Abstract

For optical and near-optical applications in electromagnetics, the directed propagation of waves in free space and in lenslike media is often in the Cartesian form of Gaussian or more general Hermite-sinusoidal-Gaussian beams. It has been shown that recurring (rather than continuing) forms of such beams are possible in the paraxial approximation for certain hollow metal waveguides, in which multiple reflections from the waveguide walls may occur. Limitations on this recurrence behavior implicit in use of the paraxial approximation are considered here, and estimates are obtained for the maximum propagation distance before the onset of significant distortion of the recurring beams.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (30)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription