electron. 37, 1129–1134 (1998).
    [CrossRef]
  6. H. A. Macleod, Thin-film Optical Filters, 2nd ed. (Macmillan, New York, 1986), p. 52.
  7. Z. Knittl, Optics of Thin Films (Wiley, London, 1976), pp. 35–51.
  8. M. V. Klein, T. E. Furtak, Optics, 2nd ed. (Wiley, New York, 1986), pp. 295–300.
  9. J. S. Blackemore, “Semiconducting and other major properties of gallium arsenide,” J. Appl. Phys. 53, R123–R181 (1982).
    [CrossRef]
  10. A. L. Korotkov, A. G. U. Perera, W. Z. Shen, J. Herfort, K. H. Ploog, W. J. Schaff, H. C. Liu, “Free-carrier absorption in Be- and C-doped GaAs epilayers and far infrared detector applications,” J. Appl. Phys. 89, 3295–3300 (2001).
    [CrossRef]
  11. W. Z. Shen, L. F. Jiang, G. Yu, Z. Y. Lai, X. G. Wang, S. C. Shen, X. Cao, “Radiative recombination characteristics in GaAs multilayer n+–i interfaces,” J. Appl. Phys. 90, 5444–5446 (2001).
    [CrossRef]
  12. J. Maserjian, “Long-wave infrared (LWIR) detectors based on III-V materials,” in Infrared Technology XVII, B. F. Andreson, M. Strojnik, I. J. Spiro, eds., Proc. SPIE1540, 127–134 (1991).
  13. W. Z. Shen, A. G. U. Perera, M. H. Francombe, H. C. Liu, M. Buchanan, W. J. Schaff, “Effect of emitter layer concentration on the performance of GaAs p+–i homojunction far-infrared detectors: a comparison of theory and experiment,” IEEE Trans. Electron Devices 45, 1671–1677 (1998), and references therein.
    [CrossRef]

2001

A. L. Korotkov, A. G. U. Perera, W. Z. Shen, J. Herfort, K. H. Ploog, W. J. Schaff, H. C. Liu, “Free-carrier absorption in Be- and C-doped GaAs epilayers and far infrared detector applications,” J. Appl. Phys. 89, 3295–3300 (2001).
[CrossRef]

W. Z. Shen, L. F. Jiang, G. Yu, Z. Y. Lai, X. G. Wang, S. C. Shen, X. Cao, “Radiative recombination characteristics in GaAs multilayer n+–i interfaces,” J. Appl. Phys. 90, 5444–5446 (2001).
[CrossRef]

1998

W. Z. Shen, A. G. U. Perera, M. H. Francombe, H. C. Liu, M. Buchanan, W. J. Schaff, “Effect of emitter layer concentration on the performance of GaAs p+–i homojunction far-infrared detectors: a comparison of theory and experiment,” IEEE Trans. Electron Devices 45, 1671–1677 (1998), and references therein.
[CrossRef]

J. A. Jervase, Y. Zebda, “Characteristic analysis of resonant-cavity-enhanced (RCE) photodetectors,” IEEE J. Quantum Electron. 37, 1129–1134 (1998).
[CrossRef]

1997

W. Z. Shen, A. G. U. Perera, H. C. Liu, M. Buchanan, W. J. Schaff, “Bias effects in high performance GaAs homojunction far-infrared detectors,” Appl. Phys. Lett. 71, 2677–2679 (1997).
[CrossRef]

1995

M. S. Ünlü, S. Strite, “Resonant cavity enhanced photonic devices,” J. Appl. Phys. 78, 607–639 (1995).
[CrossRef]

1994

M. W. Werner, “The Atlas SIRTF,” Infrared Phys. Technol. 35, 539–550 (1994).
[CrossRef]

1982

J. S. Blackemore, “Semiconducting and other major properties of gallium arsenide,” J. Appl. Phys. 53, R123–R181 (1982).
[CrossRef]

Blackemore, J. S.

