Abstract

A multiple-field-of-view (MFOV) lidar measurement and solution technique has been developed to exploit the retrievable particle extinction and size information contained in the multiple-scattering contributions to aerosol lidar returns. We describe the proposed solution algorithm. The primary retrieved parameters are the extinction coefficient at the lidar wavelength and the effective particle diameter from which secondary products such as the extinction at other wavelengths and the liquid-water content (LWC) of liquid-phase clouds can be derived. The solutions are compared with true values in a series of Monte Carlo simulations and with in-cloud measurements. Good agreement is obtained for the simulations. For the field experiment, the retrieved effective droplet diameter and LWC for the available seven cases studied are on average 15% and 35% (worst case) smaller than the measured data, respectively. In the latter case, the analysis shows that the differences cannot be attributed solely to lidar inversion errors. Despite the limited penetration depth (150–300 m) of the lidar pulses, the results of the studied cases indicate that the retrieved lidar solutions remain statistically representative of measurements performed over the full cloud extent. Long-term MFOV lidar monitoring could thus become a practical and economical option for cloud statistical studies but more experimentation on more varied cloud conditions, especially for LWC, is still needed.

© 2002 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Sassen, G. G. Mace, Z. Wang, M. R. Poellet, S. M. Sekelsky, R. E. McIntosh, “Continental stratus clouds: a case study of coordinated remote sensing and aircraft measurements,” J. Atmos. Sci. 56, 2345–2358 (1999).
    [CrossRef]
  2. K. Sassen, “The polarization lidar technique: a review and current assessment,” Bull. Am. Meteorol. Soc. 72, 1848–1866 (1991).
    [CrossRef]
  3. J. D. Klett, “Stable analytical inversion solutions for processing lidar returns,” Appl. Opt. 20, 211–220 (1981).
    [CrossRef] [PubMed]
  4. F. G. Fernald, “Analysis of atmospheric lidar observations: some comments,” Appl. Opt. 23, 652–653 (1984).
    [CrossRef] [PubMed]
  5. L. R. Bissonnette, “Sensitivity analysis of lidar inversion algorithms,” Appl. Opt. 25, 2122–2125 (1986).
    [CrossRef] [PubMed]
  6. C. M. R. Platt, T. Takashima, “Retrieval of water cloud properties from carbon dioxide lidar soundings,” Appl. Opt. 26, 1257–1263 (1987).
    [CrossRef]
  7. S. A. Young, “Analysis of lidar backscatter profiles in optically thin clouds,” Appl. Opt. 34, 7019–7031 (1995).
    [CrossRef] [PubMed]
  8. S. T. Shipley, D. H. Tracy, E. W. Eloranta, J. T. Trauger, J. T. Stroga, F. L. Roesler, J. A. Weinman, “High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 1. Theory and instrumentation,” Appl. Opt. 22, 3716–3724 (1983).
    [CrossRef] [PubMed]
  9. J. T. Stroga, E. W. Eloranta, S. T. Shipley, F. L. Roesler, P. J. Tryon, “High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 2. Calibration and data analysis,” Appl. Opt. 22, 3725–3732 (1983).
    [CrossRef]
  10. A. Ansmann, M. Riebesell, C. Weitkamp, “Measurement of atmospheric aerosol extinction profiles with a Raman lidar,” Opt. Lett. 15, 746–748 (1990).
    [CrossRef] [PubMed]
  11. J. D. Spinhirne, J. A. Reagan, B. M. Herman, “Vertical distribution of aerosol extinction cross section and inference of aerosol imaginary index in the troposphere by lidar technique,” J. Appl. Meteorol. 19, 426–438 (1980).
    [CrossRef]
  12. Y. Sasano, H. Nakane, “Quantitative analysis of RHI lidar data by an iterative adjustment of the boundary condition term in the lidar solution,” Appl. Opt. 26, 615–616 (1987).
    [CrossRef] [PubMed]
  13. D. Gutkowicz-Krusin, “Multiangle lidar performance in the presence of horizontal inhomogeneities in atmospheric extinction and scattering,” Appl. Opt. 32, 3266–3272 (1993).
    [CrossRef] [PubMed]
  14. G. J. Kunz, G. de Leeuw, “Inversion of lidar signals with the slope method,” Appl. Opt. 32, 3249–3256 (1993).
    [CrossRef] [PubMed]
  15. G. Roy, G. Vallée, M. Jean, “Lidar-inversion technique based on total integrated backscatter calibrated curves,” Appl. Opt. 32, 6754–6763 (1993).
    [CrossRef] [PubMed]
