Abstract

The quality of the image produced by an outdoor optical system is affected by the presence of atmospheric aerosols between object and receiver. The properties of the point-spread function that result from aerosol particles were calculated by a new Monte Carlo code called MEDIA (an acronym for Modélisation des Effets de Diffusion Inhérents à l’Atmosphère). The influence of the scattering phase function’s angular dependence on the irradiance of the focal plane of a detector was studied. Calculations were performed by use of Mie theory and of the Henyey–Greenstein formulation for the same asymmetry parameter and various detector optical characteristics and atmospheric conditions. Major variations were observed for strong forward-peaked scattering phase functions and a large detector field of view.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978).
  2. E. P. Zege, A. P. Ivanov, I. L. Katsev, Image Transfer through a Scattering Medium (Springer-Verlag, Berlin, 1991).
  3. R. F. Lutomirski, “Atmospheric degradation of electrooptical system performance,” Appl. Opt. 17, 3915–3921 (1978).
    [CrossRef] [PubMed]
  4. J. W. Strohbehn, Laser Beam Propagation in the Atmosphere (Springer-Verlag, Berlin, 1978).
  5. M. S. Belen’kii, “Effect of the inner scale of turbulence on the atmospheric modulation transfer function,” J. Opt. Soc. Am. 13, 1078–1082 (1996).
    [CrossRef]
  6. S. Chandrasekhar, Radiative Transfer (Dover, New York, 1960).
  7. J. Lenoble, Radiative Transfer in Scattering and Absorbing Atmospheres: Standard Computational Procedures (Deepak, Hampton, Va., 1985).
  8. Y. Kuga, A. Ishimaru, “Modulation transfer function of layered inhomogeneous random media using the small-angle approximation,” Appl. Opt. 25, 4382–4385 (1986).
    [CrossRef] [PubMed]
  9. A. S. Zachor, “Aureole radiance field about a source in a scattering-absorbing medium,” Appl. Opt. 17, 1911–1922 (1978).
    [CrossRef] [PubMed]
  10. K. N. Liou, Y. Takano, S. C. Ou, A. Heymsfield, W. Kreiss, “Infrared transmission through cirrus clouds: a radiative model for target detection,” Appl. Opt. 29, 1886–1896 (1990).
    [CrossRef] [PubMed]
  11. K. N. Liou, Y. Takano, S. C. Ou, M. W. Johnson, “Laser transmission through thin cirrus clouds,” Appl. Opt. 39, 4886–4894 (2000).
    [CrossRef]
  12. G. I. Marchuk, G. A. Mikhailov, “The solution of problems of atmospheric optics by a Monte Carlo method,” Atmos. Oceanic Phys. 3, 147–155 (1967).
  13. R. R. Meier, J.-S. Lee, D. E. Anderson, “Atmospheric scattering of middle UV radiation from an internal source,” Appl. Opt. 17, 3216–3225 (1978).
    [CrossRef] [PubMed]
  14. G. Zaccanti, “Monte Carlo study of light propagation in optically thick media: point source case,” Appl. Opt. 30, 2031–2041 (1991).
    [CrossRef] [PubMed]
  15. M. T. Valley, “Numerical method for modeling nonspherical aerosol modulation transfer functions,” in Atmospheric Propagation and Remote Sensing, A. Kohnle, W. B. Miller, eds., Proc. SPIE1688, 73–85 (1992).
  16. P. L. Walker, “Aerosol induced loss of image resolution,” in Atmospheric Propagation and Remote Sensing, A. Kohnle, W. B. Miller, eds., Proc. SPIE1688, 37–46 (1992).
  17. C. Lavigne, A. Roblin, V. Outters, S. Langlois, T. Girasole, C. Rozé, “Comparison of iterative and Monte Carlo methods for calculation of the aureole about a point source in the Earth’s atmosphere,” Appl. Opt. 38, 6237–6246 (1999).
    [CrossRef]
  18. P. Bruscaglioni, P. Donelli, A. Ismaelli, G. Zaccanti, “A numerical procedure for calculating the effect of a turbid medium on the MTF of an optical system,” J. Mod. Opt. 38, 129–142 (1991).
    [CrossRef]
  19. P. Bruscaglioni, P. Donelli, A. Ismaelli, G. Zaccanti, “Monte Carlo calculations of the modulation transfer function of an optical system operating in a turbid medium,” Appl. Opt. 32, 2813–2824 (1993).
    [CrossRef] [PubMed]
  20. B. Ben Dor, P. Bruscaglioni, A. Devir, P. Donelli, A. Ismaelli, “Cloud, fog and aerosol effect on the MTF of optical systems,” in Atmospheric Propagation and Adaptive Systems, A. Kohnle, ed., Proc. SPIE2580, 106–114 (1995).
  21. B. Ben Dor, A. D. Devir, G. Shaviv, P. Bruscaglioni, P. Donelli, A. Ismaelli, “Atmospheric scattering effect on spatial resolution of imaging systems,” J. Opt. Soc. Am. A 14, 1329–1337 (1997).
    [CrossRef]
  22. D. Sadot, N. S. Kopeika, “Imaging through the atmosphere: practical instrumentation-based theory and verification of aerosol MTF,” in Atmospheric Propagation and Remote Sensing, A. Kohnle, W. B. Miller, eds., Proc. SPIE1688, 47–61 (1992).
  23. L. R. Bissonnette, “Imaging through the atmosphere: practical instrumentation-based theory and verification of aerosol modulation transfer function: comment,” J. Opt. Soc. Am. A 11, 1175–1179 (1994).
    [CrossRef]
  24. L. R. Bissonnette, “Imaging through fog and rain,” Opt. Eng. 31, 1045–1052 (1992).
    [CrossRef]
  25. E. P. Shettle, R. W. Fenn, “Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties,” AFGL-TR-79-0214, environmental research paper 676 (Air Force Geophysics Laboratory, Hanscom AFB, Mass., 1979).
  26. M. Hess, P. Koepke, I. Schult, “Optical properties of aerosols and clouds: the software package OPAC,” Bull. Am. Meteorol. Soc. 79, 831–844 (1998).
    [CrossRef]
  27. K. N. Liou, Radiation and Cloud Processes in the Atmosphere (Oxford U. Press, Oxford, 1992).
  28. A. Bucholtz, “Rayleigh-scattering calculations for the terrestrial atmosphere,” Appl. Opt. 34, 2765–2773 (1995).
    [CrossRef] [PubMed]
  29. Y. Kuga, A. Ishimaru, “Modulation transfer function of layered inhomogeneous random media using the small-angle approximation,” Appl. Opt. 25, 4382–4385 (1986).
    [CrossRef] [PubMed]
  30. P. Donelli, P. Bruscaglioni, A. Ismaelli, G. Zaccanti, “Experimental validation of a Monte Carlo procedure for the evaluation of the effect of a turbid medium on the point spread function of an optical system,” J. Mod. Opt. 38, 2189–2201 (1991).
    [CrossRef]
  31. P. H. McMurry, “A review of atmospheric aerosol measurements,” Atmos. Environ. 34, 1959–1999 (2000).
    [CrossRef]
  32. T. L. Anderson, D. S. Covert, J. D. Wheeler, J. M. Harris, K. D. Perry, B. E. Trost, D. J. Jaffe, J. A. Ogren, “Aerosolbackscatter fraction and single scattering albedo: measured values and uncertainties at a coastal station in the Pacific Northwest,” J. Geophys. Res. 104, 26,793–26,807 (1999).
    [CrossRef]
  33. P. K. Quinn, T. S. Bates, D. J. Coffman, T. L. Miller, J. E. Johnson, D. S. Covert, J. P. Putaud, C. Neususs, T. Novakov, “A comparison of aerosol chemical and optical properties from the first and second aerosol characterization experiments,” Tellus B 52, 239–257 (2000).
    [CrossRef]
  34. W. J. Wiscombe, G. W. Grams, “The backscattered fraction in two-stream approximation,” J. Atmos. Sci. 33, 2440–2451 (1976).
    [CrossRef]
  35. S. F. Marshall, D. S. Covert, R. J. Charlson, “Relationship between asymmetry parameter and hemispheric backscatter ratio: implication for climate forcing by aerosols,” Appl. Opt. 34, 6306–6311 (1995).
    [CrossRef] [PubMed]
  36. J. Key, “Streamer user’s guide,” Cooperative Institute for Research in Environmental Sciences Tech. Rep. (University of Colorado, Boulder, Colo., 1994).
  37. D. Toublanc, “Henyey–Greenstein and Mie phase functions in Monte Carlo radiative transfer computations,” Appl. Opt. 35, 3270–3274 (1996).
    [CrossRef] [PubMed]
  38. O. Boucher, “On aerosol direct shortwave forcing and the Henyey–Greenstein phase function,” J. Atmos. Sci. 55, 128–134 (1998).
    [CrossRef]
  39. T. S. Bates, P. K. Quinn, D. J. Coffman, J. E. Johnson, T. L. Miller, D. S. Covert, A. Wiedensohler, S. Leinert, A. Nowak, C. Neususs, “Regional physical and chemical properties of the marine boundary layer aerosol across the Atlantic during Aerosols99: an overview,” J. Geophys. Res. 106, 20,767–20,782 (2001).
    [CrossRef]
  40. C. Levoni, M. Cervino, R. Guzzi, F. Torricella, “Atmospheric aerosol optical properties: a database of radiative characteristics for different components and classes,” Appl. Opt. 36, 8031–8041 (1997).
    [CrossRef]
  41. C. R. Zeisse, “NAM6: batch code for the Navy Aerosol Model,” Tech. Rep. 1804 (Space and Naval Warfare Systems Center, San Diego, Calif., 1999).

