Abstract

A ray-tracing analysis of cat’s-eye retroreflectors for use in active open-path Fourier-transform-infrared (OP/FT-IR) spectrometry and the results of testing f/0.5 and f/1.75 cat’s-eye retroreflectors built in our laboratory with a commercial active OP/FT-IR spectrometer are presented. The ray-tracing model is based on the optical characteristics of a commercial single-telescope monostatic OP/FT-IR spectrometer and explores trends in cat’s-eye behavior in practical but rigorous field conditions encountered during transportable outdoor use. All mirrors modeled are paraboloids for which the focal ratios of the primary mirror are f/0.5, f/1.75, and f/3. The effect of the focal ratio of the primary mirror, the focal length of the secondary mirror, and the off-axis alignment of the primary and the secondary mirror have been evaluated as a function of path length, including variable input-beam divergence, between the spectrometer and the cat’s-eye. The paraboloidal mirrors comprising the primary and secondary of the cat’s-eye retroreflectors tested were made in our laboratory by spin casting liquid epoxy-graphite composite mixtures followed by in situ polymerization with no postpolishing.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Xiao, S. P. Levine, J. Nowak, M. Puskar, R. C. Spear, “Analysis of vapors in the workplace by remote sensing Fourier transform infrared spectroscopy,” Am. Ind. Hyg. Assoc. J. 54, 545–556 (1993).
    [CrossRef] [PubMed]
  2. C. T. Chaffin, T. L. Marshall, W. G. Fately, R. M. Hammaker, “Infrared analysis of volcanic plumes: a case study in the application of open-path FT-IR monitoring techniques,” Spectrosc. Eur. 7, 18–24 (1995).
  3. Compendium Method TO-16, Long-Path Open-Path Fourier Transform Infrared Monitoring of Atmospheric Gases, 2nd ed., Publ. 625/R-96/010b (U.S. Environmental Protection Agency Office of Research and Development, Cincinnati, Ohio, 1997).
  4. G. M. Russwurm, J. W. Childers, “Open-path Fourier transform infrared spectroscopy,” in Handbook of Vibrational Spectroscopy, J. C. Chalmers, P. R. Griffiths, eds. (Wiley, Chichester, UK, 2002), Vol. 1, pp. 1750–1773.
  5. J. R. Mayer, “Polarization optics design for a laser tracking triangulation instrument based on dual-axis scanning and a retroreflective target,” Opt. Eng. 32, 3316–3326 (1993).
    [CrossRef]
  6. W. Zuercher, R. Loser, S. A. Kyle, “Improved reflector for interferometric tracking in three dimensions,” Opt. Eng. 34, 2740–2743 (1995).
    [CrossRef]
  7. T. Takatsuji, Y. Koseki, M. Goto, T. Kurosawa, Y. Tanimura, “Laser-tracking interferometer system based on trilateration and a restriction on the position of its laser trackers,” in Laser Interferometry IX: Applications, R. J. Pryputniewicz, G. M. Brown, W. P. Jueptner, eds., Proc. SPIE3479, 319–326 (1998).
  8. Y. Honma, J. Nishikawa, T. Kasuga, “Development of the fine delay line in the Mitaka optical and infrared array (MIRA) project,” in Astronomical Interferometry, R. D. Reasenberg, ed., Proc. SPIE3350, 192–201 (1998).
  9. B. Snijders, B. C. Braam, H. Bokhove, “Free-beam delay line for a multi-aperture optical space interferometer stabilized on a guide star,” in Space Optics 1994: Earth Observation and Astronomy, M. G. Cerutti-Maori, P. Roussel, eds., Proc. SPIE2209, 423–430 (1994).
  10. G. H. Blackwood, R. N. Jacques, D. W. Miller, “The MIT multipoint alignment testbed—technology development for optical interferometry,” in Active and Adaptive Optical Systems, M. A. Ealey, ed., Proc. SPIE1542, 371–391 (1991).
  11. D. E. Jennings, R. Hubbard, J. W. Brault, “Double passing the Kitt Peak 1-m Fourier transform spectrometer,” Appl. Opt. 24, 3438–3440 (1985).
    [CrossRef] [PubMed]
  12. J. B. Breckinridge, F. G. O’Callaghan, A. G. Cassie, “Optical alignment of high resolution Fourier transform spectrometers,” in Optical Alignment I, R. N. Shagam, W. C. Sweatt, eds., Proc. SPIE0251, 94–99 (1980).
  13. J. P. Dybwad, L. M. Logan, “Detailed design considerations for an advanced cryogenic Fourier transform spectrometer,” in Cryogenically Cooled Sensor Technology, R. J. Huppi, ed., Proc. SPIE0245, 2–8 (1980).
  14. I. R. Abel, B. R. Reynolds, J. B. Breckinridge, J. Pritchard, “Optical design of the ATMOS Fourier transform spectrometer,” in Optical Systems in Engineering, P. R. Yoder, ed., Proc. SPIE0193, 12–26 (1979).
  15. R. Beer, D. Marjaniemi, “Wave fronts and construction tolerances for a cat’s-eye retroreflector,” Appl. Opt. 5, 1191–1197 (1966).
    [CrossRef] [PubMed]
  16. R. Beer, “Paraxial ray analysis of a cat’s-eye retroreflector: comments,” Appl. Opt. 15, 856–857 (1976).
    [CrossRef] [PubMed]
  17. J. J. Snyder, “Paraxial ray analysis of a cat’s-eye retroreflector,” Appl. Opt. 14, 1825–1828 (1975).
    [CrossRef] [PubMed]
  18. R. L. Richardson, “Optimization of open-path Fourier transform infrared spectrometry,” Ph.D. dissertation (University of Idaho, Moscow, Idaho, 1996).
  19. R. L. Richardson, P. R. Griffiths, “Generation of front-surface low-mass epoxy-composite mirrors by spin-casting,” Opt. Eng. 40, 252–258 (2001).
    [CrossRef]
  20. Stellar Software, P.O. Box 10183, Berkeley, Calif. 94709.

