Abstract

We report on studies of the lidar and the depolarization ratios for cirrus clouds. The optical depth and effective lidar ratio are derived from the transmission of clouds, which is determined by comparing the backscattering signals at the cloud base and cloud top. The lidar signals were fitted to a background atmospheric density profile outside the cloud region to warrant the linear response of the return signals with the scattering media. An average lidar ratio, 29 ± 12 sr, has been found for all clouds measured in 1999 and 2000. The height and temperature dependences of the lidar ratio, the optical depth, and the depolarization ratio were investigated and compared with results of LITE and PROBE. Cirrus clouds detected near the tropopause are usually optically thin and mostly subvisual. Clouds with the largest optical depths were found near 12 km with a temperature of approximately -55 °C. The multiple-scattering effect is considered for clouds with high optical depths, and this effect lowers the lidar ratios compared with a single-scattering condition. Lidar ratios are in the 20–40 range for clouds at heights of 12.5–15 km and are smaller than ∼30 in height above 15 km. Clouds are usually optically thin for temperatures below approximately -65 °C, and in this region the optical depth tends to decrease with height. The depolarization ratio is found to increase with a height at 11–15 km and smaller than 0.3 above 16 km. The variation in the depolarization ratio with the lidar ratio was also reported. The lidar and depolarization ratios were discussed in terms of the types of hexagonal ice crystals.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. B. Baker, “Cloud microphysics and climate,” Science 276, 1072–1078 (1997).
    [CrossRef]
  2. K. N. Liou, “Influence of cirrus clouds on the weather and climate process: a global perspective,” Mon. Weather Rev. 114, 1167–1199 (1986).
    [CrossRef]
  3. P. H. Wang, P. Minnis, M. O. McCormick, G. S. Kent, K. M. Skeens, “A 6-year climatology of cloud occurrence frequency from Stratospheric Aerosol and Gas Experiment II observations (1985–1990),” J. Geophys. Res. 101, 29,407–29,429 (1996).
    [CrossRef]
  4. C. M. R. Platt, J. C. Scott, A. C. Dilley, “Remote sounding of high clouds. Part VI: Optical properties of mid-latitude and tropical cirrus,” J. Atmos. Sci. 44, 729–747 (1987).
    [CrossRef]
  5. K. Sassen, M. Griffin, G. C. Dood, “Optical scattering and microphysical properties of subvisible cirrus clouds, and climatic implications,” J. Appl. Meteorol. 28, 91–98 (1989).
    [CrossRef]
  6. R. Imasu, Y. Iwasaka, “Characteristics of cirrus clouds observed by laser radar (lidar) during the spring of 1987 and the winter of 1987/1988,” J. Meteorol. Soc. Jpn. 69, 401–411 (1991).
  7. K. Sassen, B. Y. Cho, “Subvisual-thin cirrus lidar dataset for satellite verification and climatological research,” J. Appl. Meteorol. 31, 1275–1285 (1992).
    [CrossRef]
  8. M. D. Guasta, M. Morandi, L. Stefanutti, B. Stein, J. Kolenda, P. Rairoux, J. P. Wolf, R. Matthey, E. Kyro, “Multiwavelength lidar observation of thin cirrus at the base of the Pinatubo stratospheric layer during the EASOE campaign,” Geophys. Res. Lett. 21, 1339–1342 (1994).
    [CrossRef]
  9. A. J. Heymsfield, G. M. McFarquehar, “High albedos of cirrus in the tropical Pacific warm pool: microphysical interpretations from CEPEX and from Kwajalein, Marshall Islands,” J. Atmos. Sci. 53, 2424–2451 (1996).
    [CrossRef]
  10. G. M. McFarquhar, A. J. Heymsfield, “Microphysical characteristics of three anvils sampled during the Central Equatorial Pacific Experiment,” J. Atmos. Sci. 53, 2187–2200 (1997).
    [CrossRef]
  11. F. G. Fernald, “Analysis of atmospheric lidar observations: some comments,” Appl. Opt. 23, 652–653 (1984).
    [CrossRef] [PubMed]
  12. J. D. Klett, “Stable analytical inversion solution for processing lidar returns,” Appl. Opt. 20, 211–220 (1981).
    [CrossRef] [PubMed]
  13. R. Imasu, Y. Iwasaka, “A new analytical procedure to derive the scattering parameter of optically thin clouds from lidar data,” J. Geomagn. Geoelectr. 44, 277–287 (1992).
    [CrossRef]
  14. J. B. Nee, C. N. Lien, W. N. Chen, C. I. Lin, “Lidar detection of cirrus cloud in Chung-Li (25 N, 121 E),” J. Atmos. Sci. 55, 2249–2257 (1998).
    [CrossRef]
  15. J. E. Barnes, D. J. Hofmann, “Lidar measurements of stratospheric aerosol over Mauna Loa Observatory,” Geophys. Res. Lett. 24, 1923–1926 (1997).
    [CrossRef]
  16. G. S. Kent, G. M. Hansen, “Multiwavelength lidar observations of the decay phase of the stratospheric aerosol layer produced by the eruption of Mount Pinatubo in June 1991,” Appl. Opt. 37, 3861–3872 (1998).
    [CrossRef]
  17. E. W. Eloranta, “Practical model for the calculation of multiply scattered lidar returns,” Appl. Opt. 37, 2464–2472 (1998).
    [CrossRef]
  18. H. Chepfer, J. Pelon, G. Brogniez, C. Flamant, V. Trouillet, P. H. Flamant, “Impact of cirrus cloud ice crystal shape and size on multiple scattering effects: application to spaceborne and airborne backscatter lidar measurements during the LITE mission and E LITE campaign,” Geophys. Res. Lett. 26, 2203–2206 (2000).
    [CrossRef]
  19. K. Sassen, R. P. Benson, J. D. Spinhirne, “Tropical cirrus properties derived from TOGA/COARE airborne polarization lidar,” Geophys. Res. Lett. 27, 673–676 (2000).
    [CrossRef]
  20. K. Sassen, “The polarization lidar technique for cloud research: a review and current assessment,” Bull. Am. Meteorol. Soc. 72, 1848–1866 (1991).
    [CrossRef]
  21. A. J. Heymsfield, C. M. R. Platt, “A parameterization of the particle size spectrum of ice clouds in terms of the ambient temperature and ice water content,” J. Atmos. Sci. 41, 846–855 (1984).
    [CrossRef]
  22. C. M. R. Platt, D. M. Winker, M. A. Vaughan, S. D. Miller, “Backscatter-to-extinction ratio in the top layers of tropical mesoscale convective systems and in isolated cirrus from LITE observations,” J. Appl. Meteorol. 38, 1330–1345 (1999).
    [CrossRef]
  23. C. M. R. Platt, S. A. Young, P. J. Manson, G. R. Patterson, S. C. Marson, R. T. Austin, J. H. Churnside, “The optical properties of equatorial cirrus from observations in the ARM Pilot Radiation Observation Experiment,” J. Atmos. Sci. 55, 1977–1996 (1998).
    [CrossRef]

