Abstract

We report on cw tunable green laser light generation from a Nd:YVO4 laser operating at 1342 nm. Visible radiation was produced by a frequency mixing of pump and laser radiation inside an intracavity KTP crystal. When Nd:YVO4 was diode pumped, green laser was tunable from 503 to 505 nm. The green tuning range increases up to 22 nm when a Ti:sapphire laser is used as the pump source. In nonoptimal conditions, and for a pump power of 650 mW, green power was above 3 mW and close to 0.1 mW for Ti:sapphire and diode pumping, respectively.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. F. Chan, “High-power diode-pumped Q-switched intracavity frequency-doubled Nd:YVO4 laser with a sandwich-type resonator,” Opt. Lett. 24, 1032–1034 (1999).
    [CrossRef]
  2. W. Koechner, Solid-State Laser Engineering, Vol. 1 of Springer Series in Optical Science (Springer, Berlin, 1999).
  3. E. Montoya, J. A. Sanz-García, J. Capmany, L. E. Bausá, A. Diening, T. Kellner, G. Huber, “Continuous wave infrared laser action, self-frequency doubling, and tunability of Yb3+:MgO:LiNbO3,” J. Appl. Phys. 87, 4056–4062 (2000).
    [CrossRef]
  4. P. Wang, P. Dekker, J. M. Dawes, J. A. Piper, L. Yaogang, W. Jiyang, “Efficient continuous-wave self-frequency-doubling green diode-pumped Yb:YAl3(BO3)4,” Opt. Lett. 25, 731–733 (2000).
    [CrossRef]
  5. D. Jaque, J. Capmany, J. García Solé “Red, green and blue laser light from a single Nd:YAl3(BO3)4 crystal based on laser oscillation at 1.3 µm,” Appl. Phys. Lett. 75, 325–327 (1999).
    [CrossRef]
  6. W. P. Risk, J.-C. Baumert, G. C. Bjorklund, F. M. Schellenberg, W. Lenth, “Generation of blue light by intracavity frequency mixing of the laser and pump radiation of a miniature neodymium: yttrium aluminum garnet crystal,” Appl. Phys. Lett. 52, 85–87 (1988).
    [CrossRef]
  7. W. P. Risk, W. Lenth, “Diode laser pumped blue light-source based on intracavity sum frequency generation,” Appl. Phys. Lett. 54, 789–791 (1989).
    [CrossRef]
  8. J.-C. Baumert, F. M. Schellenberg, W. Lenth, W. P. Risk, G. C. Bjorklund, “Generation of blue cw coherent radiation by sum frequency mixing in KTiOPO4,” Appl. Phys. Lett. 51, 2192–2194 (1987).
    [CrossRef]
  9. P. N. Kea, R. W. Standley, G. J. Dixon, “Generation of 20 mW of blue laser radiation from a diode-pumped sum-frequency laser,” Appl. Phys. Lett. 63, 302–304 (1993).
    [CrossRef]
  10. S. Shichijyo, K. Yamada, K. Muro, “Efficient intracavity sum-frequency generation of 490-nn radiation by use of potassium niobate”, Opt.Lett. 19, 1022–1024 (1994).
    [CrossRef]
  11. G. C. Bowkett, G. W. Baxter, D. J. Booth, T. Taira, H. Teranishi, T. Kobayashi, “Single-mode 1.34-µm Nd:YVO4 microchip laser with cw Ti:sapphire and diode-laser pumping,” Opt. Lett. 19, 957–959 (1994).
    [CrossRef] [PubMed]
  12. R. S. Conroy, A. J. Kemp, G. J. Friel, B. D. Sinclair, “Microchip Nd:vanadate lasers at 1342 and 671 nm,” Opt. Lett. 22, 1781–1783 (1997).
    [CrossRef]
  13. G. D. Boyd, D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3603 (1968).
    [CrossRef]
  14. E. O. Ammann, P. C. Montgomery, “Threshold calculations for an optical parametric oscillator employing a hemispherical resonator,” J. Appl. Phys. 41, 5270–5274 (1970).
    [CrossRef]
  15. W. P. Risk, “Modeling of longitudinally pumped solid-state lasers exhibiting reabsorption losses,” J. Opt. Soc. Am. B 5, 1412–1423 (1998).
    [CrossRef]
  16. D. Jaque, J. Capmany, F. Molero, J. García Solé, “Blue-light laser source by sum-frequency mixing in Nd:YAl3(BO3)4,” Appl. Phys. Lett. 73, 3659–3661 (1998).
    [CrossRef]
  17. D. Jaque, J. Capmany, J. Rams, J. García Solé, “Effects of pump heating on laser and spectrocopic properties of the Nd:YAl3(BO3)4 self-frequency doubling laser,” J. Appl. Phys. 87, 1042–1048 (2000).
    [CrossRef]

