Abstract

We report on a method for characterizing the tuning capabilities of small-bandwidth external-cavity diode lasers. The step response of a piezo-driven Littman-Metcalf external-cavity diode laser and the compensation of its optoelectromechanical frequency response is investigated. When an approximately 50-V compensated Gaussian pulse is applied to the piezo element, a detuning of 13.6 GHz is observed. This modification of the laser is useful for several spectroscopical applications and as a tunable seed laser for lidar applications.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. M. Schotland, “Some observations of the vertical profile of water vapor by a laser optical radar,” Proceedings of the 4th Symposium on Remote Sensing of the Environment (University of Michigan Press, Ann Arbor, Mich., 1966), p. 273.
  2. R. M. Schotland, “Errors in the lidar measurements of atmospheric gases by differential absorption,” J. Appl. Meteorol. 13, 71–77 (1974).
    [CrossRef]
  3. R. M. Measures, Laser Remote Sensing (Wiley, New York, 1984).
  4. A. S. Moore, K. E. Brown, W. M. Hall, J. C. Barnes, W. C. Edwards, L. B. Petway, A. D. Little, W. S. Luck, I. W. Jones, C. W. Antill, E. V. Browell, S. Ismail, “Development of the Lidar Atmospheric Sensing Experiment (LASE)—an advanced airborne DIAL instrument,” in Proceedings of the 18th International Laser Radar Conference (ILRC), July 22–26, 1996, Berlin, Germany, A. Ansmann, ed. (Springer-Verlag, Berlin, 1997), pp. 281–288, and further references therein.
  5. G. Ehret, H. H. Klingenberg, U. Hefter, A. Assion, A. Fix, G. Poberaj, S. Berger, Q. Lü, “High peak and average power all-solid-state laser for airborne LIDAR applications,” Laser Optoelectron. 32, 29–37 (2000).
  6. K. A. Elsayed, S. Chen, L. B. Petway, B. L. Meadows, W. D. Marsh, W. C. Edwards, J. C. Barnes, R. J. DeYoung, “High-energy, efficient, 30-Hz ultraviolet laser sources for airborne ozone-lidar systems,” Appl. Opt. 41, 2734–2739 (2002).
    [CrossRef] [PubMed]
  7. M. G. Littman, H. J. Metcalf, “Spectrally narrow pulsed dye laser,” Opt. Lett. 3, 138–140 (1978).
    [CrossRef] [PubMed]
  8. K. C. Harvey, C. J. Myatt, “External-cavity diode laser using a grazing-incidence diffraction grating,” Opt. Lett. 16, 920–912 (1991).
    [CrossRef]
  9. T. E. Furtak, M. V. Klein, Optics, 2nd ed. (Wiley, New York, 1986).
  10. O. Föllinger, Regelungstechnik, 2nd ed. (Elitera, Frankfurt, 1978).
  11. F. L. Lewis, Applied Optimal Control and Estimation (Prentice-Hall, Englewood Cliffs, N.J., 1992).
  12. U. Tietze, Ch. Schenk, Halbleiterschaltungstechnik, 7th ed. (Springer-Verlag, Berlin, 1985).

2002 (1)

2000 (1)

G. Ehret, H. H. Klingenberg, U. Hefter, A. Assion, A. Fix, G. Poberaj, S. Berger, Q. Lü, “High peak and average power all-solid-state laser for airborne LIDAR applications,” Laser Optoelectron. 32, 29–37 (2000).

1991 (1)

K. C. Harvey, C. J. Myatt, “External-cavity diode laser using a grazing-incidence diffraction grating,” Opt. Lett. 16, 920–912 (1991).
[CrossRef]

1978 (1)

1974 (1)

R. M. Schotland, “Errors in the lidar measurements of atmospheric gases by differential absorption,” J. Appl. Meteorol. 13, 71–77 (1974).
[CrossRef]

Antill, C. W.