2000 (2)

H. Chepfer, J. Pelon, G. Brogniez, C. Flamant, V. Trouillet, P. H. Flamant, “Impact of cirrus cloud ice crystal shape and size on multiple scattering effects: application to spaceborne and airborne backscatter lidar measurements during the LITE mission and E LITE campaign,” Geophys. Res. Lett. 26, 2203–2206 (2000).
[CrossRef]

K. Sassen, R. P. Benson, J. D. Spinhirne, “Tropical cirrus properties derived from TOGA/COARE airborne polarization lidar,” Geophys. Res. Lett. 27, 673–676 (2000).
[CrossRef]

1999 (1)

C. M. R. Platt, D. M. Winker, M. A. Vaughan, S. D. Miller, “Backscatter-to-extinction ratio in the top layers of tropical mesoscale convective systems and in isolated cirrus from LITE observations,” J. Appl. Meteorol. 38, 1330–1345 (1999).
[CrossRef]

1998 (4)

C. M. R. Platt, S. A. Young, P. J. Manson, G. R. Patterson, S. C. Marson, R. T. Austin, J. H. Churnside, “The optical properties of equatorial cirrus from observations in the ARM Pilot Radiation Observation Experiment,” J. Atmos. Sci. 55, 1977–1996 (1998).
[CrossRef]

J. B. Nee, C. N. Lien, W. N. Chen, C. I. Lin, “Lidar detection of cirrus cloud in Chung-Li (25 N, 121 E),” J. Atmos. Sci. 55, 2249–2257 (1998).
[CrossRef]

G. S. Kent, G. M. Hansen, “Multiwavelength lidar observations of the decay phase of the stratospheric aerosol layer produced by the eruption of Mount Pinatubo in June 1991,” Appl. Opt. 37, 3861–3872 (1998).
[CrossRef]

E. W. Eloranta, “Practical model for the calculation of multiply scattered lidar returns,” Appl. Opt. 37, 2464–2472 (1998).
[CrossRef]

1997 (3)

J. E. Barnes, D. J. Hofmann, “Lidar measurements of stratospheric aerosol over Mauna Loa Observatory,” Geophys. Res. Lett. 24, 1923–1926 (1997).
[CrossRef]

G. M. McFarquhar, A. J. Heymsfield, “Microphysical characteristics of three anvils sampled during the Central Equatorial Pacific Experiment,” J. Atmos. Sci. 53, 2187–2200 (1997).
[CrossRef]

M. B. Baker, “Cloud microphysics and climate,” Science 276, 1072–1078 (1997).
[CrossRef]

1996 (2)

P. H. Wang, P. Minnis, M. O. McCormick, G. S. Kent, K. M. Skeens, “A 6-year climatology of cloud occurrence frequency from Stratospheric Aerosol and Gas Experiment II observations (1985–1990),” J. Geophys. Res. 101, 29,407–29,429 (1996).
[CrossRef]