2001 (1)

R. L. Richardson, P. R. Griffiths, “Generation of front-surface low-mass epoxy-composite mirrors by spin-casting,” Opt. Eng. 40, 252–258 (2001).
[CrossRef]

1995 (2)

C. T. Chaffin, T. L. Marshall, W. G. Fately, R. M. Hammaker, “Infrared analysis of volcanic plumes: a case study in the application of open-path FT-IR monitoring techniques,” Spectrosc. Eur. 7, 18–24 (1995).

W. Zuercher, R. Loser, S. A. Kyle, “Improved reflector for interferometric tracking in three dimensions,” Opt. Eng. 34, 2740–2743 (1995).
[CrossRef]

1993 (2)

J. R. Mayer, “Polarization optics design for a laser tracking triangulation instrument based on dual-axis scanning and a retroreflective target,” Opt. Eng. 32, 3316–3326 (1993).
[CrossRef]

H. Xiao, S. P. Levine, J. Nowak, M. Puskar, R. C. Spear, “Analysis of vapors in the workplace by remote sensing Fourier transform infrared spectroscopy,” Am. Ind. Hyg. Assoc. J. 54, 545–556 (1993).
[CrossRef] [PubMed]

1985 (1)

1976 (1)

1975 (1)

1966 (1)

Abel, I. R.

I. R. Abel, B. R. Reynolds, J. B. Breckinridge, J. Pritchard, “Optical design of the ATMOS Fourier transform spectrometer,” in Optical Systems in Engineering, P. R. Yoder, ed., Proc. SPIE0193, 12–26 (1979).

Beer, R.

Blackwood, G. H.

G. H. Blackwood, R. N. Jacques, D. W. Miller, “The MIT multipoint alignment testbed—technology development for optical interferometry,” in Active and Adaptive Optical Systems, M. A. Ealey, ed., Proc. SPIE1542, 371–391 (1991).

Bokhove, H.

B. Snijders, B. C. Braam, H. Bokhove, “Free-beam delay line for a multi-aperture optical space interferometer stabilized on a guide star,” in Space Optics 1994: Earth Observation and Astronomy, M. G. Cerutti-Maori, P. Roussel, eds., Proc. SPIE2209, 423–430 (1994).

Braam, B. C.

B. Snijders, B. C. Braam, H. Bokhove, “Free-beam delay line for a multi-aperture optical space interferometer stabilized on a guide star,” in Space Optics 1994: Earth Observation and Astronomy, M. G. Cerutti-Maori, P. Roussel, eds., Proc. SPIE2209, 423–430 (1994).

Brault, J. W.

Breckinridge, J. B.

J. B. Breckinridge, F. G. O’Callaghan, A. G. Cassie, “Optical alignment of high resolution Fourier transform spectrometers,” in Optical Alignment I, R. N. Shagam, W. C. Sweatt, eds., Proc. SPIE0251, 94–99 (1980).