  16. S. Elouragini, “Useful algorithms to derive the optical properties of clouds from a backscatter lidar return,” J. Mod. Opt. 42, 1439–1446 (1995).
    [CrossRef]
  17. R. J. Allen, C. M. R. Platt, “Lidar for multiple backscattering and depolarization observations,” Appl. Opt. 16, 3193–3199 (1977).
    [CrossRef] [PubMed]
  18. C. Flesia, P. Schwendimann, eds., Topical feature on Multiple-Scattering Lidar Experiments, Appl. Phys. B 60, 315–362 (1995).
  19. I. L. Katsev, E. P. Zege, A. S. Prikhach, I. N. Polonsky, “Efficient technique to determine backscattered light power for various atmospheric and oceanic sounding and imaging systems,” J. Opt. Soc. Am. A 14, 1338–1346 (1997).
    [CrossRef]
  20. L. R. Bissonnette, D. L. Hutt, “Multiple scattering lidar,” Appl. Opt. 29, 5045–5046 (1990).
    [CrossRef] [PubMed]
  21. D. L. Hutt, L. R. Bissonnette, L. Durand, “Multiple field of view lidar returns from atmospheric aerosols,” Appl. Opt. 33, 2338–2348 (1994).
    [CrossRef] [PubMed]
  22. L. R. Bissonnette, D. L. Hutt, “Multiply scattered aerosol lidar returns: inversion method and comparison with in situ measurements,” Appl. Opt. 34, 6959–6975 (1995).
    [CrossRef] [PubMed]
  23. G. Roy, L. R. Bissonnette, C. Bastille, G. Vallée, “Retrieval of droplet-size density distribution from multiple-field-of-view cross-polarized lidar signals,” Appl. Opt. 38, 5202–5211 (1999).
    [CrossRef]
  24. L. R. Bissonnette, G. Roy, L. Poutier, S. G. Cober, G. A. Isaac, “Lidar remote sensing of cloud liquid water content and effective droplet diameter: retrieval method and comparison with Monte Carlo simulations and in situ measurements,” TR 2002-20 (Defence Research and Development Canada Establishment Valcartier, 2459 Pie XI Blvd. North, Val-Bélair, Québec G3J 1X5, Canada), to be published.
  25. E. W. Eloranta, “Practical model for the calculation of multiply scattered lidar returns,” Appl. Opt. 37, 2464–2472 (1998).
    [CrossRef]
  26. L. R. Bissonnette, “Multiple-scattering lidar equation,” Appl. Opt. 35, 6449–6465 (1996).
    [CrossRef] [PubMed]
  27. L. Poutier, “Evaluation de la technique de sondage par lidar à champs de vue multiples,” Technical Report No. RTS 2/05101 DOTA (ONERA, Office National d’Etudes et Recherches Aéronautiques, Centre de Toulouse, 2 ave Edouard Belin, 31055 Toulouse, France, 2001).
  28. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983), Appendix A.
  29. P. Bruscaglioni, A. Ismaelli, G. Zaccanti, “Monte-Carlo calculations of lidar returns: procedure and results,” Appl. Phys. B 60, 325–329 (1995).
    [CrossRef]
  30. C. M. R. Platt, “Remote sensing of high clouds III: Monte Carlo calculations of multiple-scattered lidar returns,” J. Atmos. Sci. 38, 156–167 (1981).
    [CrossRef]
  31. G. A. Isaac, S. G. Cober, J. W. Strapp, A. V. Korolev, A. Tremblay, D. L. Marcotte, “Recent Canadian research on aircraft in-flight icing,” Can. Aeronaut. Space J. 47(3), 213–221 (2001).
  32. G. A. Isaac, S. G. Cober, J. W. Strapp, D. Hudak, T. P. Ratvasky, D. L. Marcotte, F. Fabry, “Preliminary results from the Alliance Icing Research Study (AIRS),” paper AIAA-2001-0393, presented at the 39th Aerospace Science Meeting and Exhibit, Reno Nevada, 8–11 January 2001, (American Institute of Aeronautics and Astronautics, Reston, Va., 2001).
  33. L. R. Bissonnette, G. Roy, F. Fabry, “Range-height scans of lidar depolarization for characterizing properties and phase of clouds and precipitation,” J. Atmos. Oceanic Technol. 18, 1429–1446 (2001).
    [CrossRef]
  34. G. Roy, L. R. Bissonnette, “Strong dependence of rain-induced lidar depolarization on the illumination angle: experimental evidence and geometrical-optics interpretation,” Appl. Opt. 40, 4770–4789 (2001).
    [CrossRef]
  35. S. G. Cober, G. A. Isaac, A. V. Korolev, J. W. Strapp, “Assessing cloud phase conditions,” J. Appl. Meteorol. 40, 1967–1983 (2001).
    [CrossRef]
  36. S. G. Cober, G. A. Isaac, A. V. Korolev, “Assessing the Rosemount icing detector with in-situ measurements,” J. Atmos. Oceanic Technol. 18, 515–528 (2001).
    [CrossRef]

2001 (5)

G. A. Isaac, S. G. Cober, J. W. Strapp, A. V. Korolev, A. Tremblay, D. L. Marcotte, “Recent Canadian research on aircraft in-flight icing,” Can. Aeronaut. Space J. 47(3), 213–221 (2001).