A. J. Heymsfield, G. M. McFarquehar, “High albedos of cirrus in the tropical Pacific warm pool: microphysical interpretations from CEPEX and from Kwajalein, Marshall Islands,” J. Atmos. Sci. 53, 2424–2451 (1996).
[CrossRef]

1994 (1)

M. D. Guasta, M. Morandi, L. Stefanutti, B. Stein, J. Kolenda, P. Rairoux, J. P. Wolf, R. Matthey, E. Kyro, “Multiwavelength lidar observation of thin cirrus at the base of the Pinatubo stratospheric layer during the EASOE campaign,” Geophys. Res. Lett. 21, 1339–1342 (1994).
[CrossRef]

1992 (2)

K. Sassen, B. Y. Cho, “Subvisual-thin cirrus lidar dataset for satellite verification and climatological research,” J. Appl. Meteorol. 31, 1275–1285 (1992).
[CrossRef]

R. Imasu, Y. Iwasaka, “A new analytical procedure to derive the scattering parameter of optically thin clouds from lidar data,” J. Geomagn. Geoelectr. 44, 277–287 (1992).
[CrossRef]

1991 (2)

R. Imasu, Y. Iwasaka, “Characteristics of cirrus clouds observed by laser radar (lidar) during the spring of 1987 and the winter of 1987/1988,” J. Meteorol. Soc. Jpn. 69, 401–411 (1991).

K. Sassen, “The polarization lidar technique for cloud research: a review and current assessment,” Bull. Am. Meteorol. Soc. 72, 1848–1866 (1991).
[CrossRef]

1989 (1)

K. Sassen, M. Griffin, G. C. Dood, “Optical scattering and microphysical properties of subvisible cirrus clouds, and climatic implications,” J. Appl. Meteorol. 28, 91–98 (1989).
[CrossRef]

1987 (1)

C. M. R. Platt, J. C. Scott, A. C. Dilley, “Remote sounding of high clouds. Part VI: Optical properties of mid-latitude and tropical cirrus,” J. Atmos. Sci. 44, 729–747 (1987).
[CrossRef]

1986 (1)

K. N. Liou, “Influence of cirrus clouds on the weather and climate process: a global perspective,” Mon. Weather Rev. 114, 1167–1199 (1986).
[CrossRef]

1984 (2)

F. G. Fernald, “Analysis of atmospheric lidar observations: some comments,” Appl. Opt. 23, 652–653 (1984).
[CrossRef] [PubMed]

A. J. Heymsfield, C. M. R. Platt, “A parameterization of the particle size spectrum of ice clouds in terms of the ambient temperature and ice water content,” J. Atmos. Sci. 41, 846–855 (1984).
[CrossRef]

1981 (1)

Austin, R. T.

C. M. R. Platt, S. A. Young, P. J. Manson, G. R. Patterson, S. C. Marson, R. T. Austin, J. H. Churnside, “The optical properties of equatorial cirrus from observations in the ARM Pilot Radiation Observation Experiment,” J. Atmos. Sci. 55, 1977–1996 (1998).
[CrossRef]

Baker, M. B.

M. B. Baker, “Cloud microphysics and climate,” Science 276, 1072–1078 (1997).
[CrossRef]

Barnes, J. E.

J. E. Barnes, D. J. Hofmann, “Lidar measurements of stratospheric aerosol over Mauna Loa Observatory,” Geophys. Res. Lett. 24, 1923–1926 (1997).
[CrossRef]

Benson, R. P.

K. Sassen, R. P. Benson, J. D. Spinhirne, “Tropical cirrus properties derived from TOGA/COARE airborne polarization lidar,” Geophys. Res. Lett. 27, 673–676 (2000).
[CrossRef]

Brogniez, G.

H. Chepfer, J. Pelon, G. Brogniez, C. Flamant, V. Trouillet, P. H. Flamant, “Impact of cirrus cloud ice crystal shape and size on multiple scattering effects: application to spaceborne and airborne backscatter lidar measurements during the LITE mission and E LITE campaign,” Geophys. Res. Lett. 26, 2203–2206 (2000).
[CrossRef]

Chen, W. N.

J. B. Nee, C. N. Lien, W. N. Chen, C. I. Lin, “Lidar detection of cirrus cloud in Chung-Li (25 N, 121 E),” J. Atmos. Sci. 55, 2249–2257 (1998).
[CrossRef]

Chepfer, H.

H. Chepfer, J. Pelon, G. Brogniez, C. Flamant, V. Trouillet, P. H. Flamant, “Impact of cirrus cloud ice crystal shape and size on multiple scattering effects: application to spaceborne and airborne backscatter lidar measurements during the LITE mission and E LITE campaign,” Geophys. Res. Lett. 26, 2203–2206 (2000).
[CrossRef]

Cho, B. Y.

K. Sassen, B. Y. Cho, “Subvisual-thin cirrus lidar dataset for satellite verification and climatological research,” J. Appl. Meteorol. 31, 1275–1285 (1992).
[CrossRef]

Churnside, J. H.