J. S. Blackemore, “Semiconducting and other major properties of gallium arsenide,” J. Appl. Phys. 53, R123–R181 (1982).
[CrossRef]

Buchanan, M.

W. Z. Shen, A. G. U. Perera, M. H. Francombe, H. C. Liu, M. Buchanan, W. J. Schaff, “Effect of emitter layer concentration on the performance of GaAs p+–i homojunction far-infrared detectors: a comparison of theory and experiment,” IEEE Trans. Electron Devices 45, 1671–1677 (1998), and references therein.
[CrossRef]

W. Z. Shen, A. G. U. Perera, H. C. Liu, M. Buchanan, W. J. Schaff, “Bias effects in high performance GaAs homojunction far-infrared detectors,” Appl. Phys. Lett. 71, 2677–2679 (1997).
[CrossRef]

Cao, X.

W. Z. Shen, L. F. Jiang, G. Yu, Z. Y. Lai, X. G. Wang, S. C. Shen, X. Cao, “Radiative recombination characteristics in GaAs multilayer n+–i interfaces,” J. Appl. Phys. 90, 5444–5446 (2001).
[CrossRef]

Francombe, M. H.

W. Z. Shen, A. G. U. Perera, M. H. Francombe, H. C. Liu, M. Buchanan, W. J. Schaff, “Effect of emitter layer concentration on the performance of GaAs p+–i homojunction far-infrared detectors: a comparison of theory and experiment,” IEEE Trans. Electron Devices 45, 1671–1677 (1998), and references therein.
[CrossRef]

Furtak, T. E.

M. V. Klein, T. E. Furtak, Optics, 2nd ed. (Wiley, New York, 1986), pp. 295–300.

Herfort, J.

A. L. Korotkov, A. G. U. Perera, W. Z. Shen, J. Herfort, K. H. Ploog, W. J. Schaff, H. C. Liu, “Free-carrier absorption in Be- and C-doped GaAs epilayers and far infrared detector applications,” J. Appl. Phys. 89, 3295–3300 (2001).
[CrossRef]

Jervase, J. A.

J. A. Jervase, Y. Zebda, “Characteristic analysis of resonant-cavity-enhanced (RCE) photodetectors,” IEEE J. Quantum Electron. 37, 1129–1134 (1998).
[CrossRef]

Jiang, L. F.

W. Z. Shen, L. F. Jiang, G. Yu, Z. Y. Lai, X. G. Wang, S. C. Shen, X. Cao, “Radiative recombination characteristics in GaAs multilayer n+–i interfaces,” J. Appl. Phys. 90, 5444–5446 (2001).
[CrossRef]

Klein, M. V.

M. V. Klein, T. E. Furtak, Optics, 2nd ed. (Wiley, New York, 1986), pp. 295–300.

Knittl, Z.

Z. Knittl, Optics of Thin Films (Wiley, London, 1976), pp. 35–51.

Korotkov, A. L.

A. L. Korotkov, A. G. U. Perera, W. Z. Shen, J. Herfort, K. H. Ploog, W. J. Schaff, H. C. Liu, “Free-carrier absorption in Be- and C-doped GaAs epilayers and far infrared detector applications,” J. Appl. Phys. 89, 3295–3300 (2001).
[CrossRef]

Lai, Z. Y.

W. Z. Shen, L. F. Jiang, G. Yu, Z. Y. Lai, X. G. Wang, S. C. Shen, X. Cao, “Radiative recombination characteristics in GaAs multilayer n+–i interfaces,” J. Appl. Phys. 90, 5444–5446 (2001).
[CrossRef]

Liu, H. C.