A. S. Moore, K. E. Brown, W. M. Hall, J. C. Barnes, W. C. Edwards, L. B. Petway, A. D. Little, W. S. Luck, I. W. Jones, C. W. Antill, E. V. Browell, S. Ismail, “Development of the Lidar Atmospheric Sensing Experiment (LASE)—an advanced airborne DIAL instrument,” in Proceedings of the 18th International Laser Radar Conference (ILRC), July 22–26, 1996, Berlin, Germany, A. Ansmann, ed. (Springer-Verlag, Berlin, 1997), pp. 281–288, and further references therein.

Assion, A.

G. Ehret, H. H. Klingenberg, U. Hefter, A. Assion, A. Fix, G. Poberaj, S. Berger, Q. Lü, “High peak and average power all-solid-state laser for airborne LIDAR applications,” Laser Optoelectron. 32, 29–37 (2000).

Barnes, J. C.

K. A. Elsayed, S. Chen, L. B. Petway, B. L. Meadows, W. D. Marsh, W. C. Edwards, J. C. Barnes, R. J. DeYoung, “High-energy, efficient, 30-Hz ultraviolet laser sources for airborne ozone-lidar systems,” Appl. Opt. 41, 2734–2739 (2002).
[CrossRef] [PubMed]

A. S. Moore, K. E. Brown, W. M. Hall, J. C. Barnes, W. C. Edwards, L. B. Petway, A. D. Little, W. S. Luck, I. W. Jones, C. W. Antill, E. V. Browell, S. Ismail, “Development of the Lidar Atmospheric Sensing Experiment (LASE)—an advanced airborne DIAL instrument,” in Proceedings of the 18th International Laser Radar Conference (ILRC), July 22–26, 1996, Berlin, Germany, A. Ansmann, ed. (Springer-Verlag, Berlin, 1997), pp. 281–288, and further references therein.

Berger, S.

G. Ehret, H. H. Klingenberg, U. Hefter, A. Assion, A. Fix, G. Poberaj, S. Berger, Q. Lü, “High peak and average power all-solid-state laser for airborne LIDAR applications,” Laser Optoelectron. 32, 29–37 (2000).

Browell, E. V.

A. S. Moore, K. E. Brown, W. M. Hall, J. C. Barnes, W. C. Edwards, L. B. Petway, A. D. Little, W. S. Luck, I. W. Jones, C. W. Antill, E. V. Browell, S. Ismail, “Development of the Lidar Atmospheric Sensing Experiment (LASE)—an advanced airborne DIAL instrument,” in Proceedings of the 18th International Laser Radar Conference (ILRC), July 22–26, 1996, Berlin, Germany, A. Ansmann, ed. (Springer-Verlag, Berlin, 1997), pp. 281–288, and further references therein.

Brown, K. E.

A. S. Moore, K. E. Brown, W. M. Hall, J. C. Barnes, W. C. Edwards, L. B. Petway, A. D. Little, W. S. Luck, I. W. Jones, C. W. Antill, E. V. Browell, S. Ismail, “Development of the Lidar Atmospheric Sensing Experiment (LASE)—an advanced airborne DIAL instrument,” in Proceedings of the 18th International Laser Radar Conference (ILRC), July 22–26, 1996, Berlin, Germany, A. Ansmann, ed. (Springer-Verlag, Berlin, 1997), pp. 281–288, and further references therein.

Chen, S.

DeYoung, R. J.

Edwards, W. C.

K. A. Elsayed, S. Chen, L. B. Petway, B. L. Meadows, W. D. Marsh, W. C. Edwards, J. C. Barnes, R. J. DeYoung, “High-energy, efficient, 30-Hz ultraviolet laser sources for airborne ozone-lidar systems,” Appl. Opt. 41, 2734–2739 (2002).
[CrossRef] [PubMed]

A. S. Moore, K. E. Brown, W. M. Hall, J. C. Barnes, W. C. Edwards, L. B. Petway, A. D. Little, W. S. Luck, I. W. Jones, C. W. Antill, E. V. Browell, S. Ismail, “Development of the Lidar Atmospheric Sensing Experiment (LASE)—an advanced airborne DIAL instrument,” in Proceedings of the 18th International Laser Radar Conference (ILRC), July 22–26, 1996, Berlin, Germany, A. Ansmann, ed. (Springer-Verlag, Berlin, 1997), pp. 281–288, and further references therein.