L. R. Bissonnette, G. Roy, F. Fabry, “Range-height scans of lidar depolarization for characterizing properties and phase of clouds and precipitation,” J. Atmos. Oceanic Technol. 18, 1429–1446 (2001).
[CrossRef]

S. G. Cober, G. A. Isaac, A. V. Korolev, J. W. Strapp, “Assessing cloud phase conditions,” J. Appl. Meteorol. 40, 1967–1983 (2001).
[CrossRef]

S. G. Cober, G. A. Isaac, A. V. Korolev, “Assessing the Rosemount icing detector with in-situ measurements,” J. Atmos. Oceanic Technol. 18, 515–528 (2001).
[CrossRef]

G. Roy, L. R. Bissonnette, “Strong dependence of rain-induced lidar depolarization on the illumination angle: experimental evidence and geometrical-optics interpretation,” Appl. Opt. 40, 4770–4789 (2001).
[CrossRef]

1999 (2)

G. Roy, L. R. Bissonnette, C. Bastille, G. Vallée, “Retrieval of droplet-size density distribution from multiple-field-of-view cross-polarized lidar signals,” Appl. Opt. 38, 5202–5211 (1999).
[CrossRef]

K. Sassen, G. G. Mace, Z. Wang, M. R. Poellet, S. M. Sekelsky, R. E. McIntosh, “Continental stratus clouds: a case study of coordinated remote sensing and aircraft measurements,” J. Atmos. Sci. 56, 2345–2358 (1999).
[CrossRef]

1998 (1)

1997 (1)

1996 (1)

1995 (5)

L. R. Bissonnette, D. L. Hutt, “Multiply scattered aerosol lidar returns: inversion method and comparison with in situ measurements,” Appl. Opt. 34, 6959–6975 (1995).
[CrossRef] [PubMed]

S. A. Young, “Analysis of lidar backscatter profiles in optically thin clouds,” Appl. Opt. 34, 7019–7031 (1995).
[CrossRef] [PubMed]

S. Elouragini, “Useful algorithms to derive the optical properties of clouds from a backscatter lidar return,” J. Mod. Opt. 42, 1439–1446 (1995).
[CrossRef]

C. Flesia, P. Schwendimann, eds., Topical feature on Multiple-Scattering Lidar Experiments, Appl. Phys. B 60, 315–362 (1995).

P. Bruscaglioni, A. Ismaelli, G. Zaccanti, “Monte-Carlo calculations of lidar returns: procedure and results,” Appl. Phys. B 60, 325–329 (1995).
[CrossRef]

1994 (1)

1993 (3)

1991 (1)

K. Sassen, “The polarization lidar technique: a review and current assessment,” Bull. Am. Meteorol. Soc. 72, 1848–1866 (1991).
[CrossRef]

1990 (2)

1987 (2)

1986 (1)

1984 (1)

1983 (2)

1981 (2)

J. D. Klett, “Stable analytical inversion solutions for processing lidar returns,” Appl. Opt. 20, 211–220 (1981).
[CrossRef] [PubMed]

C. M. R. Platt, “Remote sensing of high clouds III: Monte Carlo calculations of multiple-scattered lidar returns,” J. Atmos. Sci. 38, 156–167 (1981).
[CrossRef]

1980 (1)

J. D. Spinhirne, J. A. Reagan, B. M. Herman, “Vertical distribution of aerosol extinction cross section and inference of aerosol imaginary index in the troposphere by lidar technique,” J. Appl. Meteorol. 19, 426–438 (1980).
[CrossRef]

1977 (1)

Allen, R. J.

Ansmann, A.

Bastille, C.

Bissonnette, L. R.