2001 (1)

T. S. Bates, P. K. Quinn, D. J. Coffman, J. E. Johnson, T. L. Miller, D. S. Covert, A. Wiedensohler, S. Leinert, A. Nowak, C. Neususs, “Regional physical and chemical properties of the marine boundary layer aerosol across the Atlantic during Aerosols99: an overview,” J. Geophys. Res. 106, 20,767–20,782 (2001).
[CrossRef]

2000 (3)

P. K. Quinn, T. S. Bates, D. J. Coffman, T. L. Miller, J. E. Johnson, D. S. Covert, J. P. Putaud, C. Neususs, T. Novakov, “A comparison of aerosol chemical and optical properties from the first and second aerosol characterization experiments,” Tellus B 52, 239–257 (2000).
[CrossRef]

P. H. McMurry, “A review of atmospheric aerosol measurements,” Atmos. Environ. 34, 1959–1999 (2000).
[CrossRef]

K. N. Liou, Y. Takano, S. C. Ou, M. W. Johnson, “Laser transmission through thin cirrus clouds,” Appl. Opt. 39, 4886–4894 (2000).
[CrossRef]

1999 (2)

C. Lavigne, A. Roblin, V. Outters, S. Langlois, T. Girasole, C. Rozé, “Comparison of iterative and Monte Carlo methods for calculation of the aureole about a point source in the Earth’s atmosphere,” Appl. Opt. 38, 6237–6246 (1999).
[CrossRef]

T. L. Anderson, D. S. Covert, J. D. Wheeler, J. M. Harris, K. D. Perry, B. E. Trost, D. J. Jaffe, J. A. Ogren, “Aerosolbackscatter fraction and single scattering albedo: measured values and uncertainties at a coastal station in the Pacific Northwest,” J. Geophys. Res. 104, 26,793–26,807 (1999).
[CrossRef]

1998 (2)

M. Hess, P. Koepke, I. Schult, “Optical properties of aerosols and clouds: the software package OPAC,” Bull. Am. Meteorol. Soc. 79, 831–844 (1998).
[CrossRef]

O. Boucher, “On aerosol direct shortwave forcing and the Henyey–Greenstein phase function,” J. Atmos. Sci. 55, 128–134 (1998).
[CrossRef]

1997 (2)

1996 (2)