Ehret, G.

G. Ehret, H. H. Klingenberg, U. Hefter, A. Assion, A. Fix, G. Poberaj, S. Berger, Q. Lü, “High peak and average power all-solid-state laser for airborne LIDAR applications,” Laser Optoelectron. 32, 29–37 (2000).

Elsayed, K. A.

Fix, A.

G. Ehret, H. H. Klingenberg, U. Hefter, A. Assion, A. Fix, G. Poberaj, S. Berger, Q. Lü, “High peak and average power all-solid-state laser for airborne LIDAR applications,” Laser Optoelectron. 32, 29–37 (2000).

Föllinger, O.

O. Föllinger, Regelungstechnik, 2nd ed. (Elitera, Frankfurt, 1978).

Furtak, T. E.

T. E. Furtak, M. V. Klein, Optics, 2nd ed. (Wiley, New York, 1986).

Hall, W. M.

A. S. Moore, K. E. Brown, W. M. Hall, J. C. Barnes, W. C. Edwards, L. B. Petway, A. D. Little, W. S. Luck, I. W. Jones, C. W. Antill, E. V. Browell, S. Ismail, “Development of the Lidar Atmospheric Sensing Experiment (LASE)—an advanced airborne DIAL instrument,” in Proceedings of the 18th International Laser Radar Conference (ILRC), July 22–26, 1996, Berlin, Germany, A. Ansmann, ed. (Springer-Verlag, Berlin, 1997), pp. 281–288, and further references therein.

Harvey, K. C.

K. C. Harvey, C. J. Myatt, “External-cavity diode laser using a grazing-incidence diffraction grating,” Opt. Lett. 16, 920–912 (1991).
[CrossRef]

Hefter, U.

G. Ehret, H. H. Klingenberg, U. Hefter, A. Assion, A. Fix, G. Poberaj, S. Berger, Q. Lü, “High peak and average power all-solid-state laser for airborne LIDAR applications,” Laser Optoelectron. 32, 29–37 (2000).

Ismail, S.

A. S. Moore, K. E. Brown, W. M. Hall, J. C. Barnes, W. C. Edwards, L. B. Petway, A. D. Little, W. S. Luck, I. W. Jones, C. W. Antill, E. V. Browell, S. Ismail, “Development of the Lidar Atmospheric Sensing Experiment (LASE)—an advanced airborne DIAL instrument,” in Proceedings of the 18th International Laser Radar Conference (ILRC), July 22–26, 1996, Berlin, Germany, A. Ansmann, ed. (Springer-Verlag, Berlin, 1997), pp. 281–288, and further references therein.

Jones, I. W.

A. S. Moore, K. E. Brown, W. M. Hall, J. C. Barnes, W. C. Edwards, L. B. Petway, A. D. Little, W. S. Luck, I. W. Jones, C. W. Antill, E. V. Browell, S. Ismail, “Development of the Lidar Atmospheric Sensing Experiment (LASE)—an advanced airborne DIAL instrument,” in Proceedings of the 18th International Laser Radar Conference (ILRC), July 22–26, 1996, Berlin, Germany, A. Ansmann, ed. (Springer-Verlag, Berlin, 1997), pp. 281–288, and further references therein.

Klein, M. V.

T. E. Furtak, M. V. Klein, Optics, 2nd ed. (Wiley, New York, 1986).

Klingenberg, H. H.

G. Ehret, H. H. Klingenberg, U. Hefter, A. Assion, A. Fix, G. Poberaj, S. Berger, Q. Lü, “High peak and average power all-solid-state laser for airborne LIDAR applications,” Laser Optoelectron. 32, 29–37 (2000).

Lewis, F. L.

F. L. Lewis, Applied Optimal Control and Estimation (Prentice-Hall, Englewood Cliffs, N.J., 1992).

Little, A. D.