C. M. R. Platt, S. A. Young, P. J. Manson, G. R. Patterson, S. C. Marson, R. T. Austin, J. H. Churnside, “The optical properties of equatorial cirrus from observations in the ARM Pilot Radiation Observation Experiment,” J. Atmos. Sci. 55, 1977–1996 (1998).
[CrossRef]

Dilley, A. C.

C. M. R. Platt, J. C. Scott, A. C. Dilley, “Remote sounding of high clouds. Part VI: Optical properties of mid-latitude and tropical cirrus,” J. Atmos. Sci. 44, 729–747 (1987).
[CrossRef]

Dood, G. C.

K. Sassen, M. Griffin, G. C. Dood, “Optical scattering and microphysical properties of subvisible cirrus clouds, and climatic implications,” J. Appl. Meteorol. 28, 91–98 (1989).
[CrossRef]

Eloranta, E. W.

Fernald, F. G.

Flamant, C.

H. Chepfer, J. Pelon, G. Brogniez, C. Flamant, V. Trouillet, P. H. Flamant, “Impact of cirrus cloud ice crystal shape and size on multiple scattering effects: application to spaceborne and airborne backscatter lidar measurements during the LITE mission and E LITE campaign,” Geophys. Res. Lett. 26, 2203–2206 (2000).
[CrossRef]

Flamant, P. H.

H. Chepfer, J. Pelon, G. Brogniez, C. Flamant, V. Trouillet, P. H. Flamant, “Impact of cirrus cloud ice crystal shape and size on multiple scattering effects: application to spaceborne and airborne backscatter lidar measurements during the LITE mission and E LITE campaign,” Geophys. Res. Lett. 26, 2203–2206 (2000).
[CrossRef]

Griffin, M.

K. Sassen, M. Griffin, G. C. Dood, “Optical scattering and microphysical properties of subvisible cirrus clouds, and climatic implications,” J. Appl. Meteorol. 28, 91–98 (1989).
[CrossRef]

Guasta, M. D.

M. D. Guasta, M. Morandi, L. Stefanutti, B. Stein, J. Kolenda, P. Rairoux, J. P. Wolf, R. Matthey, E. Kyro, “Multiwavelength lidar observation of thin cirrus at the base of the Pinatubo stratospheric layer during the EASOE campaign,” Geophys. Res. Lett. 21, 1339–1342 (1994).
[CrossRef]

Hansen, G. M.

Heymsfield, A. J.

G. M. McFarquhar, A. J. Heymsfield, “Microphysical characteristics of three anvils sampled during the Central Equatorial Pacific Experiment,” J. Atmos. Sci. 53, 2187–2200 (1997).
[CrossRef]

A. J. Heymsfield, G. M. McFarquehar, “High albedos of cirrus in the tropical Pacific warm pool: microphysical interpretations from CEPEX and from Kwajalein, Marshall Islands,” J. Atmos. Sci. 53, 2424–2451 (1996).
[CrossRef]

A. J. Heymsfield, C. M. R. Platt, “A parameterization of the particle size spectrum of ice clouds in terms of the ambient temperature and ice water content,” J. Atmos. Sci. 41, 846–855 (1984).
[CrossRef]

Hofmann, D. J.

J. E. Barnes, D. J. Hofmann, “Lidar measurements of stratospheric aerosol over Mauna Loa Observatory,” Geophys. Res. Lett. 24, 1923–1926 (1997).
[CrossRef]

Imasu, R.

R. Imasu, Y. Iwasaka, “A new analytical procedure to derive the scattering parameter of optically thin clouds from lidar data,” J. Geomagn. Geoelectr. 44, 277–287 (1992).
[CrossRef]

R. Imasu, Y. Iwasaka, “Characteristics of cirrus clouds observed by laser radar (lidar) during the spring of 1987 and the winter of 1987/1988,” J. Meteorol. Soc. Jpn. 69, 401–411 (1991).

Iwasaka, Y.

R. Imasu, Y. Iwasaka, “A new analytical procedure to derive the scattering parameter of optically thin clouds from lidar data,” J. Geomagn. Geoelectr. 44, 277–287 (1992).
[CrossRef]

R. Imasu, Y. Iwasaka, “Characteristics of cirrus clouds observed by laser radar (lidar) during the spring of 1987 and the winter of 1987/1988,” J. Meteorol. Soc. Jpn. 69, 401–411 (1991).

Kent, G. S.

G. S. Kent, G. M. Hansen, “Multiwavelength lidar observations of the decay phase of the stratospheric aerosol layer produced by the eruption of Mount Pinatubo in June 1991,” Appl. Opt. 37, 3861–3872 (1998).
[CrossRef]

P. H. Wang, P. Minnis, M. O. McCormick, G. S. Kent, K. M. Skeens, “A 6-year climatology of cloud occurrence frequency from Stratospheric Aerosol and Gas Experiment II observations (1985–1990),” J. Geophys. Res. 101, 29,407–29,429 (1996).
[CrossRef]

Klett, J. D.