A. L. Korotkov, A. G. U. Perera, W. Z. Shen, J. Herfort, K. H. Ploog, W. J. Schaff, H. C. Liu, “Free-carrier absorption in Be- and C-doped GaAs epilayers and far infrared detector applications,” J. Appl. Phys. 89, 3295–3300 (2001).
[CrossRef]

W. Z. Shen, A. G. U. Perera, M. H. Francombe, H. C. Liu, M. Buchanan, W. J. Schaff, “Effect of emitter layer concentration on the performance of GaAs p+–i homojunction far-infrared detectors: a comparison of theory and experiment,” IEEE Trans. Electron Devices 45, 1671–1677 (1998), and references therein.
[CrossRef]

W. Z. Shen, A. G. U. Perera, H. C. Liu, M. Buchanan, W. J. Schaff, “Bias effects in high performance GaAs homojunction far-infrared detectors,” Appl. Phys. Lett. 71, 2677–2679 (1997).
[CrossRef]

Macleod, H. A.

H. A. Macleod, Thin-film Optical Filters, 2nd ed. (Macmillan, New York, 1986), p. 52.

Maserjian, J.

J. Maserjian, “Long-wave infrared (LWIR) detectors based on III-V materials,” in Infrared Technology XVII, B. F. Andreson, M. Strojnik, I. J. Spiro, eds., Proc. SPIE1540, 127–134 (1991).

Perera, A. G. U.

A. L. Korotkov, A. G. U. Perera, W. Z. Shen, J. Herfort, K. H. Ploog, W. J. Schaff, H. C. Liu, “Free-carrier absorption in Be- and C-doped GaAs epilayers and far infrared detector applications,” J. Appl. Phys. 89, 3295–3300 (2001).
[CrossRef]

W. Z. Shen, A. G. U. Perera, M. H. Francombe, H. C. Liu, M. Buchanan, W. J. Schaff, “Effect of emitter layer concentration on the performance of GaAs p+–i homojunction far-infrared detectors: a comparison of theory and experiment,” IEEE Trans. Electron Devices 45, 1671–1677 (1998), and references therein.
[CrossRef]

W. Z. Shen, A. G. U. Perera, H. C. Liu, M. Buchanan, W. J. Schaff, “Bias effects in high performance GaAs homojunction far-infrared detectors,” Appl. Phys. Lett. 71, 2677–2679 (1997).
[CrossRef]

A. G. U. Perera, in Physics of Thin Films, M. H. Francombe, J. L. Vossen, eds. (Academic, New York, 1995), Vol. 21, pp. 1–75.

Ploog, K. H.

A. L. Korotkov, A. G. U. Perera, W. Z. Shen, J. Herfort, K. H. Ploog, W. J. Schaff, H. C. Liu, “Free-carrier absorption in Be- and C-doped GaAs epilayers and far infrared detector applications,” J. Appl. Phys. 89, 3295–3300 (2001).
[CrossRef]

Schaff, W. J.

A. L. Korotkov, A. G. U. Perera, W. Z. Shen, J. Herfort, K. H. Ploog, W. J. Schaff, H. C. Liu, “Free-carrier absorption in Be- and C-doped GaAs epilayers and far infrared detector applications,” J. Appl. Phys. 89, 3295–3300 (2001).
[CrossRef]

W. Z. Shen, A. G. U. Perera, M. H. Francombe, H. C. Liu, M. Buchanan, W. J. Schaff, “Effect of emitter layer concentration on the performance of GaAs p+–i homojunction far-infrared detectors: a comparison of theory and experiment,” IEEE Trans. Electron Devices 45, 1671–1677 (1998), and references therein.
[CrossRef]

W. Z. Shen, A. G. U. Perera, H. C. Liu, M. Buchanan, W. J. Schaff, “Bias effects in high performance GaAs homojunction far-infrared detectors,” Appl. Phys. Lett. 71, 2677–2679 (1997).
[CrossRef]

Shen, S. C.

W. Z. Shen, L. F. Jiang, G. Yu, Z. Y. Lai, X. G. Wang, S. C. Shen, X. Cao, “Radiative recombination characteristics in GaAs multilayer n+–i interfaces,” J. Appl. Phys. 90, 5444–5446 (2001).
[CrossRef]

Shen, W. Z.