A. S. Moore, K. E. Brown, W. M. Hall, J. C. Barnes, W. C. Edwards, L. B. Petway, A. D. Little, W. S. Luck, I. W. Jones, C. W. Antill, E. V. Browell, S. Ismail, “Development of the Lidar Atmospheric Sensing Experiment (LASE)—an advanced airborne DIAL instrument,” in Proceedings of the 18th International Laser Radar Conference (ILRC), July 22–26, 1996, Berlin, Germany, A. Ansmann, ed. (Springer-Verlag, Berlin, 1997), pp. 281–288, and further references therein.

Littman, M. G.

Lü, Q.

G. Ehret, H. H. Klingenberg, U. Hefter, A. Assion, A. Fix, G. Poberaj, S. Berger, Q. Lü, “High peak and average power all-solid-state laser for airborne LIDAR applications,” Laser Optoelectron. 32, 29–37 (2000).

Luck, W. S.

A. S. Moore, K. E. Brown, W. M. Hall, J. C. Barnes, W. C. Edwards, L. B. Petway, A. D. Little, W. S. Luck, I. W. Jones, C. W. Antill, E. V. Browell, S. Ismail, “Development of the Lidar Atmospheric Sensing Experiment (LASE)—an advanced airborne DIAL instrument,” in Proceedings of the 18th International Laser Radar Conference (ILRC), July 22–26, 1996, Berlin, Germany, A. Ansmann, ed. (Springer-Verlag, Berlin, 1997), pp. 281–288, and further references therein.

Marsh, W. D.

Meadows, B. L.

Measures, R. M.

R. M. Measures, Laser Remote Sensing (Wiley, New York, 1984).

Metcalf, H. J.

Moore, A. S.

A. S. Moore, K. E. Brown, W. M. Hall, J. C. Barnes, W. C. Edwards, L. B. Petway, A. D. Little, W. S. Luck, I. W. Jones, C. W. Antill, E. V. Browell, S. Ismail, “Development of the Lidar Atmospheric Sensing Experiment (LASE)—an advanced airborne DIAL instrument,” in Proceedings of the 18th International Laser Radar Conference (ILRC), July 22–26, 1996, Berlin, Germany, A. Ansmann, ed. (Springer-Verlag, Berlin, 1997), pp. 281–288, and further references therein.

Myatt, C. J.

K. C. Harvey, C. J. Myatt, “External-cavity diode laser using a grazing-incidence diffraction grating,” Opt. Lett. 16, 920–912 (1991).
[CrossRef]

Petway, L. B.

K. A. Elsayed, S. Chen, L. B. Petway, B. L. Meadows, W. D. Marsh, W. C. Edwards, J. C. Barnes, R. J. DeYoung, “High-energy, efficient, 30-Hz ultraviolet laser sources for airborne ozone-lidar systems,” Appl. Opt. 41, 2734–2739 (2002).
[CrossRef] [PubMed]

A. S. Moore, K. E. Brown, W. M. Hall, J. C. Barnes, W. C. Edwards, L. B. Petway, A. D. Little, W. S. Luck, I. W. Jones, C. W. Antill, E. V. Browell, S. Ismail, “Development of the Lidar Atmospheric Sensing Experiment (LASE)—an advanced airborne DIAL instrument,” in Proceedings of the 18th International Laser Radar Conference (ILRC), July 22–26, 1996, Berlin, Germany, A. Ansmann, ed. (Springer-Verlag, Berlin, 1997), pp. 281–288, and further references therein.

Poberaj, G.

G. Ehret, H. H. Klingenberg, U. Hefter, A. Assion, A. Fix, G. Poberaj, S. Berger, Q. Lü, “High peak and average power all-solid-state laser for airborne LIDAR applications,” Laser Optoelectron. 32, 29–37 (2000).

Schenk, Ch.

U. Tietze, Ch. Schenk, Halbleiterschaltungstechnik, 7th ed. (Springer-Verlag, Berlin, 1985).

Schotland, R. M.