M. S. Belen’kii, “Effect of the inner scale of turbulence on the atmospheric modulation transfer function,” J. Opt. Soc. Am. 13, 1078–1082 (1996).
[CrossRef]

D. Toublanc, “Henyey–Greenstein and Mie phase functions in Monte Carlo radiative transfer computations,” Appl. Opt. 35, 3270–3274 (1996).
[CrossRef] [PubMed]

1995 (2)

1994 (1)

1993 (1)

1992 (1)

L. R. Bissonnette, “Imaging through fog and rain,” Opt. Eng. 31, 1045–1052 (1992).
[CrossRef]

1991 (3)

P. Bruscaglioni, P. Donelli, A. Ismaelli, G. Zaccanti, “A numerical procedure for calculating the effect of a turbid medium on the MTF of an optical system,” J. Mod. Opt. 38, 129–142 (1991).
[CrossRef]

P. Donelli, P. Bruscaglioni, A. Ismaelli, G. Zaccanti, “Experimental validation of a Monte Carlo procedure for the evaluation of the effect of a turbid medium on the point spread function of an optical system,” J. Mod. Opt. 38, 2189–2201 (1991).
[CrossRef]

G. Zaccanti, “Monte Carlo study of light propagation in optically thick media: point source case,” Appl. Opt. 30, 2031–2041 (1991).
[CrossRef] [PubMed]

1990 (1)

1986 (2)

1978 (3)

1976 (1)

W. J. Wiscombe, G. W. Grams, “The backscattered fraction in two-stream approximation,” J. Atmos. Sci. 33, 2440–2451 (1976).
[CrossRef]

1967 (1)

G. I. Marchuk, G. A. Mikhailov, “The solution of problems of atmospheric optics by a Monte Carlo method,” Atmos. Oceanic Phys. 3, 147–155 (1967).

Anderson, D. E.

Anderson, T. L.

T. L. Anderson, D. S. Covert, J. D. Wheeler, J. M. Harris, K. D. Perry, B. E. Trost, D. J. Jaffe, J. A. Ogren, “Aerosolbackscatter fraction and single scattering albedo: measured values and uncertainties at a coastal station in the Pacific Northwest,” J. Geophys. Res. 104, 26,793–26,807 (1999).
[CrossRef]

Bates, T. S.

T. S. Bates, P. K. Quinn, D. J. Coffman, J. E. Johnson, T. L. Miller, D. S. Covert, A. Wiedensohler, S. Leinert, A. Nowak, C. Neususs, “Regional physical and chemical properties of the marine boundary layer aerosol across the Atlantic during Aerosols99: an overview,” J. Geophys. Res. 106, 20,767–20,782 (2001).
[CrossRef]

P. K. Quinn, T. S. Bates, D. J. Coffman, T. L. Miller, J. E. Johnson, D. S. Covert, J. P. Putaud, C. Neususs, T. Novakov, “A comparison of aerosol chemical and optical properties from the first and second aerosol characterization experiments,” Tellus B 52, 239–257 (2000).
[CrossRef]

Belen’kii, M. S.

M. S. Belen’kii, “Effect of the inner scale of turbulence on the atmospheric modulation transfer function,” J. Opt. Soc. Am. 13, 1078–1082 (1996).
[CrossRef]

Ben Dor, B.

B. Ben Dor, A. D. Devir, G. Shaviv, P. Bruscaglioni, P. Donelli, A. Ismaelli, “Atmospheric scattering effect on spatial resolution of imaging systems,” J. Opt. Soc. Am. A 14, 1329–1337 (1997).
[CrossRef]

B. Ben Dor, P. Bruscaglioni, A. Devir, P. Donelli, A. Ismaelli, “Cloud, fog and aerosol effect on the MTF of optical systems,” in Atmospheric Propagation and Adaptive Systems, A. Kohnle, ed., Proc. SPIE2580, 106–114 (1995).

Bissonnette, L. R.

Boucher, O.

O. Boucher, “On aerosol direct shortwave forcing and the Henyey–Greenstein phase function,” J. Atmos. Sci. 55, 128–134 (1998).
[CrossRef]

Bruscaglioni, P.

B. Ben Dor, A. D. Devir, G. Shaviv, P. Bruscaglioni, P. Donelli, A. Ismaelli, “Atmospheric scattering effect on spatial resolution of imaging systems,” J. Opt. Soc. Am. A 14, 1329–1337 (1997).
[CrossRef]

P. Bruscaglioni, P. Donelli, A. Ismaelli, G. Zaccanti, “Monte Carlo calculations of the modulation transfer function of an optical system operating in a turbid medium,” Appl. Opt. 32, 2813–2824 (1993).
[CrossRef] [PubMed]

P. Donelli, P. Bruscaglioni, A. Ismaelli, G. Zaccanti, “Experimental validation of a Monte Carlo procedure for the evaluation of the effect of a turbid medium on the point spread function of an optical system,” J. Mod. Opt. 38, 2189–2201 (1991).
[CrossRef]

P. Bruscaglioni, P. Donelli, A. Ismaelli, G. Zaccanti, “A numerical procedure for calculating the effect of a turbid medium on the MTF of an optical system,” J. Mod. Opt. 38, 129–142 (1991).
[CrossRef]

B. Ben Dor, P. Bruscaglioni, A. Devir, P. Donelli, A. Ismaelli, “Cloud, fog and aerosol effect on the MTF of optical systems,” in Atmospheric Propagation and Adaptive Systems, A. Kohnle, ed., Proc. SPIE2580, 106–114 (1995).

Bucholtz, A.

Cervino, M.

Chandrasekhar, S.

S. Chandrasekhar, Radiative Transfer (Dover, New York, 1960).

Charlson, R. J.

Coffman, D. J.

T. S. Bates, P. K. Quinn, D. J. Coffman, J. E. Johnson, T. L. Miller, D. S. Covert, A. Wiedensohler, S. Leinert, A. Nowak, C. Neususs, “Regional physical and chemical properties of the marine boundary layer aerosol across the Atlantic during Aerosols99: an overview,” J. Geophys. Res. 106, 20,767–20,782 (2001).
[CrossRef]

P. K. Quinn, T. S. Bates, D. J. Coffman, T. L. Miller, J. E. Johnson, D. S. Covert, J. P. Putaud, C. Neususs, T. Novakov, “A comparison of aerosol chemical and optical properties from the first and second aerosol characterization experiments,” Tellus B 52, 239–257 (2000).
[CrossRef]

Covert, D. S.

T. S. Bates, P. K. Quinn, D. J. Coffman, J. E. Johnson, T. L. Miller, D. S. Covert, A. Wiedensohler, S. Leinert, A. Nowak, C. Neususs, “Regional physical and chemical properties of the marine boundary layer aerosol across the Atlantic during Aerosols99: an overview,” J. Geophys. Res. 106, 20,767–20,782 (2001).
[CrossRef]

P. K. Quinn, T. S. Bates, D. J. Coffman, T. L. Miller, J. E. Johnson, D. S. Covert, J. P. Putaud, C. Neususs, T. Novakov, “A comparison of aerosol chemical and optical properties from the first and second aerosol characterization experiments,” Tellus B 52, 239–257 (2000).
[CrossRef]

T. L. Anderson, D. S. Covert, J. D. Wheeler, J. M. Harris, K. D. Perry, B. E. Trost, D. J. Jaffe, J. A. Ogren, “Aerosolbackscatter fraction and single scattering albedo: measured values and uncertainties at a coastal station in the Pacific Northwest,” J. Geophys. Res. 104, 26,793–26,807 (1999).
[CrossRef]

S. F. Marshall, D. S. Covert, R. J. Charlson, “Relationship between asymmetry parameter and hemispheric backscatter ratio: implication for climate forcing by aerosols,” Appl. Opt. 34, 6306–6311 (1995).
[CrossRef] [PubMed]

Devir, A.

B. Ben Dor, P. Bruscaglioni, A. Devir, P. Donelli, A. Ismaelli, “Cloud, fog and aerosol effect on the MTF of optical systems,” in Atmospheric Propagation and Adaptive Systems, A. Kohnle, ed., Proc. SPIE2580, 106–114 (1995).

Devir, A. D.

Donelli, P.

B. Ben Dor, A. D. Devir, G. Shaviv, P. Bruscaglioni, P. Donelli, A. Ismaelli, “Atmospheric scattering effect on spatial resolution of imaging systems,” J. Opt. Soc. Am. A 14, 1329–1337 (1997).
[CrossRef]

P. Bruscaglioni, P. Donelli, A. Ismaelli, G. Zaccanti, “Monte Carlo calculations of the modulation transfer function of an optical system operating in a turbid medium,” Appl. Opt. 32, 2813–2824 (1993).
[CrossRef] [PubMed]

P. Donelli, P. Bruscaglioni, A. Ismaelli, G. Zaccanti, “Experimental validation of a Monte Carlo procedure for the evaluation of the effect of a turbid medium on the point spread function of an optical system,” J. Mod. Opt. 38, 2189–2201 (1991).
[CrossRef]

P. Bruscaglioni, P. Donelli, A. Ismaelli, G. Zaccanti, “A numerical procedure for calculating the effect of a turbid medium on the MTF of an optical system,” J. Mod. Opt. 38, 129–142 (1991).
[CrossRef]

B. Ben Dor, P. Bruscaglioni, A. Devir, P. Donelli, A. Ismaelli, “Cloud, fog and aerosol effect on the MTF of optical systems,” in Atmospheric Propagation and Adaptive Systems, A. Kohnle, ed., Proc. SPIE2580, 106–114 (1995).

Fenn, R. W.

E. P. Shettle, R. W. Fenn, “Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties,” AFGL-TR-79-0214, environmental research paper 676 (Air Force Geophysics Laboratory, Hanscom AFB, Mass., 1979).

Girasole, T.

Grams, G. W.

W. J. Wiscombe, G. W. Grams, “The backscattered fraction in two-stream approximation,” J. Atmos. Sci. 33, 2440–2451 (1976).
[CrossRef]

Guzzi, R.

Harris, J. M.

T. L. Anderson, D. S. Covert, J. D. Wheeler, J. M. Harris, K. D. Perry, B. E. Trost, D. J. Jaffe, J. A. Ogren, “Aerosolbackscatter fraction and single scattering albedo: measured values and uncertainties at a coastal station in the Pacific Northwest,” J. Geophys. Res. 104, 26,793–26,807 (1999).
[CrossRef]

Hess, M.

M. Hess, P. Koepke, I. Schult, “Optical properties of aerosols and clouds: the software package OPAC,” Bull. Am. Meteorol. Soc. 79, 831–844 (1998).
[CrossRef]

Heymsfield, A.

Ishimaru, A.

Ismaelli, A.

B. Ben Dor, A. D. Devir, G. Shaviv, P. Bruscaglioni, P. Donelli, A. Ismaelli, “Atmospheric scattering effect on spatial resolution of imaging systems,” J. Opt. Soc. Am. A 14, 1329–1337 (1997).
[CrossRef]

P. Bruscaglioni, P. Donelli, A. Ismaelli, G. Zaccanti, “Monte Carlo calculations of the modulation transfer function of an optical system operating in a turbid medium,” Appl. Opt. 32, 2813–2824 (1993).
[CrossRef] [PubMed]

P. Donelli, P. Bruscaglioni, A. Ismaelli, G. Zaccanti, “Experimental validation of a Monte Carlo procedure for the evaluation of the effect of a turbid medium on the point spread function of an optical system,” J. Mod. Opt. 38, 2189–2201 (1991).
[CrossRef]

P. Bruscaglioni, P. Donelli, A. Ismaelli, G. Zaccanti, “A numerical procedure for calculating the effect of a turbid medium on the MTF of an optical system,” J. Mod. Opt. 38, 129–142 (1991).
[CrossRef]

B. Ben Dor, P. Bruscaglioni, A. Devir, P. Donelli, A. Ismaelli, “Cloud, fog and aerosol effect on the MTF of optical systems,” in Atmospheric Propagation and Adaptive Systems, A. Kohnle, ed., Proc. SPIE2580, 106–114 (1995).