2000 (3)

E. Montoya, J. A. Sanz-García, J. Capmany, L. E. Bausá, A. Diening, T. Kellner, G. Huber, “Continuous wave infrared laser action, self-frequency doubling, and tunability of Yb3+:MgO:LiNbO3,” J. Appl. Phys. 87, 4056–4062 (2000).
[CrossRef]

D. Jaque, J. Capmany, J. Rams, J. García Solé, “Effects of pump heating on laser and spectrocopic properties of the Nd:YAl3(BO3)4 self-frequency doubling laser,” J. Appl. Phys. 87, 1042–1048 (2000).
[CrossRef]

P. Wang, P. Dekker, J. M. Dawes, J. A. Piper, L. Yaogang, W. Jiyang, “Efficient continuous-wave self-frequency-doubling green diode-pumped Yb:YAl3(BO3)4,” Opt. Lett. 25, 731–733 (2000).
[CrossRef]

1999 (2)

Y. F. Chan, “High-power diode-pumped Q-switched intracavity frequency-doubled Nd:YVO4 laser with a sandwich-type resonator,” Opt. Lett. 24, 1032–1034 (1999).
[CrossRef]

D. Jaque, J. Capmany, J. García Solé “Red, green and blue laser light from a single Nd:YAl3(BO3)4 crystal based on laser oscillation at 1.3 µm,” Appl. Phys. Lett. 75, 325–327 (1999).
[CrossRef]

1998 (2)

D. Jaque, J. Capmany, F. Molero, J. García Solé, “Blue-light laser source by sum-frequency mixing in Nd:YAl3(BO3)4,” Appl. Phys. Lett. 73, 3659–3661 (1998).
[CrossRef]

W. P. Risk, “Modeling of longitudinally pumped solid-state lasers exhibiting reabsorption losses,” J. Opt. Soc. Am. B 5, 1412–1423 (1998).
[CrossRef]

1997 (1)

1994 (2)

G. C. Bowkett, G. W. Baxter, D. J. Booth, T. Taira, H. Teranishi, T. Kobayashi, “Single-mode 1.34-µm Nd:YVO4 microchip laser with cw Ti:sapphire and diode-laser pumping,” Opt. Lett. 19, 957–959 (1994).
[CrossRef] [PubMed]

S. Shichijyo, K. Yamada, K. Muro, “Efficient intracavity sum-frequency generation of 490-nn radiation by use of potassium niobate”, Opt.Lett. 19, 1022–1024 (1994).
[CrossRef]

1993 (1)

P. N. Kea, R. W. Standley, G. J. Dixon, “Generation of 20 mW of blue laser radiation from a diode-pumped sum-frequency laser,” Appl. Phys. Lett. 63, 302–304 (1993).
[CrossRef]

1989 (1)

W. P. Risk, W. Lenth, “Diode laser pumped blue light-source based on intracavity sum frequency generation,” Appl. Phys. Lett. 54, 789–791 (1989).
[CrossRef]

1988 (1)

W. P. Risk, J.-C. Baumert, G. C. Bjorklund, F. M. Schellenberg, W. Lenth, “Generation of blue light by intracavity frequency mixing of the laser and pump radiation of a miniature neodymium: yttrium aluminum garnet crystal,” Appl. Phys. Lett. 52, 85–87 (1988).
[CrossRef]

1987 (1)

J.-C. Baumert, F. M. Schellenberg, W. Lenth, W. P. Risk, G. C. Bjorklund, “Generation of blue cw coherent radiation by sum frequency mixing in KTiOPO4,” Appl. Phys. Lett. 51, 2192–2194 (1987).
[CrossRef]

1970 (1)

E. O. Ammann, P. C. Montgomery, “Threshold calculations for an optical parametric oscillator employing a hemispherical resonator,” J. Appl. Phys. 41, 5270–5274 (1970).
[CrossRef]

1968 (1)

G. D. Boyd, D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3603 (1968).
[CrossRef]

Ammann, E. O.