Kolenda, J.

M. D. Guasta, M. Morandi, L. Stefanutti, B. Stein, J. Kolenda, P. Rairoux, J. P. Wolf, R. Matthey, E. Kyro, “Multiwavelength lidar observation of thin cirrus at the base of the Pinatubo stratospheric layer during the EASOE campaign,” Geophys. Res. Lett. 21, 1339–1342 (1994).
[CrossRef]

Kyro, E.

M. D. Guasta, M. Morandi, L. Stefanutti, B. Stein, J. Kolenda, P. Rairoux, J. P. Wolf, R. Matthey, E. Kyro, “Multiwavelength lidar observation of thin cirrus at the base of the Pinatubo stratospheric layer during the EASOE campaign,” Geophys. Res. Lett. 21, 1339–1342 (1994).
[CrossRef]

Lien, C. N.

J. B. Nee, C. N. Lien, W. N. Chen, C. I. Lin, “Lidar detection of cirrus cloud in Chung-Li (25 N, 121 E),” J. Atmos. Sci. 55, 2249–2257 (1998).
[CrossRef]

Lin, C. I.

J. B. Nee, C. N. Lien, W. N. Chen, C. I. Lin, “Lidar detection of cirrus cloud in Chung-Li (25 N, 121 E),” J. Atmos. Sci. 55, 2249–2257 (1998).
[CrossRef]

Liou, K. N.

K. N. Liou, “Influence of cirrus clouds on the weather and climate process: a global perspective,” Mon. Weather Rev. 114, 1167–1199 (1986).
[CrossRef]

Manson, P. J.

C. M. R. Platt, S. A. Young, P. J. Manson, G. R. Patterson, S. C. Marson, R. T. Austin, J. H. Churnside, “The optical properties of equatorial cirrus from observations in the ARM Pilot Radiation Observation Experiment,” J. Atmos. Sci. 55, 1977–1996 (1998).
[CrossRef]

Marson, S. C.

C. M. R. Platt, S. A. Young, P. J. Manson, G. R. Patterson, S. C. Marson, R. T. Austin, J. H. Churnside, “The optical properties of equatorial cirrus from observations in the ARM Pilot Radiation Observation Experiment,” J. Atmos. Sci. 55, 1977–1996 (1998).
[CrossRef]

Matthey, R.

M. D. Guasta, M. Morandi, L. Stefanutti, B. Stein, J. Kolenda, P. Rairoux, J. P. Wolf, R. Matthey, E. Kyro, “Multiwavelength lidar observation of thin cirrus at the base of the Pinatubo stratospheric layer during the EASOE campaign,” Geophys. Res. Lett. 21, 1339–1342 (1994).
[CrossRef]

McCormick, M. O.

P. H. Wang, P. Minnis, M. O. McCormick, G. S. Kent, K. M. Skeens, “A 6-year climatology of cloud occurrence frequency from Stratospheric Aerosol and Gas Experiment II observations (1985–1990),” J. Geophys. Res. 101, 29,407–29,429 (1996).
[CrossRef]

McFarquehar, G. M.

A. J. Heymsfield, G. M. McFarquehar, “High albedos of cirrus in the tropical Pacific warm pool: microphysical interpretations from CEPEX and from Kwajalein, Marshall Islands,” J. Atmos. Sci. 53, 2424–2451 (1996).
[CrossRef]

McFarquhar, G. M.

G. M. McFarquhar, A. J. Heymsfield, “Microphysical characteristics of three anvils sampled during the Central Equatorial Pacific Experiment,” J. Atmos. Sci. 53, 2187–2200 (1997).
[CrossRef]

Miller, S. D.

C. M. R. Platt, D. M. Winker, M. A. Vaughan, S. D. Miller, “Backscatter-to-extinction ratio in the top layers of tropical mesoscale convective systems and in isolated cirrus from LITE observations,” J. Appl. Meteorol. 38, 1330–1345 (1999).
[CrossRef]

Minnis, P.

P. H. Wang, P. Minnis, M. O. McCormick, G. S. Kent, K. M. Skeens, “A 6-year climatology of cloud occurrence frequency from Stratospheric Aerosol and Gas Experiment II observations (1985–1990),” J. Geophys. Res. 101, 29,407–29,429 (1996).
[CrossRef]

Morandi, M.

M. D. Guasta, M. Morandi, L. Stefanutti, B. Stein, J. Kolenda, P. Rairoux, J. P. Wolf, R. Matthey, E. Kyro, “Multiwavelength lidar observation of thin cirrus at the base of the Pinatubo stratospheric layer during the EASOE campaign,” Geophys. Res. Lett. 21, 1339–1342 (1994).
[CrossRef]

Nee, J. B.

J. B. Nee, C. N. Lien, W. N. Chen, C. I. Lin, “Lidar detection of cirrus cloud in Chung-Li (25 N, 121 E),” J. Atmos. Sci. 55, 2249–2257 (1998).
[CrossRef]

Patterson, G. R.

C. M. R. Platt, S. A. Young, P. J. Manson, G. R. Patterson, S. C. Marson, R. T. Austin, J. H. Churnside, “The optical properties of equatorial cirrus from observations in the ARM Pilot Radiation Observation Experiment,” J. Atmos. Sci. 55, 1977–1996 (1998).
[CrossRef]

Pelon, J.

H. Chepfer, J. Pelon, G. Brogniez, C. Flamant, V. Trouillet, P. H. Flamant, “Impact of cirrus cloud ice crystal shape and size on multiple scattering effects: application to spaceborne and airborne backscatter lidar measurements during the LITE mission and E LITE campaign,” Geophys. Res. Lett. 26, 2203–2206 (2000).
[CrossRef]

Platt, C. M. R.

C. M. R. Platt, D. M. Winker, M. A. Vaughan, S. D. Miller, “Backscatter-to-extinction ratio in the top layers of tropical mesoscale convective systems and in isolated cirrus from LITE observations,” J. Appl. Meteorol. 38, 1330–1345 (1999).
[CrossRef]

C. M. R. Platt, S. A. Young, P. J. Manson, G. R. Patterson, S. C. Marson, R. T. Austin, J. H. Churnside, “The optical properties of equatorial cirrus from observations in the ARM Pilot Radiation Observation Experiment,” J. Atmos. Sci. 55, 1977–1996 (1998).
[CrossRef]

C. M. R. Platt, J. C. Scott, A. C. Dilley, “Remote sounding of high clouds. Part VI: Optical properties of mid-latitude and tropical cirrus,” J. Atmos. Sci. 44, 729–747 (1987).
[CrossRef]

A. J. Heymsfield, C. M. R. Platt, “A parameterization of the particle size spectrum of ice clouds in terms of the ambient temperature and ice water content,” J. Atmos. Sci. 41, 846–855 (1984).
[CrossRef]

Rairoux, P.

M. D. Guasta, M. Morandi, L. Stefanutti, B. Stein, J. Kolenda, P. Rairoux, J. P. Wolf, R. Matthey, E. Kyro, “Multiwavelength lidar observation of thin cirrus at the base of the Pinatubo stratospheric layer during the EASOE campaign,” Geophys. Res. Lett. 21, 1339–1342 (1994).
[CrossRef]

Sassen, K.

K. Sassen, R. P. Benson, J. D. Spinhirne, “Tropical cirrus properties derived from TOGA/COARE airborne polarization lidar,” Geophys. Res. Lett. 27, 673–676 (2000).
[CrossRef]

K. Sassen, B. Y. Cho, “Subvisual-thin cirrus lidar dataset for satellite verification and climatological research,” J. Appl. Meteorol. 31, 1275–1285 (1992).
[CrossRef]

K. Sassen, “The polarization lidar technique for cloud research: a review and current assessment,” Bull. Am. Meteorol. Soc. 72, 1848–1866 (1991).
[CrossRef]

K. Sassen, M. Griffin, G. C. Dood, “Optical scattering and microphysical properties of subvisible cirrus clouds, and climatic implications,” J. Appl. Meteorol. 28, 91–98 (1989).
[CrossRef]

Scott, J. C.

C. M. R. Platt, J. C. Scott, A. C. Dilley, “Remote sounding of high clouds. Part VI: Optical properties of mid-latitude and tropical cirrus,” J. Atmos. Sci. 44, 729–747 (1987).
[CrossRef]

Skeens, K. M.

P. H. Wang, P. Minnis, M. O. McCormick, G. S. Kent, K. M. Skeens, “A 6-year climatology of cloud occurrence frequency from Stratospheric Aerosol and Gas Experiment II observations (1985–1990),” J. Geophys. Res. 101, 29,407–29,429 (1996).
[CrossRef]

Spinhirne, J. D.

K. Sassen, R. P. Benson, J. D. Spinhirne, “Tropical cirrus properties derived from TOGA/COARE airborne polarization lidar,” Geophys. Res. Lett. 27, 673–676 (2000).
[CrossRef]

Stefanutti, L.

M. D. Guasta, M. Morandi, L. Stefanutti, B. Stein, J. Kolenda, P. Rairoux, J. P. Wolf, R. Matthey, E. Kyro, “Multiwavelength lidar observation of thin cirrus at the base of the Pinatubo stratospheric layer during the EASOE campaign,” Geophys. Res. Lett. 21, 1339–1342 (1994).
[CrossRef]

Stein, B.

M. D. Guasta, M. Morandi, L. Stefanutti, B. Stein, J. Kolenda, P. Rairoux, J. P. Wolf, R. Matthey, E. Kyro, “Multiwavelength lidar observation of thin cirrus at the base of the Pinatubo stratospheric layer during the EASOE campaign,” Geophys. Res. Lett. 21, 1339–1342 (1994).
[CrossRef]

Trouillet, V.

H. Chepfer, J. Pelon, G. Brogniez, C. Flamant, V. Trouillet, P. H. Flamant, “Impact of cirrus cloud ice crystal shape and size on multiple scattering effects: application to spaceborne and airborne backscatter lidar measurements during the LITE mission and E LITE campaign,” Geophys. Res. Lett. 26, 2203–2206 (2000).
[CrossRef]

Vaughan, M. A.

C. M. R. Platt, D. M. Winker, M. A. Vaughan, S. D. Miller, “Backscatter-to-extinction ratio in the top layers of tropical mesoscale convective systems and in isolated cirrus from LITE observations,” J. Appl. Meteorol. 38, 1330–1345 (1999).
[CrossRef]

Wang, P. H.

P. H. Wang, P. Minnis, M. O. McCormick, G. S. Kent, K. M. Skeens, “A 6-year climatology of cloud occurrence frequency from Stratospheric Aerosol and Gas Experiment II observations (1985–1990),” J. Geophys. Res. 101, 29,407–29,429 (1996).
[CrossRef]

Winker, D. M.

C. M. R. Platt, D. M. Winker, M. A. Vaughan, S. D. Miller, “Backscatter-to-extinction ratio in the top layers of tropical mesoscale convective systems and in isolated cirrus from LITE observations,” J. Appl. Meteorol. 38, 1330–1345 (1999).
[CrossRef]

Wolf, J. P.

M. D. Guasta, M. Morandi, L. Stefanutti, B. Stein, J. Kolenda, P. Rairoux, J. P. Wolf, R. Matthey, E. Kyro, “Multiwavelength lidar observation of thin cirrus at the base of the Pinatubo stratospheric layer during the EASOE campaign,” Geophys. Res. Lett. 21, 1339–1342 (1994).
[CrossRef]

Young, S. A.

C. M. R. Platt, S. A. Young, P. J. Manson, G. R. Patterson, S. C. Marson, R. T. Austin, J. H. Churnside, “The optical properties of equatorial cirrus from observations in the ARM Pilot Radiation Observation Experiment,” J. Atmos. Sci. 55, 1977–1996 (1998).
[CrossRef]

Appl. Opt. (4)

Bull. Am. Meteorol. Soc. (1)

K. Sassen, “The polarization lidar technique for cloud research: a review and current assessment,” Bull. Am. Meteorol. Soc. 72, 1848–1866 (1991).
[CrossRef]

Geophys. Res. Lett. (4)

J. E. Barnes, D. J. Hofmann, “Lidar measurements of stratospheric aerosol over Mauna Loa Observatory,” Geophys. Res. Lett. 24, 1923–1926 (1997).
[CrossRef]

H. Chepfer, J. Pelon, G. Brogniez, C. Flamant, V. Trouillet, P. H. Flamant, “Impact of cirrus cloud ice crystal shape and size on multiple scattering effects: application to spaceborne and airborne backscatter lidar measurements during the LITE mission and E LITE campaign,” Geophys. Res. Lett. 26, 2203–2206 (2000).
[CrossRef]

K. Sassen, R. P. Benson, J. D. Spinhirne, “Tropical cirrus properties derived from TOGA/COARE airborne polarization lidar,” Geophys. Res. Lett. 27, 673–676 (2000).
[CrossRef]

M. D. Guasta, M. Morandi, L. Stefanutti, B. Stein, J. Kolenda, P. Rairoux, J. P. Wolf, R. Matthey, E. Kyro, “Multiwavelength lidar observation of thin cirrus at the base of the Pinatubo stratospheric layer during the EASOE campaign,” Geophys. Res. Lett. 21, 1339–1342 (1994).
[CrossRef]

J. Appl. Meteorol. (3)

K. Sassen, M. Griffin, G. C. Dood, “Optical scattering and microphysical properties of subvisible cirrus clouds, and climatic implications,” J. Appl. Meteorol. 28, 91–98 (1989).
[CrossRef]

K. Sassen, B. Y. Cho, “Subvisual-thin cirrus lidar dataset for satellite verification and climatological research,” J. Appl. Meteorol. 31, 1275–1285 (1992).
[CrossRef]

C. M. R. Platt, D. M. Winker, M. A. Vaughan, S. D. Miller, “Backscatter-to-extinction ratio in the top layers of tropical mesoscale convective systems and in isolated cirrus from LITE observations,” J. Appl. Meteorol. 38, 1330–1345 (1999).
[CrossRef]

J. Atmos. Sci. (6)

C. M. R. Platt, S. A. Young, P. J. Manson, G. R. Patterson, S. C. Marson, R. T. Austin, J. H. Churnside, “The optical properties of equatorial cirrus from observations in the ARM Pilot Radiation Observation Experiment,” J. Atmos. Sci. 55, 1977–1996 (1998).
[CrossRef]

A. J. Heymsfield, C. M. R. Platt, “A parameterization of the particle size spectrum of ice clouds in terms of the ambient temperature and ice water content,” J. Atmos. Sci. 41, 846–855 (1984).
[CrossRef]