G. Roy, L. R. Bissonnette, “Strong dependence of rain-induced lidar depolarization on the illumination angle: experimental evidence and geometrical-optics interpretation,” Appl. Opt. 40, 4770–4789 (2001).
[CrossRef]

L. R. Bissonnette, G. Roy, F. Fabry, “Range-height scans of lidar depolarization for characterizing properties and phase of clouds and precipitation,” J. Atmos. Oceanic Technol. 18, 1429–1446 (2001).
[CrossRef]

G. Roy, L. R. Bissonnette, C. Bastille, G. Vallée, “Retrieval of droplet-size density distribution from multiple-field-of-view cross-polarized lidar signals,” Appl. Opt. 38, 5202–5211 (1999).
[CrossRef]

L. R. Bissonnette, “Multiple-scattering lidar equation,” Appl. Opt. 35, 6449–6465 (1996).
[CrossRef] [PubMed]

L. R. Bissonnette, D. L. Hutt, “Multiply scattered aerosol lidar returns: inversion method and comparison with in situ measurements,” Appl. Opt. 34, 6959–6975 (1995).
[CrossRef] [PubMed]

D. L. Hutt, L. R. Bissonnette, L. Durand, “Multiple field of view lidar returns from atmospheric aerosols,” Appl. Opt. 33, 2338–2348 (1994).
[CrossRef] [PubMed]

L. R. Bissonnette, D. L. Hutt, “Multiple scattering lidar,” Appl. Opt. 29, 5045–5046 (1990).
[CrossRef] [PubMed]

L. R. Bissonnette, “Sensitivity analysis of lidar inversion algorithms,” Appl. Opt. 25, 2122–2125 (1986).
[CrossRef] [PubMed]

L. R. Bissonnette, G. Roy, L. Poutier, S. G. Cober, G. A. Isaac, “Lidar remote sensing of cloud liquid water content and effective droplet diameter: retrieval method and comparison with Monte Carlo simulations and in situ measurements,” TR 2002-20 (Defence Research and Development Canada Establishment Valcartier, 2459 Pie XI Blvd. North, Val-Bélair, Québec G3J 1X5, Canada), to be published.

Bohren, C. F.

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983), Appendix A.

Bruscaglioni, P.

P. Bruscaglioni, A. Ismaelli, G. Zaccanti, “Monte-Carlo calculations of lidar returns: procedure and results,” Appl. Phys. B 60, 325–329 (1995).
[CrossRef]

Cober, S. G.

G. A. Isaac, S. G. Cober, J. W. Strapp, A. V. Korolev, A. Tremblay, D. L. Marcotte, “Recent Canadian research on aircraft in-flight icing,” Can. Aeronaut. Space J. 47(3), 213–221 (2001).

S. G. Cober, G. A. Isaac, A. V. Korolev, J. W. Strapp, “Assessing cloud phase conditions,” J. Appl. Meteorol. 40, 1967–1983 (2001).
[CrossRef]

S. G. Cober, G. A. Isaac, A. V. Korolev, “Assessing the Rosemount icing detector with in-situ measurements,” J. Atmos. Oceanic Technol. 18, 515–528 (2001).
[CrossRef]

L. R. Bissonnette, G. Roy, L. Poutier, S. G. Cober, G. A. Isaac, “Lidar remote sensing of cloud liquid water content and effective droplet diameter: retrieval method and comparison with Monte Carlo simulations and in situ measurements,” TR 2002-20 (Defence Research and Development Canada Establishment Valcartier, 2459 Pie XI Blvd. North, Val-Bélair, Québec G3J 1X5, Canada), to be published.

G. A. Isaac, S. G. Cober, J. W. Strapp, D. Hudak, T. P. Ratvasky, D. L. Marcotte, F. Fabry, “Preliminary results from the Alliance Icing Research Study (AIRS),” paper AIAA-2001-0393, presented at the 39th Aerospace Science Meeting and Exhibit, Reno Nevada, 8–11 January 2001, (American Institute of Aeronautics and Astronautics, Reston, Va., 2001).

de Leeuw, G.

Durand, L.

Eloranta, E. W.

Elouragini, S.

S. Elouragini, “Useful algorithms to derive the optical properties of clouds from a backscatter lidar return,” J. Mod. Opt. 42, 1439–1446 (1995).
[CrossRef]

Fabry, F.

L. R. Bissonnette, G. Roy, F. Fabry, “Range-height scans of lidar depolarization for characterizing properties and phase of clouds and precipitation,” J. Atmos. Oceanic Technol. 18, 1429–1446 (2001).
[CrossRef]

G. A. Isaac, S. G. Cober, J. W. Strapp, D. Hudak, T. P. Ratvasky, D. L. Marcotte, F. Fabry, “Preliminary results from the Alliance Icing Research Study (AIRS),” paper AIAA-2001-0393, presented at the 39th Aerospace Science Meeting and Exhibit, Reno Nevada, 8–11 January 2001, (American Institute of Aeronautics and Astronautics, Reston, Va., 2001).