E. O. Ammann, P. C. Montgomery, “Threshold calculations for an optical parametric oscillator employing a hemispherical resonator,” J. Appl. Phys. 41, 5270–5274 (1970).
[CrossRef]

Baumert, J.-C.

W. P. Risk, J.-C. Baumert, G. C. Bjorklund, F. M. Schellenberg, W. Lenth, “Generation of blue light by intracavity frequency mixing of the laser and pump radiation of a miniature neodymium: yttrium aluminum garnet crystal,” Appl. Phys. Lett. 52, 85–87 (1988).
[CrossRef]

J.-C. Baumert, F. M. Schellenberg, W. Lenth, W. P. Risk, G. C. Bjorklund, “Generation of blue cw coherent radiation by sum frequency mixing in KTiOPO4,” Appl. Phys. Lett. 51, 2192–2194 (1987).
[CrossRef]

Bausá, L. E.

E. Montoya, J. A. Sanz-García, J. Capmany, L. E. Bausá, A. Diening, T. Kellner, G. Huber, “Continuous wave infrared laser action, self-frequency doubling, and tunability of Yb3+:MgO:LiNbO3,” J. Appl. Phys. 87, 4056–4062 (2000).
[CrossRef]

Baxter, G. W.

Bjorklund, G. C.

W. P. Risk, J.-C. Baumert, G. C. Bjorklund, F. M. Schellenberg, W. Lenth, “Generation of blue light by intracavity frequency mixing of the laser and pump radiation of a miniature neodymium: yttrium aluminum garnet crystal,” Appl. Phys. Lett. 52, 85–87 (1988).
[CrossRef]

J.-C. Baumert, F. M. Schellenberg, W. Lenth, W. P. Risk, G. C. Bjorklund, “Generation of blue cw coherent radiation by sum frequency mixing in KTiOPO4,” Appl. Phys. Lett. 51, 2192–2194 (1987).
[CrossRef]

Booth, D. J.

Bowkett, G. C.

Boyd, G. D.

G. D. Boyd, D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3603 (1968).
[CrossRef]

Capmany, J.

D. Jaque, J. Capmany, J. Rams, J. García Solé, “Effects of pump heating on laser and spectrocopic properties of the Nd:YAl3(BO3)4 self-frequency doubling laser,” J. Appl. Phys. 87, 1042–1048 (2000).
[CrossRef]

E. Montoya, J. A. Sanz-García, J. Capmany, L. E. Bausá, A. Diening, T. Kellner, G. Huber, “Continuous wave infrared laser action, self-frequency doubling, and tunability of Yb3+:MgO:LiNbO3,” J. Appl. Phys. 87, 4056–4062 (2000).
[CrossRef]

D. Jaque, J. Capmany, J. García Solé “Red, green and blue laser light from a single Nd:YAl3(BO3)4 crystal based on laser oscillation at 1.3 µm,” Appl. Phys. Lett. 75, 325–327 (1999).
[CrossRef]

D. Jaque, J. Capmany, F. Molero, J. García Solé, “Blue-light laser source by sum-frequency mixing in Nd:YAl3(BO3)4,” Appl. Phys. Lett. 73, 3659–3661 (1998).
[CrossRef]

Chan, Y. F.

Conroy, R. S.

Dawes, J. M.

Dekker, P.

Diening, A.

E. Montoya, J. A. Sanz-García, J. Capmany, L. E. Bausá, A. Diening, T. Kellner, G. Huber, “Continuous wave infrared laser action, self-frequency doubling, and tunability of Yb3+:MgO:LiNbO3,” J. Appl. Phys. 87, 4056–4062 (2000).
[CrossRef]

Dixon, G. J.