I. R. Abel, B. R. Reynolds, J. B. Breckinridge, J. Pritchard, “Optical design of the ATMOS Fourier transform spectrometer,” in Optical Systems in Engineering, P. R. Yoder, ed., Proc. SPIE0193, 12–26 (1979).

Cassie, A. G.

J. B. Breckinridge, F. G. O’Callaghan, A. G. Cassie, “Optical alignment of high resolution Fourier transform spectrometers,” in Optical Alignment I, R. N. Shagam, W. C. Sweatt, eds., Proc. SPIE0251, 94–99 (1980).

Chaffin, C. T.

C. T. Chaffin, T. L. Marshall, W. G. Fately, R. M. Hammaker, “Infrared analysis of volcanic plumes: a case study in the application of open-path FT-IR monitoring techniques,” Spectrosc. Eur. 7, 18–24 (1995).

Childers, J. W.

G. M. Russwurm, J. W. Childers, “Open-path Fourier transform infrared spectroscopy,” in Handbook of Vibrational Spectroscopy, J. C. Chalmers, P. R. Griffiths, eds. (Wiley, Chichester, UK, 2002), Vol. 1, pp. 1750–1773.

Dybwad, J. P.

J. P. Dybwad, L. M. Logan, “Detailed design considerations for an advanced cryogenic Fourier transform spectrometer,” in Cryogenically Cooled Sensor Technology, R. J. Huppi, ed., Proc. SPIE0245, 2–8 (1980).

Fately, W. G.

C. T. Chaffin, T. L. Marshall, W. G. Fately, R. M. Hammaker, “Infrared analysis of volcanic plumes: a case study in the application of open-path FT-IR monitoring techniques,” Spectrosc. Eur. 7, 18–24 (1995).

Goto, M.

T. Takatsuji, Y. Koseki, M. Goto, T. Kurosawa, Y. Tanimura, “Laser-tracking interferometer system based on trilateration and a restriction on the position of its laser trackers,” in Laser Interferometry IX: Applications, R. J. Pryputniewicz, G. M. Brown, W. P. Jueptner, eds., Proc. SPIE3479, 319–326 (1998).

Griffiths, P. R.

R. L. Richardson, P. R. Griffiths, “Generation of front-surface low-mass epoxy-composite mirrors by spin-casting,” Opt. Eng. 40, 252–258 (2001).
[CrossRef]

Hammaker, R. M.

C. T. Chaffin, T. L. Marshall, W. G. Fately, R. M. Hammaker, “Infrared analysis of volcanic plumes: a case study in the application of open-path FT-IR monitoring techniques,” Spectrosc. Eur. 7, 18–24 (1995).

Honma, Y.

Y. Honma, J. Nishikawa, T. Kasuga, “Development of the fine delay line in the Mitaka optical and infrared array (MIRA) project,” in Astronomical Interferometry, R. D. Reasenberg, ed., Proc. SPIE3350, 192–201 (1998).

Hubbard, R.

Jacques, R. N.

G. H. Blackwood, R. N. Jacques, D. W. Miller, “The MIT multipoint alignment testbed—technology development for optical interferometry,” in Active and Adaptive Optical Systems, M. A. Ealey, ed., Proc. SPIE1542, 371–391 (1991).

Jennings, D. E.

Kasuga, T.

Y. Honma, J. Nishikawa, T. Kasuga, “Development of the fine delay line in the Mitaka optical and infrared array (MIRA) project,” in Astronomical Interferometry, R. D. Reasenberg, ed., Proc. SPIE3350, 192–201 (1998).

Koseki, Y.

T. Takatsuji, Y. Koseki, M. Goto, T. Kurosawa, Y. Tanimura, “Laser-tracking interferometer system based on trilateration and a restriction on the position of its laser trackers,” in Laser Interferometry IX: Applications, R. J. Pryputniewicz, G. M. Brown, W. P. Jueptner, eds., Proc. SPIE3479, 319–326 (1998).

Kurosawa, T.

T. Takatsuji, Y. Koseki, M. Goto, T. Kurosawa, Y. Tanimura, “Laser-tracking interferometer system based on trilateration and a restriction on the position of its laser trackers,” in Laser Interferometry IX: Applications, R. J. Pryputniewicz, G. M. Brown, W. P. Jueptner, eds., Proc. SPIE3479, 319–326 (1998).

Kyle, S. A.