Ivanov, A. P.

E. P. Zege, A. P. Ivanov, I. L. Katsev, Image Transfer through a Scattering Medium (Springer-Verlag, Berlin, 1991).

Jaffe, D. J.

T. L. Anderson, D. S. Covert, J. D. Wheeler, J. M. Harris, K. D. Perry, B. E. Trost, D. J. Jaffe, J. A. Ogren, “Aerosolbackscatter fraction and single scattering albedo: measured values and uncertainties at a coastal station in the Pacific Northwest,” J. Geophys. Res. 104, 26,793–26,807 (1999).
[CrossRef]

Johnson, J. E.

T. S. Bates, P. K. Quinn, D. J. Coffman, J. E. Johnson, T. L. Miller, D. S. Covert, A. Wiedensohler, S. Leinert, A. Nowak, C. Neususs, “Regional physical and chemical properties of the marine boundary layer aerosol across the Atlantic during Aerosols99: an overview,” J. Geophys. Res. 106, 20,767–20,782 (2001).
[CrossRef]

P. K. Quinn, T. S. Bates, D. J. Coffman, T. L. Miller, J. E. Johnson, D. S. Covert, J. P. Putaud, C. Neususs, T. Novakov, “A comparison of aerosol chemical and optical properties from the first and second aerosol characterization experiments,” Tellus B 52, 239–257 (2000).
[CrossRef]

Johnson, M. W.

Katsev, I. L.

E. P. Zege, A. P. Ivanov, I. L. Katsev, Image Transfer through a Scattering Medium (Springer-Verlag, Berlin, 1991).

Key, J.

J. Key, “Streamer user’s guide,” Cooperative Institute for Research in Environmental Sciences Tech. Rep. (University of Colorado, Boulder, Colo., 1994).

Koepke, P.

M. Hess, P. Koepke, I. Schult, “Optical properties of aerosols and clouds: the software package OPAC,” Bull. Am. Meteorol. Soc. 79, 831–844 (1998).
[CrossRef]

Kopeika, N. S.

D. Sadot, N. S. Kopeika, “Imaging through the atmosphere: practical instrumentation-based theory and verification of aerosol MTF,” in Atmospheric Propagation and Remote Sensing, A. Kohnle, W. B. Miller, eds., Proc. SPIE1688, 47–61 (1992).

Kreiss, W.

Kuga, Y.

Langlois, S.

Lavigne, C.

Lee, J.-S.

Leinert, S.

T. S. Bates, P. K. Quinn, D. J. Coffman, J. E. Johnson, T. L. Miller, D. S. Covert, A. Wiedensohler, S. Leinert, A. Nowak, C. Neususs, “Regional physical and chemical properties of the marine boundary layer aerosol across the Atlantic during Aerosols99: an overview,” J. Geophys. Res. 106, 20,767–20,782 (2001).
[CrossRef]

Lenoble, J.

J. Lenoble, Radiative Transfer in Scattering and Absorbing Atmospheres: Standard Computational Procedures (Deepak, Hampton, Va., 1985).

Levoni, C.

Liou, K. N.

Lutomirski, R. F.

Marchuk, G. I.

G. I. Marchuk, G. A. Mikhailov, “The solution of problems of atmospheric optics by a Monte Carlo method,” Atmos. Oceanic Phys. 3, 147–155 (1967).

Marshall, S. F.

McMurry, P. H.

P. H. McMurry, “A review of atmospheric aerosol measurements,” Atmos. Environ. 34, 1959–1999 (2000).
[CrossRef]

Meier, R. R.

Mikhailov, G. A.

G. I. Marchuk, G. A. Mikhailov, “The solution of problems of atmospheric optics by a Monte Carlo method,” Atmos. Oceanic Phys. 3, 147–155 (1967).

Miller, T. L.

T. S. Bates, P. K. Quinn, D. J. Coffman, J. E. Johnson, T. L. Miller, D. S. Covert, A. Wiedensohler, S. Leinert, A. Nowak, C. Neususs, “Regional physical and chemical properties of the marine boundary layer aerosol across the Atlantic during Aerosols99: an overview,” J. Geophys. Res. 106, 20,767–20,782 (2001).
[CrossRef]

P. K. Quinn, T. S. Bates, D. J. Coffman, T. L. Miller, J. E. Johnson, D. S. Covert, J. P. Putaud, C. Neususs, T. Novakov, “A comparison of aerosol chemical and optical properties from the first and second aerosol characterization experiments,” Tellus B 52, 239–257 (2000).
[CrossRef]

Neususs, C.

T. S. Bates, P. K. Quinn, D. J. Coffman, J. E. Johnson, T. L. Miller, D. S. Covert, A. Wiedensohler, S. Leinert, A. Nowak, C. Neususs, “Regional physical and chemical properties of the marine boundary layer aerosol across the Atlantic during Aerosols99: an overview,” J. Geophys. Res. 106, 20,767–20,782 (2001).
[CrossRef]

P. K. Quinn, T. S. Bates, D. J. Coffman, T. L. Miller, J. E. Johnson, D. S. Covert, J. P. Putaud, C. Neususs, T. Novakov, “A comparison of aerosol chemical and optical properties from the first and second aerosol characterization experiments,” Tellus B 52, 239–257 (2000).
[CrossRef]

Novakov, T.

P. K. Quinn, T. S. Bates, D. J. Coffman, T. L. Miller, J. E. Johnson, D. S. Covert, J. P. Putaud, C. Neususs, T. Novakov, “A comparison of aerosol chemical and optical properties from the first and second aerosol characterization experiments,” Tellus B 52, 239–257 (2000).
[CrossRef]

Nowak, A.

T. S. Bates, P. K. Quinn, D. J. Coffman, J. E. Johnson, T. L. Miller, D. S. Covert, A. Wiedensohler, S. Leinert, A. Nowak, C. Neususs, “Regional physical and chemical properties of the marine boundary layer aerosol across the Atlantic during Aerosols99: an overview,” J. Geophys. Res. 106, 20,767–20,782 (2001).
[CrossRef]

Ogren, J. A.

T. L. Anderson, D. S. Covert, J. D. Wheeler, J. M. Harris, K. D. Perry, B. E. Trost, D. J. Jaffe, J. A. Ogren, “Aerosolbackscatter fraction and single scattering albedo: measured values and uncertainties at a coastal station in the Pacific Northwest,” J. Geophys. Res. 104, 26,793–26,807 (1999).
[CrossRef]

Ou, S. C.

Outters, V.

Perry, K. D.

T. L. Anderson, D. S. Covert, J. D. Wheeler, J. M. Harris, K. D. Perry, B. E. Trost, D. J. Jaffe, J. A. Ogren, “Aerosolbackscatter fraction and single scattering albedo: measured values and uncertainties at a coastal station in the Pacific Northwest,” J. Geophys. Res. 104, 26,793–26,807 (1999).
[CrossRef]

Putaud, J. P.

P. K. Quinn, T. S. Bates, D. J. Coffman, T. L. Miller, J. E. Johnson, D. S. Covert, J. P. Putaud, C. Neususs, T. Novakov, “A comparison of aerosol chemical and optical properties from the first and second aerosol characterization experiments,” Tellus B 52, 239–257 (2000).
[CrossRef]

Quinn, P. K.

T. S. Bates, P. K. Quinn, D. J. Coffman, J. E. Johnson, T. L. Miller, D. S. Covert, A. Wiedensohler, S. Leinert, A. Nowak, C. Neususs, “Regional physical and chemical properties of the marine boundary layer aerosol across the Atlantic during Aerosols99: an overview,” J. Geophys. Res. 106, 20,767–20,782 (2001).
[CrossRef]

P. K. Quinn, T. S. Bates, D. J. Coffman, T. L. Miller, J. E. Johnson, D. S. Covert, J. P. Putaud, C. Neususs, T. Novakov, “A comparison of aerosol chemical and optical properties from the first and second aerosol characterization experiments,” Tellus B 52, 239–257 (2000).
[CrossRef]

Roblin, A.

Rozé, C.

Sadot, D.

D. Sadot, N. S. Kopeika, “Imaging through the atmosphere: practical instrumentation-based theory and verification of aerosol MTF,” in Atmospheric Propagation and Remote Sensing, A. Kohnle, W. B. Miller, eds., Proc. SPIE1688, 47–61 (1992).

Schult, I.

M. Hess, P. Koepke, I. Schult, “Optical properties of aerosols and clouds: the software package OPAC,” Bull. Am. Meteorol. Soc. 79, 831–844 (1998).
[CrossRef]

Shaviv, G.

Shettle, E. P.

E. P. Shettle, R. W. Fenn, “Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties,” AFGL-TR-79-0214, environmental research paper 676 (Air Force Geophysics Laboratory, Hanscom AFB, Mass., 1979).

Strohbehn, J. W.

J. W. Strohbehn, Laser Beam Propagation in the Atmosphere (Springer-Verlag, Berlin, 1978).

Takano, Y.

Torricella, F.

Toublanc, D.

Trost, B. E.

T. L. Anderson, D. S. Covert, J. D. Wheeler, J. M. Harris, K. D. Perry, B. E. Trost, D. J. Jaffe, J. A. Ogren, “Aerosolbackscatter fraction and single scattering albedo: measured values and uncertainties at a coastal station in the Pacific Northwest,” J. Geophys. Res. 104, 26,793–26,807 (1999).
[CrossRef]

Valley, M. T.

M. T. Valley, “Numerical method for modeling nonspherical aerosol modulation transfer functions,” in Atmospheric Propagation and Remote Sensing, A. Kohnle, W. B. Miller, eds., Proc. SPIE1688, 73–85 (1992).

Walker, P. L.

P. L. Walker, “Aerosol induced loss of image resolution,” in Atmospheric Propagation and Remote Sensing, A. Kohnle, W. B. Miller, eds., Proc. SPIE1688, 37–46 (1992).

Wheeler, J. D.

T. L. Anderson, D. S. Covert, J. D. Wheeler, J. M. Harris, K. D. Perry, B. E. Trost, D. J. Jaffe, J. A. Ogren, “Aerosolbackscatter fraction and single scattering albedo: measured values and uncertainties at a coastal station in the Pacific Northwest,” J. Geophys. Res. 104, 26,793–26,807 (1999).
[CrossRef]

Wiedensohler, A.

T. S. Bates, P. K. Quinn, D. J. Coffman, J. E. Johnson, T. L. Miller, D. S. Covert, A. Wiedensohler, S. Leinert, A. Nowak, C. Neususs, “Regional physical and chemical properties of the marine boundary layer aerosol across the Atlantic during Aerosols99: an overview,” J. Geophys. Res. 106, 20,767–20,782 (2001).
[CrossRef]

Wiscombe, W. J.

W. J. Wiscombe, G. W. Grams, “The backscattered fraction in two-stream approximation,” J. Atmos. Sci. 33, 2440–2451 (1976).
[CrossRef]

Zaccanti, G.

P. Bruscaglioni, P. Donelli, A. Ismaelli, G. Zaccanti, “Monte Carlo calculations of the modulation transfer function of an optical system operating in a turbid medium,” Appl. Opt. 32, 2813–2824 (1993).
[CrossRef] [PubMed]

P. Donelli, P. Bruscaglioni, A. Ismaelli, G. Zaccanti, “Experimental validation of a Monte Carlo procedure for the evaluation of the effect of a turbid medium on the point spread function of an optical system,” J. Mod. Opt. 38, 2189–2201 (1991).
[CrossRef]

P. Bruscaglioni, P. Donelli, A. Ismaelli, G. Zaccanti, “A numerical procedure for calculating the effect of a turbid medium on the MTF of an optical system,” J. Mod. Opt. 38, 129–142 (1991).
[CrossRef]

G. Zaccanti, “Monte Carlo study of light propagation in optically thick media: point source case,” Appl. Opt. 30, 2031–2041 (1991).
[CrossRef] [PubMed]

Zachor, A. S.