P. N. Kea, R. W. Standley, G. J. Dixon, “Generation of 20 mW of blue laser radiation from a diode-pumped sum-frequency laser,” Appl. Phys. Lett. 63, 302–304 (1993).
[CrossRef]

Friel, G. J.

García Solé, J.

D. Jaque, J. Capmany, J. Rams, J. García Solé, “Effects of pump heating on laser and spectrocopic properties of the Nd:YAl3(BO3)4 self-frequency doubling laser,” J. Appl. Phys. 87, 1042–1048 (2000).
[CrossRef]

D. Jaque, J. Capmany, J. García Solé “Red, green and blue laser light from a single Nd:YAl3(BO3)4 crystal based on laser oscillation at 1.3 µm,” Appl. Phys. Lett. 75, 325–327 (1999).
[CrossRef]

D. Jaque, J. Capmany, F. Molero, J. García Solé, “Blue-light laser source by sum-frequency mixing in Nd:YAl3(BO3)4,” Appl. Phys. Lett. 73, 3659–3661 (1998).
[CrossRef]

Huber, G.

E. Montoya, J. A. Sanz-García, J. Capmany, L. E. Bausá, A. Diening, T. Kellner, G. Huber, “Continuous wave infrared laser action, self-frequency doubling, and tunability of Yb3+:MgO:LiNbO3,” J. Appl. Phys. 87, 4056–4062 (2000).
[CrossRef]

Jaque, D.

D. Jaque, J. Capmany, J. Rams, J. García Solé, “Effects of pump heating on laser and spectrocopic properties of the Nd:YAl3(BO3)4 self-frequency doubling laser,” J. Appl. Phys. 87, 1042–1048 (2000).
[CrossRef]

D. Jaque, J. Capmany, J. García Solé “Red, green and blue laser light from a single Nd:YAl3(BO3)4 crystal based on laser oscillation at 1.3 µm,” Appl. Phys. Lett. 75, 325–327 (1999).
[CrossRef]

D. Jaque, J. Capmany, F. Molero, J. García Solé, “Blue-light laser source by sum-frequency mixing in Nd:YAl3(BO3)4,” Appl. Phys. Lett. 73, 3659–3661 (1998).
[CrossRef]

Jiyang, W.

Kea, P. N.

P. N. Kea, R. W. Standley, G. J. Dixon, “Generation of 20 mW of blue laser radiation from a diode-pumped sum-frequency laser,” Appl. Phys. Lett. 63, 302–304 (1993).
[CrossRef]

Kellner, T.

E. Montoya, J. A. Sanz-García, J. Capmany, L. E. Bausá, A. Diening, T. Kellner, G. Huber, “Continuous wave infrared laser action, self-frequency doubling, and tunability of Yb3+:MgO:LiNbO3,” J. Appl. Phys. 87, 4056–4062 (2000).
[CrossRef]

Kemp, A. J.

Kleinman, D. A.

G. D. Boyd, D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3603 (1968).
[CrossRef]

Kobayashi, T.

Koechner, W.

W. Koechner, Solid-State Laser Engineering, Vol. 1 of Springer Series in Optical Science (Springer, Berlin, 1999).

Lenth, W.

W. P. Risk, W. Lenth, “Diode laser pumped blue light-source based on intracavity sum frequency generation,” Appl. Phys. Lett. 54, 789–791 (1989).
[CrossRef]

W. P. Risk, J.-C. Baumert, G. C. Bjorklund, F. M. Schellenberg, W. Lenth, “Generation of blue light by intracavity frequency mixing of the laser and pump radiation of a miniature neodymium: yttrium aluminum garnet crystal,” Appl. Phys. Lett. 52, 85–87 (1988).
[CrossRef]

J.-C. Baumert, F. M. Schellenberg, W. Lenth, W. P. Risk, G. C. Bjorklund, “Generation of blue cw coherent radiation by sum frequency mixing in KTiOPO4,” Appl. Phys. Lett. 51, 2192–2194 (1987).
[CrossRef]

Molero, F.

D. Jaque, J. Capmany, F. Molero, J. García Solé, “Blue-light laser source by sum-frequency mixing in Nd:YAl3(BO3)4,” Appl. Phys. Lett. 73, 3659–3661 (1998).
[CrossRef]

Montgomery, P. C.