W. Zuercher, R. Loser, S. A. Kyle, “Improved reflector for interferometric tracking in three dimensions,” Opt. Eng. 34, 2740–2743 (1995).
[CrossRef]

Levine, S. P.

H. Xiao, S. P. Levine, J. Nowak, M. Puskar, R. C. Spear, “Analysis of vapors in the workplace by remote sensing Fourier transform infrared spectroscopy,” Am. Ind. Hyg. Assoc. J. 54, 545–556 (1993).
[CrossRef] [PubMed]

Logan, L. M.

J. P. Dybwad, L. M. Logan, “Detailed design considerations for an advanced cryogenic Fourier transform spectrometer,” in Cryogenically Cooled Sensor Technology, R. J. Huppi, ed., Proc. SPIE0245, 2–8 (1980).

Loser, R.

W. Zuercher, R. Loser, S. A. Kyle, “Improved reflector for interferometric tracking in three dimensions,” Opt. Eng. 34, 2740–2743 (1995).
[CrossRef]

Marjaniemi, D.

Marshall, T. L.

C. T. Chaffin, T. L. Marshall, W. G. Fately, R. M. Hammaker, “Infrared analysis of volcanic plumes: a case study in the application of open-path FT-IR monitoring techniques,” Spectrosc. Eur. 7, 18–24 (1995).

Mayer, J. R.

J. R. Mayer, “Polarization optics design for a laser tracking triangulation instrument based on dual-axis scanning and a retroreflective target,” Opt. Eng. 32, 3316–3326 (1993).
[CrossRef]

Miller, D. W.

G. H. Blackwood, R. N. Jacques, D. W. Miller, “The MIT multipoint alignment testbed—technology development for optical interferometry,” in Active and Adaptive Optical Systems, M. A. Ealey, ed., Proc. SPIE1542, 371–391 (1991).

Nishikawa, J.

Y. Honma, J. Nishikawa, T. Kasuga, “Development of the fine delay line in the Mitaka optical and infrared array (MIRA) project,” in Astronomical Interferometry, R. D. Reasenberg, ed., Proc. SPIE3350, 192–201 (1998).

Nowak, J.

H. Xiao, S. P. Levine, J. Nowak, M. Puskar, R. C. Spear, “Analysis of vapors in the workplace by remote sensing Fourier transform infrared spectroscopy,” Am. Ind. Hyg. Assoc. J. 54, 545–556 (1993).
[CrossRef] [PubMed]

O’Callaghan, F. G.

J. B. Breckinridge, F. G. O’Callaghan, A. G. Cassie, “Optical alignment of high resolution Fourier transform spectrometers,” in Optical Alignment I, R. N. Shagam, W. C. Sweatt, eds., Proc. SPIE0251, 94–99 (1980).

Pritchard, J.

I. R. Abel, B. R. Reynolds, J. B. Breckinridge, J. Pritchard, “Optical design of the ATMOS Fourier transform spectrometer,” in Optical Systems in Engineering, P. R. Yoder, ed., Proc. SPIE0193, 12–26 (1979).

Puskar, M.

H. Xiao, S. P. Levine, J. Nowak, M. Puskar, R. C. Spear, “Analysis of vapors in the workplace by remote sensing Fourier transform infrared spectroscopy,” Am. Ind. Hyg. Assoc. J. 54, 545–556 (1993).
[CrossRef] [PubMed]

Reynolds, B. R.

I. R. Abel, B. R. Reynolds, J. B. Breckinridge, J. Pritchard, “Optical design of the ATMOS Fourier transform spectrometer,” in Optical Systems in Engineering, P. R. Yoder, ed., Proc. SPIE0193, 12–26 (1979).

Richardson, R. L.

R. L. Richardson, P. R. Griffiths, “Generation of front-surface low-mass epoxy-composite mirrors by spin-casting,” Opt. Eng. 40, 252–258 (2001).
[CrossRef]

R. L. Richardson, “Optimization of open-path Fourier transform infrared spectrometry,” Ph.D. dissertation (University of Idaho, Moscow, Idaho, 1996).

Russwurm, G. M.

G. M. Russwurm, J. W. Childers, “Open-path Fourier transform infrared spectroscopy,” in Handbook of Vibrational Spectroscopy, J. C. Chalmers, P. R. Griffiths, eds. (Wiley, Chichester, UK, 2002), Vol. 1, pp. 1750–1773.

Snijders, B.