Zege, E. P.

E. P. Zege, A. P. Ivanov, I. L. Katsev, Image Transfer through a Scattering Medium (Springer-Verlag, Berlin, 1991).

Zeisse, C. R.

C. R. Zeisse, “NAM6: batch code for the Navy Aerosol Model,” Tech. Rep. 1804 (Space and Naval Warfare Systems Center, San Diego, Calif., 1999).

Appl. Opt. (14)

A. S. Zachor, “Aureole radiance field about a source in a scattering-absorbing medium,” Appl. Opt. 17, 1911–1922 (1978).
[CrossRef] [PubMed]

R. R. Meier, J.-S. Lee, D. E. Anderson, “Atmospheric scattering of middle UV radiation from an internal source,” Appl. Opt. 17, 3216–3225 (1978).
[CrossRef] [PubMed]

R. F. Lutomirski, “Atmospheric degradation of electrooptical system performance,” Appl. Opt. 17, 3915–3921 (1978).
[CrossRef] [PubMed]

Y. Kuga, A. Ishimaru, “Modulation transfer function of layered inhomogeneous random media using the small-angle approximation,” Appl. Opt. 25, 4382–4385 (1986).
[CrossRef] [PubMed]

Y. Kuga, A. Ishimaru, “Modulation transfer function of layered inhomogeneous random media using the small-angle approximation,” Appl. Opt. 25, 4382–4385 (1986).
[CrossRef] [PubMed]

K. N. Liou, Y. Takano, S. C. Ou, A. Heymsfield, W. Kreiss, “Infrared transmission through cirrus clouds: a radiative model for target detection,” Appl. Opt. 29, 1886–1896 (1990).
[CrossRef] [PubMed]

G. Zaccanti, “Monte Carlo study of light propagation in optically thick media: point source case,” Appl. Opt. 30, 2031–2041 (1991).
[CrossRef] [PubMed]

P. Bruscaglioni, P. Donelli, A. Ismaelli, G. Zaccanti, “Monte Carlo calculations of the modulation transfer function of an optical system operating in a turbid medium,” Appl. Opt. 32, 2813–2824 (1993).
[CrossRef] [PubMed]

C. Levoni, M. Cervino, R. Guzzi, F. Torricella, “Atmospheric aerosol optical properties: a database of radiative characteristics for different components and classes,” Appl. Opt. 36, 8031–8041 (1997).
[CrossRef]

A. Bucholtz, “Rayleigh-scattering calculations for the terrestrial atmosphere,” Appl. Opt. 34, 2765–2773 (1995).
[CrossRef] [PubMed]

S. F. Marshall, D. S. Covert, R. J. Charlson, “Relationship between asymmetry parameter and hemispheric backscatter ratio: implication for climate forcing by aerosols,” Appl. Opt. 34, 6306–6311 (1995).
[CrossRef] [PubMed]

D. Toublanc, “Henyey–Greenstein and Mie phase functions in Monte Carlo radiative transfer computations,” Appl. Opt. 35, 3270–3274 (1996).
[CrossRef] [PubMed]

C. Lavigne, A. Roblin, V. Outters, S. Langlois, T. Girasole, C. Rozé, “Comparison of iterative and Monte Carlo methods for calculation of the aureole about a point source in the Earth’s atmosphere,” Appl. Opt. 38, 6237–6246 (1999).
[CrossRef]

K. N. Liou, Y. Takano, S. C. Ou, M. W. Johnson, “Laser transmission through thin cirrus clouds,” Appl. Opt. 39, 4886–4894 (2000).
[CrossRef]

Atmos. Environ. (1)

P. H. McMurry, “A review of atmospheric aerosol measurements,” Atmos. Environ. 34, 1959–1999 (2000).
[CrossRef]

Atmos. Oceanic Phys. (1)

G. I. Marchuk, G. A. Mikhailov, “The solution of problems of atmospheric optics by a Monte Carlo method,” Atmos. Oceanic Phys. 3, 147–155 (1967).

Bull. Am. Meteorol. Soc. (1)

M. Hess, P. Koepke, I. Schult, “Optical properties of aerosols and clouds: the software package OPAC,” Bull. Am. Meteorol. Soc. 79, 831–844 (1998).
[CrossRef]

J. Atmos. Sci. (2)

W. J. Wiscombe, G. W. Grams, “The backscattered fraction in two-stream approximation,” J. Atmos. Sci. 33, 2440–2451 (1976).
[CrossRef]

O. Boucher, “On aerosol direct shortwave forcing and the Henyey–Greenstein phase function,” J. Atmos. Sci. 55, 128–134 (1998).
[CrossRef]

J. Geophys. Res. (2)

T. S. Bates, P. K. Quinn, D. J. Coffman, J. E. Johnson, T. L. Miller, D. S. Covert, A. Wiedensohler, S. Leinert, A. Nowak, C. Neususs, “Regional physical and chemical properties of the marine boundary layer aerosol across the Atlantic during Aerosols99: an overview,” J. Geophys. Res. 106, 20,767–20,782 (2001).
[CrossRef]

T. L. Anderson, D. S. Covert, J. D. Wheeler, J. M. Harris, K. D. Perry, B. E. Trost, D. J. Jaffe, J. A. Ogren, “Aerosolbackscatter fraction and single scattering albedo: measured values and uncertainties at a coastal station in the Pacific Northwest,” J. Geophys. Res. 104, 26,793–26,807 (1999).
[CrossRef]

J. Mod. Opt. (2)

P. Donelli, P. Bruscaglioni, A. Ismaelli, G. Zaccanti, “Experimental validation of a Monte Carlo procedure for the evaluation of the effect of a turbid medium on the point spread function of an optical system,” J. Mod. Opt. 38, 2189–2201 (1991).
[CrossRef]

P. Bruscaglioni, P. Donelli, A. Ismaelli, G. Zaccanti, “A numerical procedure for calculating the effect of a turbid medium on the MTF of an optical system,” J. Mod. Opt. 38, 129–142 (1991).
[CrossRef]