E. O. Ammann, P. C. Montgomery, “Threshold calculations for an optical parametric oscillator employing a hemispherical resonator,” J. Appl. Phys. 41, 5270–5274 (1970).
[CrossRef]

Montoya, E.

E. Montoya, J. A. Sanz-García, J. Capmany, L. E. Bausá, A. Diening, T. Kellner, G. Huber, “Continuous wave infrared laser action, self-frequency doubling, and tunability of Yb3+:MgO:LiNbO3,” J. Appl. Phys. 87, 4056–4062 (2000).
[CrossRef]

Muro, K.

S. Shichijyo, K. Yamada, K. Muro, “Efficient intracavity sum-frequency generation of 490-nn radiation by use of potassium niobate”, Opt.Lett. 19, 1022–1024 (1994).
[CrossRef]

Piper, J. A.

Rams, J.

D. Jaque, J. Capmany, J. Rams, J. García Solé, “Effects of pump heating on laser and spectrocopic properties of the Nd:YAl3(BO3)4 self-frequency doubling laser,” J. Appl. Phys. 87, 1042–1048 (2000).
[CrossRef]

Risk, W. P.

W. P. Risk, “Modeling of longitudinally pumped solid-state lasers exhibiting reabsorption losses,” J. Opt. Soc. Am. B 5, 1412–1423 (1998).
[CrossRef]

W. P. Risk, W. Lenth, “Diode laser pumped blue light-source based on intracavity sum frequency generation,” Appl. Phys. Lett. 54, 789–791 (1989).
[CrossRef]

W. P. Risk, J.-C. Baumert, G. C. Bjorklund, F. M. Schellenberg, W. Lenth, “Generation of blue light by intracavity frequency mixing of the laser and pump radiation of a miniature neodymium: yttrium aluminum garnet crystal,” Appl. Phys. Lett. 52, 85–87 (1988).
[CrossRef]

J.-C. Baumert, F. M. Schellenberg, W. Lenth, W. P. Risk, G. C. Bjorklund, “Generation of blue cw coherent radiation by sum frequency mixing in KTiOPO4,” Appl. Phys. Lett. 51, 2192–2194 (1987).
[CrossRef]

Sanz-García, J. A.

E. Montoya, J. A. Sanz-García, J. Capmany, L. E. Bausá, A. Diening, T. Kellner, G. Huber, “Continuous wave infrared laser action, self-frequency doubling, and tunability of Yb3+:MgO:LiNbO3,” J. Appl. Phys. 87, 4056–4062 (2000).
[CrossRef]

Schellenberg, F. M.

W. P. Risk, J.-C. Baumert, G. C. Bjorklund, F. M. Schellenberg, W. Lenth, “Generation of blue light by intracavity frequency mixing of the laser and pump radiation of a miniature neodymium: yttrium aluminum garnet crystal,” Appl. Phys. Lett. 52, 85–87 (1988).
[CrossRef]

J.-C. Baumert, F. M. Schellenberg, W. Lenth, W. P. Risk, G. C. Bjorklund, “Generation of blue cw coherent radiation by sum frequency mixing in KTiOPO4,” Appl. Phys. Lett. 51, 2192–2194 (1987).
[CrossRef]

Shichijyo, S.

S. Shichijyo, K. Yamada, K. Muro, “Efficient intracavity sum-frequency generation of 490-nn radiation by use of potassium niobate”, Opt.Lett. 19, 1022–1024 (1994).
[CrossRef]

Sinclair, B. D.

Standley, R. W.

P. N. Kea, R. W. Standley, G. J. Dixon, “Generation of 20 mW of blue laser radiation from a diode-pumped sum-frequency laser,” Appl. Phys. Lett. 63, 302–304 (1993).
[CrossRef]

Taira, T.

Teranishi, H.

Wang, P.

Yamada, K.

S. Shichijyo, K. Yamada, K. Muro, “Efficient intracavity sum-frequency generation of 490-nn radiation by use of potassium niobate”, Opt.Lett. 19, 1022–1024 (1994).
[CrossRef]

Yaogang, L.