B. Snijders, B. C. Braam, H. Bokhove, “Free-beam delay line for a multi-aperture optical space interferometer stabilized on a guide star,” in Space Optics 1994: Earth Observation and Astronomy, M. G. Cerutti-Maori, P. Roussel, eds., Proc. SPIE2209, 423–430 (1994).

Snyder, J. J.

Spear, R. C.

H. Xiao, S. P. Levine, J. Nowak, M. Puskar, R. C. Spear, “Analysis of vapors in the workplace by remote sensing Fourier transform infrared spectroscopy,” Am. Ind. Hyg. Assoc. J. 54, 545–556 (1993).
[CrossRef] [PubMed]

Takatsuji, T.

T. Takatsuji, Y. Koseki, M. Goto, T. Kurosawa, Y. Tanimura, “Laser-tracking interferometer system based on trilateration and a restriction on the position of its laser trackers,” in Laser Interferometry IX: Applications, R. J. Pryputniewicz, G. M. Brown, W. P. Jueptner, eds., Proc. SPIE3479, 319–326 (1998).

Tanimura, Y.

T. Takatsuji, Y. Koseki, M. Goto, T. Kurosawa, Y. Tanimura, “Laser-tracking interferometer system based on trilateration and a restriction on the position of its laser trackers,” in Laser Interferometry IX: Applications, R. J. Pryputniewicz, G. M. Brown, W. P. Jueptner, eds., Proc. SPIE3479, 319–326 (1998).

Xiao, H.

H. Xiao, S. P. Levine, J. Nowak, M. Puskar, R. C. Spear, “Analysis of vapors in the workplace by remote sensing Fourier transform infrared spectroscopy,” Am. Ind. Hyg. Assoc. J. 54, 545–556 (1993).
[CrossRef] [PubMed]

Zuercher, W.

W. Zuercher, R. Loser, S. A. Kyle, “Improved reflector for interferometric tracking in three dimensions,” Opt. Eng. 34, 2740–2743 (1995).
[CrossRef]

Am. Ind. Hyg. Assoc. J. (1)

H. Xiao, S. P. Levine, J. Nowak, M. Puskar, R. C. Spear, “Analysis of vapors in the workplace by remote sensing Fourier transform infrared spectroscopy,” Am. Ind. Hyg. Assoc. J. 54, 545–556 (1993).
[CrossRef] [PubMed]

Appl. Opt. (4)

Opt. Eng. (3)

J. R. Mayer, “Polarization optics design for a laser tracking triangulation instrument based on dual-axis scanning and a retroreflective target,” Opt. Eng. 32, 3316–3326 (1993).
[CrossRef]

W. Zuercher, R. Loser, S. A. Kyle, “Improved reflector for interferometric tracking in three dimensions,” Opt. Eng. 34, 2740–2743 (1995).
[CrossRef]

R. L. Richardson, P. R. Griffiths, “Generation of front-surface low-mass epoxy-composite mirrors by spin-casting,” Opt. Eng. 40, 252–258 (2001).
[CrossRef]

Spectrosc. Eur. (1)

C. T. Chaffin, T. L. Marshall, W. G. Fately, R. M. Hammaker, “Infrared analysis of volcanic plumes: a case study in the application of open-path FT-IR monitoring techniques,” Spectrosc. Eur. 7, 18–24 (1995).

Other (11)

Compendium Method TO-16, Long-Path Open-Path Fourier Transform Infrared Monitoring of Atmospheric Gases, 2nd ed., Publ. 625/R-96/010b (U.S. Environmental Protection Agency Office of Research and Development, Cincinnati, Ohio, 1997).

G. M. Russwurm, J. W. Childers, “Open-path Fourier transform infrared spectroscopy,” in Handbook of Vibrational Spectroscopy, J. C. Chalmers, P. R. Griffiths, eds. (Wiley, Chichester, UK, 2002), Vol. 1, pp. 1750–1773.

T. Takatsuji, Y. Koseki, M. Goto, T. Kurosawa, Y. Tanimura, “Laser-tracking interferometer system based on trilateration and a restriction on the position of its laser trackers,” in Laser Interferometry IX: Applications, R. J. Pryputniewicz, G. M. Brown, W. P. Jueptner, eds., Proc. SPIE3479, 319–326 (1998).

Y. Honma, J. Nishikawa, T. Kasuga, “Development of the fine delay line in the Mitaka optical and infrared array (MIRA) project,” in Astronomical Interferometry, R. D. Reasenberg, ed., Proc. SPIE3350, 192–201 (1998).