R. M. Schotland, “Errors in the lidar measurements of atmospheric gases by differential absorption,” J. Appl. Meteorol. 13, 71–77 (1974).
[CrossRef]

R. M. Schotland, “Some observations of the vertical profile of water vapor by a laser optical radar,” Proceedings of the 4th Symposium on Remote Sensing of the Environment (University of Michigan Press, Ann Arbor, Mich., 1966), p. 273.

Tietze, U.

U. Tietze, Ch. Schenk, Halbleiterschaltungstechnik, 7th ed. (Springer-Verlag, Berlin, 1985).

Appl. Opt. (1)

J. Appl. Meteorol. (1)

R. M. Schotland, “Errors in the lidar measurements of atmospheric gases by differential absorption,” J. Appl. Meteorol. 13, 71–77 (1974).
[CrossRef]

Laser Optoelectron. (1)

G. Ehret, H. H. Klingenberg, U. Hefter, A. Assion, A. Fix, G. Poberaj, S. Berger, Q. Lü, “High peak and average power all-solid-state laser for airborne LIDAR applications,” Laser Optoelectron. 32, 29–37 (2000).

Opt. Lett. (2)

M. G. Littman, H. J. Metcalf, “Spectrally narrow pulsed dye laser,” Opt. Lett. 3, 138–140 (1978).
[CrossRef] [PubMed]

K. C. Harvey, C. J. Myatt, “External-cavity diode laser using a grazing-incidence diffraction grating,” Opt. Lett. 16, 920–912 (1991).
[CrossRef]

Other (7)

T. E. Furtak, M. V. Klein, Optics, 2nd ed. (Wiley, New York, 1986).

O. Föllinger, Regelungstechnik, 2nd ed. (Elitera, Frankfurt, 1978).

F. L. Lewis, Applied Optimal Control and Estimation (Prentice-Hall, Englewood Cliffs, N.J., 1992).

U. Tietze, Ch. Schenk, Halbleiterschaltungstechnik, 7th ed. (Springer-Verlag, Berlin, 1985).

R. M. Schotland, “Some observations of the vertical profile of water vapor by a laser optical radar,” Proceedings of the 4th Symposium on Remote Sensing of the Environment (University of Michigan Press, Ann Arbor, Mich., 1966), p. 273.

R. M. Measures, Laser Remote Sensing (Wiley, New York, 1984).

A. S. Moore, K. E. Brown, W. M. Hall, J. C. Barnes, W. C. Edwards, L. B. Petway, A. D. Little, W. S. Luck, I. W. Jones, C. W. Antill, E. V. Browell, S. Ismail, “Development of the Lidar Atmospheric Sensing Experiment (LASE)—an advanced airborne DIAL instrument,” in Proceedings of the 18th International Laser Radar Conference (ILRC), July 22–26, 1996, Berlin, Germany, A. Ansmann, ed. (Springer-Verlag, Berlin, 1997), pp. 281–288, and further references therein.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Linear approximation of the Airy function for three different reflectivities.

Fig. 2
Fig. 2

Step response of the investigated Vortex external cavity laser. A 2.6-V step was applied to the laser’s piezo.

Fig. 3
Fig. 3

Setup of the compensation circuit. The compensation circuit is employed between the waveform and switching driver (test pulse generator) and the laser’s piezo amplifier. The laser is used for injection seeding.

Fig. 4
Fig. 4

Achieved detuning versus time of a Gaussian pulse applied to the external-cavity laser’s piezo without (left curve) and with (right curve) the compensation circuit.

Fig. 5
Fig. 5

Frequency detuning of the laser and uncompensated control voltage versus scantime.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

TFδTmax= 11+F sin2δ2with F= 4R1-R2,
TδTmax 11+Fδ/22.
TFx/FTmax 11+x/22.
TFx/FTmax ±3316x±2/3+3/4+O3,
Uout=- R10R9+C1 R2 R6 R10R5 R7ddt+C1 R2 C2 R4 R10R8d2dt2Uin.

Metrics