W. Z. Shen, L. F. Jiang, G. Yu, Z. Y. Lai, X. G. Wang, S. C. Shen, X. Cao, “Radiative recombination characteristics in GaAs multilayer n+–i interfaces,” J. Appl. Phys. 90, 5444–5446 (2001).
[CrossRef]

A. L. Korotkov, A. G. U. Perera, W. Z. Shen, J. Herfort, K. H. Ploog, W. J. Schaff, H. C. Liu, “Free-carrier absorption in Be- and C-doped GaAs epilayers and far infrared detector applications,” J. Appl. Phys. 89, 3295–3300 (2001).
[CrossRef]

W. Z. Shen, A. G. U. Perera, M. H. Francombe, H. C. Liu, M. Buchanan, W. J. Schaff, “Effect of emitter layer concentration on the performance of GaAs p+–i homojunction far-infrared detectors: a comparison of theory and experiment,” IEEE Trans. Electron Devices 45, 1671–1677 (1998), and references therein.
[CrossRef]

W. Z. Shen, A. G. U. Perera, H. C. Liu, M. Buchanan, W. J. Schaff, “Bias effects in high performance GaAs homojunction far-infrared detectors,” Appl. Phys. Lett. 71, 2677–2679 (1997).
[CrossRef]

Strite, S.

M. S. Ünlü, S. Strite, “Resonant cavity enhanced photonic devices,” J. Appl. Phys. 78, 607–639 (1995).
[CrossRef]

Ünlü, M. S.

M. S. Ünlü, S. Strite, “Resonant cavity enhanced photonic devices,” J. Appl. Phys. 78, 607–639 (1995).
[CrossRef]

Wang, X. G.

W. Z. Shen, L. F. Jiang, G. Yu, Z. Y. Lai, X. G. Wang, S. C. Shen, X. Cao, “Radiative recombination characteristics in GaAs multilayer n+–i interfaces,” J. Appl. Phys. 90, 5444–5446 (2001).
[CrossRef]

Werner, M. W.

M. W. Werner, “The Atlas SIRTF,” Infrared Phys. Technol. 35, 539–550 (1994).
[CrossRef]

Yu, G.

W. Z. Shen, L. F. Jiang, G. Yu, Z. Y. Lai, X. G. Wang, S. C. Shen, X. Cao, “Radiative recombination characteristics in GaAs multilayer n+–i interfaces,” J. Appl. Phys. 90, 5444–5446 (2001).
[CrossRef]

Zebda, Y.

J. A. Jervase, Y. Zebda, “Characteristic analysis of resonant-cavity-enhanced (RCE) photodetectors,” IEEE J. Quantum Electron. 37, 1129–1134 (1998).
[CrossRef]

Appl. Phys. Lett.

W. Z. Shen, A. G. U. Perera, H. C. Liu, M. Buchanan, W. J. Schaff, “Bias effects in high performance GaAs homojunction far-infrared detectors,” Appl. Phys. Lett. 71, 2677–2679 (1997).
[CrossRef]

IEEE J. Quantum Electron.

J. A. Jervase, Y. Zebda, “Characteristic analysis of resonant-cavity-enhanced (RCE) photodetectors,” IEEE J. Quantum Electron. 37, 1129–1134 (1998).
[CrossRef]

IEEE Trans. Electron Devices

W. Z. Shen, A. G. U. Perera, M. H. Francombe, H. C. Liu, M. Buchanan, W. J. Schaff, “Effect of emitter layer concentration on the performance of GaAs p+–i homojunction far-infrared detectors: a comparison of theory and experiment,” IEEE Trans. Electron Devices 45, 1671–1677 (1998), and references therein.
[CrossRef]

Infrared Phys. Technol.

M. W. Werner, “The Atlas SIRTF,” Infrared Phys. Technol. 35, 539–550 (1994).
[CrossRef]

J. Appl. Phys.

M. S. Ünlü, S. Strite, “Resonant cavity enhanced photonic devices,” J. Appl. Phys. 78, 607–639 (1995).
[CrossRef]

J. S. Blackemore, “Semiconducting and other major properties of gallium arsenide,” J. Appl. Phys. 53, R123–R181 (1982).
[CrossRef]

A. L. Korotkov, A. G. U. Perera, W. Z. Shen, J. Herfort, K. H. Ploog, W. J. Schaff, H. C. Liu, “Free-carrier absorption in Be- and C-doped GaAs epilayers and far infrared detector applications,” J. Appl. Phys. 89, 3295–3300 (2001).
[CrossRef]

W. Z. Shen, L. F. Jiang, G. Yu, Z. Y. Lai, X. G. Wang, S. C. Shen, X. Cao, “Radiative recombination characteristics in GaAs multilayer n+–i interfaces,” J. Appl. Phys. 90, 5444–5446 (2001).
[CrossRef]

Other

J. Maserjian, “Long-wave infrared (LWIR) detectors based on III-V materials,” in Infrared Technology XVII, B. F. Andreson, M. Strojnik, I. J. Spiro, eds., Proc. SPIE1540, 127–134 (1991).

A. G. U. Perera, in Physics of Thin Films, M. H. Francombe, J. L. Vossen, eds. (Academic, New York, 1995), Vol. 21, pp. 1–75.

H. A. Macleod, Thin-film Optical Filters, 2nd ed. (Macmillan, New York, 1986), p. 52.

Z. Knittl, Optics of Thin Films (Wiley, London, 1976), pp. 35–51.

M. V. Klein, T. E. Furtak, Optics, 2nd ed. (Wiley, New York, 1986), pp. 295–300.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of a p-GaAs multilayer HIWIP FIR detector after device processing. p ++, p +, and i are the contact layer, the emitter layer, and the intrinsic layer, respectively. The bottom surface is characterized by absolute surface amplitude reflectivity r b and phase shift ψ b attached to r b .

Fig. 2
Fig. 2

Interface amplitude reflectivity r s between intrinsic and doped GaAs (p-type) as a function of wavelength for different concentrations (n em ) of doping: 3.0 × 1018, 4.0 × 1018, and 6.0 × 1018 cm-3. The complex refractive index is obtained from Eq. (1). The structure at 37.2 µm is due to the transverse optical phonons of GaAs.

Fig. 3
Fig. 3

Experimental and calculated reflection (R) spectra of (a), (b) p-GaAs and (c) n-GaAs HIWIP FIR detector samples.

Fig. 4
Fig. 4

Photon absorption probability A p calculated under two-set values of (r b and ψ b ) by the scalar-wave theory in Ref. 4 and ours. The structure consists of 20 periods of intrinsic and doped p-GaAs layers.

Fig. 5
Fig. 5

Dependence of absorption A p on surface amplitude reflectivity r b and phase shift ψ b of the bottom contact at a wavelength of 60 µm.

Fig. 6
Fig. 6

Dependence of photon absorption on doping concentration n bc and thickness W bc of the bottom contact at a wavelength of 60 µm. The basic structure refers to the sample in Fig. 3(b). 1 Å = 0.1 nm.

Fig. 7
Fig. 7

Photon absorption inside the detector cavity in three cases: ψ b = -0.37π, r b = 0.8 (resonant case); ψ b = -0.1π, r b = 0.5 (near-resonant case), and optimized detector structure (Real Detector) after optimization as described in Section 6 (off-resonant case).

Fig. 8
Fig. 8

Dependence of A p η b (without considering the absorption contribution A bc of the bottom contact) on emitter layer thickness d and intrinsic layer thickness h at a wavelength of 60 µm. 1 Å = 0.1 nm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ñ2=ε˜=ε1-ωp2ωω+iω0+ωTO2εS-εωTO2-ω2-iγpω,
Aj=12k˜j expik˜jxAj+1 expik˜j+1xk˜j+k˜j+1+Bj+1 exp-ik˜j+1xk˜j-k˜j+1, Bj=12k˜j exp-ik˜jxAj+1 expik˜j+1xk˜j-k˜j+1+Bj+1 exp-ik˜j+1xk˜j+k˜j+1,

Metrics