B. Snijders, B. C. Braam, H. Bokhove, “Free-beam delay line for a multi-aperture optical space interferometer stabilized on a guide star,” in Space Optics 1994: Earth Observation and Astronomy, M. G. Cerutti-Maori, P. Roussel, eds., Proc. SPIE2209, 423–430 (1994).

G. H. Blackwood, R. N. Jacques, D. W. Miller, “The MIT multipoint alignment testbed—technology development for optical interferometry,” in Active and Adaptive Optical Systems, M. A. Ealey, ed., Proc. SPIE1542, 371–391 (1991).

R. L. Richardson, “Optimization of open-path Fourier transform infrared spectrometry,” Ph.D. dissertation (University of Idaho, Moscow, Idaho, 1996).

J. B. Breckinridge, F. G. O’Callaghan, A. G. Cassie, “Optical alignment of high resolution Fourier transform spectrometers,” in Optical Alignment I, R. N. Shagam, W. C. Sweatt, eds., Proc. SPIE0251, 94–99 (1980).

J. P. Dybwad, L. M. Logan, “Detailed design considerations for an advanced cryogenic Fourier transform spectrometer,” in Cryogenically Cooled Sensor Technology, R. J. Huppi, ed., Proc. SPIE0245, 2–8 (1980).

I. R. Abel, B. R. Reynolds, J. B. Breckinridge, J. Pritchard, “Optical design of the ATMOS Fourier transform spectrometer,” in Optical Systems in Engineering, P. R. Yoder, ed., Proc. SPIE0193, 12–26 (1979).

Stellar Software, P.O. Box 10183, Berkeley, Calif. 94709.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 3
Fig. 3

Reflected rms beam diameter at the source for f/0.5, f/1.75, and f/3 cat’s-eye retroreflectors as a function of path length at θ = 2°. The focal length of the secondary mirror and SPS are maintained at the optimal value for each determined at 103.6 m and θ = 2°.

Fig. 1
Fig. 1

Coordinate system used for all ray traces with indicated axes displaced vertically above the source. The 25-cm aperture source is centered on the origin with representative rays drawn. Angle θ is defined as that between the POA of the cat’s-eye and the source optical axis (dashed lines).

Fig. 2
Fig. 2

Root-mean-square diameter of the reflected beam at the source for the f/1.75 cat’s-eye as a function of path length. The focal length of the secondary mirror is maintained at the value calculated to be optimal at 103.6 m. For each curve SPS, the primary-to-secondary mirror separation, is optimized for the indicated path length and maintained at this value for all four data markers within that particular curve. All parameters are calculated at θ = 2°.

Fig. 4
Fig. 4

Root-mean-square diameter of the reflected beam at the source for f/0.5, f/1.75, and f/3 cat’s-eye retroreflectors with SPS optimized at each path length, θ = 2°. The focal length of the secondary mirror is fixed at the optimal value calculated for d = 103.6 m.

Fig. 5
Fig. 5

Effects of tilt, T, and pitch, P, of the secondary mirror of the f/0.5, f/1.75, and f/3 cat’s-eye retroreflectors for d = 103.6 m and θ = 2°: dashed lines, tilt; soid lines, pitch. Each secondary mirror is tilted until one ray fails to complete the trace. The maximum ordinate is identical to the aperture of the telescope on our Bomem spectrometer (0.254 m).

Fig. 6
Fig. 6

Root-mean-square diameter of the reflected beam at the source for a f/1.75 cat’s-eye retroreflector as a function of path length when the focal length of the secondary mirror and SPS are maintained at the optimal value calculated for d = 103.6 m and θ = 4°. Each curve represents ray tracing at the indicated θ. For comparison the f/1.75 curve in Fig. 3 (θ = 2°) is shown as a dashed curve.

Fig. 7
Fig. 7

Analogous data to Fig. 6 except that SPS is optimized at each path-length value. The f/1.75 curve in Fig. 4 is shown as a dashed line.

Fig. 8
Fig. 8

Measured performance of the two cat’s-eye retroreflectors discussed and a high-accuracy commercial cube-corner array. The path length is single pass.

Tables (2)

Tables Icon

Table 1 Parameters Used in Figs. 2 5

Tables Icon

Table 2 Optimized Focal Length of the Secondary Mirror and Primary-to-Secondary Mirror Separation SPS and Resulting rms Diameter of the Reflected Beam at the Source for the f/1.75 Cat’s-Eye When Ray Traced at the Specified Off-Axis Angle θ

Metrics