J. B. Nee, C. N. Lien, W. N. Chen, C. I. Lin, “Lidar detection of cirrus cloud in Chung-Li (25 N, 121 E),” J. Atmos. Sci. 55, 2249–2257 (1998).
[CrossRef]

A. J. Heymsfield, G. M. McFarquehar, “High albedos of cirrus in the tropical Pacific warm pool: microphysical interpretations from CEPEX and from Kwajalein, Marshall Islands,” J. Atmos. Sci. 53, 2424–2451 (1996).
[CrossRef]

G. M. McFarquhar, A. J. Heymsfield, “Microphysical characteristics of three anvils sampled during the Central Equatorial Pacific Experiment,” J. Atmos. Sci. 53, 2187–2200 (1997).
[CrossRef]

C. M. R. Platt, J. C. Scott, A. C. Dilley, “Remote sounding of high clouds. Part VI: Optical properties of mid-latitude and tropical cirrus,” J. Atmos. Sci. 44, 729–747 (1987).
[CrossRef]

J. Geomagn. Geoelectr. (1)

R. Imasu, Y. Iwasaka, “A new analytical procedure to derive the scattering parameter of optically thin clouds from lidar data,” J. Geomagn. Geoelectr. 44, 277–287 (1992).
[CrossRef]

J. Geophys. Res. (1)

P. H. Wang, P. Minnis, M. O. McCormick, G. S. Kent, K. M. Skeens, “A 6-year climatology of cloud occurrence frequency from Stratospheric Aerosol and Gas Experiment II observations (1985–1990),” J. Geophys. Res. 101, 29,407–29,429 (1996).
[CrossRef]

J. Meteorol. Soc. Jpn. (1)

R. Imasu, Y. Iwasaka, “Characteristics of cirrus clouds observed by laser radar (lidar) during the spring of 1987 and the winter of 1987/1988,” J. Meteorol. Soc. Jpn. 69, 401–411 (1991).

Mon. Weather Rev. (1)

K. N. Liou, “Influence of cirrus clouds on the weather and climate process: a global perspective,” Mon. Weather Rev. 114, 1167–1199 (1986).
[CrossRef]

Science (1)

M. B. Baker, “Cloud microphysics and climate,” Science 276, 1072–1078 (1997).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Fitting of the lidar-scattering signals outside the cloud region to determine the transmission of the cloud. A transmission, T = 0.964, and a lidar ratio, S c η = 28.5 sr, were found for this cloud. (a) Backscattering ratio of the cloud. (b) Fitting of the lidar signal to a simulated lidar signal (dotted lines) to derive cloud transmission. P base and P top are the matched signals at the cloud base and cloud top, respectively.

Fig. 2
Fig. 2

Height dependence of the cirrus lidar ratio on the mid-cloud height.

Fig. 3
Fig. 3

Height and temperature dependence of the cirrus optical depth. In both (a) and (b): solid circles, data calculated with a constant lidar ratio of 30; open circles, data calculated with fitting method and varied lidar ratio.

Fig. 4
Fig. 4

Dependence of the cirrus optical depth τ c on a measured average lidar ratio S c and S c η. Only the largest errors are shown. The data for single scattering and multiple scattering are connected by a line to show their differences. A line at τ c = 0.03 indicates the level of the subvisual condition.

Fig. 5
Fig. 5

Dependence of the depolarization ratio on the mid-cloud height.

Fig. 6
Fig. 6

Relationship between the depolarization ratio and the optical depth. Both fitted data and nonfitting data are included.

Fig. 7
Fig. 7

Relationship between the depolarization ratio and the lidar ratio.

Tables (4)

Tables Icon

Table 1 Lidar Ratio of Clouds at Various Height Regions

Tables Icon

Table 2 Comparison of Measured Lidar Ratios Sc η of This Work with LITE and PROBE

Tables Icon

Table 3 Height and Temperature Dependences of Integrated Depolarization Ratio Δ

Tables Icon

Table 4 Possible Regions Where Hexagonal Ice Crystals May Occur

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

Pz=AP0βzz2exp-2 0zσzdz,
Rz=βcz+βrzβrz.
τc=zbaseztopσzdz=zbaseztopSczβzdz,
Tc=exp-τc,
zmid=zbaseztopzRzdzzbaseztopRzdz.
Tfit=PtopPbase1/2.
Sc=zbaseztopσczdzzbaseztopβczdz.
PtP1expτ,
τc=zbaseztopηzSczβczdz=ηSczbaseztopβczdz.
η=D0Dexpτhdh=τcexpτc-1.
Δ= P P,
Δτfit12ΔPtop2Ptop2+ΔPbase2Pbase2=121SNRtop2+1SNRbase2.
δτcδSc=δSczbaseztopβczdzδSc=τcSc+SczbaseztopδβzδScdz.
βz=XzXz1βz1-2Sc z1zXzdz,
Xz=Pzz2 exp-2Sc-Srz1zβrzdz.
ΔτcτcΔScSc1+2τcHReRe-12,
Re=1+zbaseztopβczdzzbaseztopβrzdz.

Metrics