Appl. Phys. Lett. (6)

D. Jaque, J. Capmany, J. García Solé “Red, green and blue laser light from a single Nd:YAl3(BO3)4 crystal based on laser oscillation at 1.3 µm,” Appl. Phys. Lett. 75, 325–327 (1999).
[CrossRef]

W. P. Risk, J.-C. Baumert, G. C. Bjorklund, F. M. Schellenberg, W. Lenth, “Generation of blue light by intracavity frequency mixing of the laser and pump radiation of a miniature neodymium: yttrium aluminum garnet crystal,” Appl. Phys. Lett. 52, 85–87 (1988).
[CrossRef]

W. P. Risk, W. Lenth, “Diode laser pumped blue light-source based on intracavity sum frequency generation,” Appl. Phys. Lett. 54, 789–791 (1989).
[CrossRef]

J.-C. Baumert, F. M. Schellenberg, W. Lenth, W. P. Risk, G. C. Bjorklund, “Generation of blue cw coherent radiation by sum frequency mixing in KTiOPO4,” Appl. Phys. Lett. 51, 2192–2194 (1987).
[CrossRef]

P. N. Kea, R. W. Standley, G. J. Dixon, “Generation of 20 mW of blue laser radiation from a diode-pumped sum-frequency laser,” Appl. Phys. Lett. 63, 302–304 (1993).
[CrossRef]

D. Jaque, J. Capmany, F. Molero, J. García Solé, “Blue-light laser source by sum-frequency mixing in Nd:YAl3(BO3)4,” Appl. Phys. Lett. 73, 3659–3661 (1998).
[CrossRef]

J. Appl. Phys. (4)

D. Jaque, J. Capmany, J. Rams, J. García Solé, “Effects of pump heating on laser and spectrocopic properties of the Nd:YAl3(BO3)4 self-frequency doubling laser,” J. Appl. Phys. 87, 1042–1048 (2000).
[CrossRef]

E. Montoya, J. A. Sanz-García, J. Capmany, L. E. Bausá, A. Diening, T. Kellner, G. Huber, “Continuous wave infrared laser action, self-frequency doubling, and tunability of Yb3+:MgO:LiNbO3,” J. Appl. Phys. 87, 4056–4062 (2000).
[CrossRef]

G. D. Boyd, D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3603 (1968).
[CrossRef]

E. O. Ammann, P. C. Montgomery, “Threshold calculations for an optical parametric oscillator employing a hemispherical resonator,” J. Appl. Phys. 41, 5270–5274 (1970).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Lett. (4)

Opt.Lett. (1)

S. Shichijyo, K. Yamada, K. Muro, “Efficient intracavity sum-frequency generation of 490-nn radiation by use of potassium niobate”, Opt.Lett. 19, 1022–1024 (1994).
[CrossRef]

Other (1)

W. Koechner, Solid-State Laser Engineering, Vol. 1 of Springer Series in Optical Science (Springer, Berlin, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental configuration for intracavity sum-frequency generation under (a) laser diode and (b) Ti:sapphire end pumping. Dotted and solid lines represent the pump and the infrared beam, respectively. Dotted arrows indicate the polarizations of the beams involved in the interaction. Indications of crystal orientations are also given (solid arrows). IM, input mirror; OC, output coupler.

Fig. 2
Fig. 2

Green wavelength as a function of diode temperature. Solid circles are experimental data and the dotted line is the theoretical prediction. Inset shows the spectral distribution of green radiation for a pump wavelength of 807 nm.

Fig. 3
Fig. 3

Green (solid circles, 503 nm) and IR (open circles, 1342 nm) laser power as a function of laser diode pump power.

Fig. 4
Fig. 4

Green (solid circles, 503 nm) and infrared (open circles, 1342 nm) laser power as a function of Ti:sapphire pump power.

Fig. 5
Fig. 5

Visible tuning range obtained with a Ti:sapphire end-pumped cavity. Data obtained with and without KTP angle tuning are shown (solid and open circles, respectively).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

λV=λIR-1+λP-1-1,
P3=2ω33πε0c4n1+n2n3d2lhP1P2,

Metrics