J. Opt. Soc. Am. (1)

M. S. Belen’kii, “Effect of the inner scale of turbulence on the atmospheric modulation transfer function,” J. Opt. Soc. Am. 13, 1078–1082 (1996).
[CrossRef]

J. Opt. Soc. Am. A (2)

Opt. Eng. (1)

L. R. Bissonnette, “Imaging through fog and rain,” Opt. Eng. 31, 1045–1052 (1992).
[CrossRef]

Tellus B (1)

P. K. Quinn, T. S. Bates, D. J. Coffman, T. L. Miller, J. E. Johnson, D. S. Covert, J. P. Putaud, C. Neususs, T. Novakov, “A comparison of aerosol chemical and optical properties from the first and second aerosol characterization experiments,” Tellus B 52, 239–257 (2000).
[CrossRef]

Other (13)

J. W. Strohbehn, Laser Beam Propagation in the Atmosphere (Springer-Verlag, Berlin, 1978).

E. P. Shettle, R. W. Fenn, “Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties,” AFGL-TR-79-0214, environmental research paper 676 (Air Force Geophysics Laboratory, Hanscom AFB, Mass., 1979).

K. N. Liou, Radiation and Cloud Processes in the Atmosphere (Oxford U. Press, Oxford, 1992).

S. Chandrasekhar, Radiative Transfer (Dover, New York, 1960).

J. Lenoble, Radiative Transfer in Scattering and Absorbing Atmospheres: Standard Computational Procedures (Deepak, Hampton, Va., 1985).

A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978).

E. P. Zege, A. P. Ivanov, I. L. Katsev, Image Transfer through a Scattering Medium (Springer-Verlag, Berlin, 1991).

B. Ben Dor, P. Bruscaglioni, A. Devir, P. Donelli, A. Ismaelli, “Cloud, fog and aerosol effect on the MTF of optical systems,” in Atmospheric Propagation and Adaptive Systems, A. Kohnle, ed., Proc. SPIE2580, 106–114 (1995).

M. T. Valley, “Numerical method for modeling nonspherical aerosol modulation transfer functions,” in Atmospheric Propagation and Remote Sensing, A. Kohnle, W. B. Miller, eds., Proc. SPIE1688, 73–85 (1992).

P. L. Walker, “Aerosol induced loss of image resolution,” in Atmospheric Propagation and Remote Sensing, A. Kohnle, W. B. Miller, eds., Proc. SPIE1688, 37–46 (1992).

C. R. Zeisse, “NAM6: batch code for the Navy Aerosol Model,” Tech. Rep. 1804 (Space and Naval Warfare Systems Center, San Diego, Calif., 1999).

D. Sadot, N. S. Kopeika, “Imaging through the atmosphere: practical instrumentation-based theory and verification of aerosol MTF,” in Atmospheric Propagation and Remote Sensing, A. Kohnle, W. B. Miller, eds., Proc. SPIE1688, 47–61 (1992).

J. Key, “Streamer user’s guide,” Cooperative Institute for Research in Environmental Sciences Tech. Rep. (University of Colorado, Boulder, Colo., 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Optical structure for the plane-parallel atmosphere and parameters required for defining the detector and source geometry.

Fig. 2
Fig. 2

Schematic of the detector’s field of view, where a scattered event can produce a detectable illumination cone at the array of detectors.

Fig. 3
Fig. 3

Image calculations of a scattering point P obtained on the array of detectors.

Fig. 4
Fig. 4

Comparison of the effects of scattering calculated with the SEMIM and MEDIA codes for two cases composed of a collimated source and a Lambertian source.

Fig. 5
Fig. 5

Normalized PSF as a function of the distance from the optical axis for Mie and Henyey–Greenstein (HG) phase functions, and the ratio between the PSFs, for an atmosphere of urban aerosols. The detector is composed of a lens (f/ d = 4.5, f = 300 mm) and an array of 512 × 512 elementary detectors (6.8 µm) set at the focal plane. The source distance and the total aperture are, respectively, 0.3 km and 2°.

Fig. 6
Fig. 6

Ratio of scattered irradiance to the PSF determined by use of the Mie and Henyey–Greenstein (HG) phase functions with the same asymmetry parameters for various atmospheric conditions and source distances (0.3, 1, and 5 km). Three aerosol models (U., urban; C., continental polluted; and M., maritime polluted) and three relative humidities (70%, 90%, 95%) are used.

Fig. 7
Fig. 7

Ratio of scattered irradiance to the PSF determined by use of the Mie and Henyey–Greenstein (HG) phase functions with the same asymmetry parameters for various atmospheric conditions and two optical thicknesses (0.20 and 0.67). Three aerosol models (U., urban; C., continental polluted; and M., maritime polluted) and three relative humidities (70%, 90%, 95%) are used.

Tables (1)

Tables Icon

Table 1 Optical Parameters of Urban, Continental Polluted, and Maritime Polluted Aerosol Modelsa

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

r1=Prθ=0θSθsin θdθ0θsourceSθsin θdθ, r2=2πϕ.
Tr=exp-τ2πexp-r22σ2,
Prτscatdτscat=exp-τscatdτscat.
l=-ln r3Kscatλ, 1,
i=ninitnc-1Kscatλ, iDi-ln r3<i=ninitncKscatλ, iDi,
l=i=ninitnc-1τscatiKscatλ, i-ln r3+i=ninitnc-1τscatiKscatλ, nc.
exp-i=ninitncKabsλ, i*Di
Dp<rdfY+rl.
dSdS=QQ-f2,
dΦ=dEdS=Ir2Kscatλ, 1Pλ, cos Θ, 1dΩ4π×exp-τrexp-τr,
NDz=ND0exp-zz0,
σRλ=Aλ-B+Cλ+D/λ,
PRλ, cos θ=316π1+cos θ2,
P0=NphotR/L2e-τ,
PHGθ=1-g21+g2-2g cos θ3/2.
ρ=PSFscattered partMie scattering phase functionPSFscattered partHenyey-Greenstein scattering phase function.

Metrics