Fernald, F. G.

Gutkowicz-Krusin, D.

Herman, B. M.

J. D. Spinhirne, J. A. Reagan, B. M. Herman, “Vertical distribution of aerosol extinction cross section and inference of aerosol imaginary index in the troposphere by lidar technique,” J. Appl. Meteorol. 19, 426–438 (1980).
[CrossRef]

Hudak, D.

G. A. Isaac, S. G. Cober, J. W. Strapp, D. Hudak, T. P. Ratvasky, D. L. Marcotte, F. Fabry, “Preliminary results from the Alliance Icing Research Study (AIRS),” paper AIAA-2001-0393, presented at the 39th Aerospace Science Meeting and Exhibit, Reno Nevada, 8–11 January 2001, (American Institute of Aeronautics and Astronautics, Reston, Va., 2001).

Huffman, D. R.

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983), Appendix A.

Hutt, D. L.

Isaac, G. A.

G. A. Isaac, S. G. Cober, J. W. Strapp, A. V. Korolev, A. Tremblay, D. L. Marcotte, “Recent Canadian research on aircraft in-flight icing,” Can. Aeronaut. Space J. 47(3), 213–221 (2001).

S. G. Cober, G. A. Isaac, A. V. Korolev, J. W. Strapp, “Assessing cloud phase conditions,” J. Appl. Meteorol. 40, 1967–1983 (2001).
[CrossRef]

S. G. Cober, G. A. Isaac, A. V. Korolev, “Assessing the Rosemount icing detector with in-situ measurements,” J. Atmos. Oceanic Technol. 18, 515–528 (2001).
[CrossRef]

L. R. Bissonnette, G. Roy, L. Poutier, S. G. Cober, G. A. Isaac, “Lidar remote sensing of cloud liquid water content and effective droplet diameter: retrieval method and comparison with Monte Carlo simulations and in situ measurements,” TR 2002-20 (Defence Research and Development Canada Establishment Valcartier, 2459 Pie XI Blvd. North, Val-Bélair, Québec G3J 1X5, Canada), to be published.

G. A. Isaac, S. G. Cober, J. W. Strapp, D. Hudak, T. P. Ratvasky, D. L. Marcotte, F. Fabry, “Preliminary results from the Alliance Icing Research Study (AIRS),” paper AIAA-2001-0393, presented at the 39th Aerospace Science Meeting and Exhibit, Reno Nevada, 8–11 January 2001, (American Institute of Aeronautics and Astronautics, Reston, Va., 2001).

Ismaelli, A.

P. Bruscaglioni, A. Ismaelli, G. Zaccanti, “Monte-Carlo calculations of lidar returns: procedure and results,” Appl. Phys. B 60, 325–329 (1995).
[CrossRef]

Jean, M.

Katsev, I. L.

Klett, J. D.

Korolev, A. V.

S. G. Cober, G. A. Isaac, A. V. Korolev, “Assessing the Rosemount icing detector with in-situ measurements,” J. Atmos. Oceanic Technol. 18, 515–528 (2001).
[CrossRef]

S. G. Cober, G. A. Isaac, A. V. Korolev, J. W. Strapp, “Assessing cloud phase conditions,” J. Appl. Meteorol. 40, 1967–1983 (2001).
[CrossRef]

G. A. Isaac, S. G. Cober, J. W. Strapp, A. V. Korolev, A. Tremblay, D. L. Marcotte, “Recent Canadian research on aircraft in-flight icing,” Can. Aeronaut. Space J. 47(3), 213–221 (2001).

Kunz, G. J.

Mace, G. G.

K. Sassen, G. G. Mace, Z. Wang, M. R. Poellet, S. M. Sekelsky, R. E. McIntosh, “Continental stratus clouds: a case study of coordinated remote sensing and aircraft measurements,” J. Atmos. Sci. 56, 2345–2358 (1999).
[CrossRef]

Marcotte, D. L.

G. A. Isaac, S. G. Cober, J. W. Strapp, A. V. Korolev, A. Tremblay, D. L. Marcotte, “Recent Canadian research on aircraft in-flight icing,” Can. Aeronaut. Space J. 47(3), 213–221 (2001).

G. A. Isaac, S. G. Cober, J. W. Strapp, D. Hudak, T. P. Ratvasky, D. L. Marcotte, F. Fabry, “Preliminary results from the Alliance Icing Research Study (AIRS),” paper AIAA-2001-0393, presented at the 39th Aerospace Science Meeting and Exhibit, Reno Nevada, 8–11 January 2001, (American Institute of Aeronautics and Astronautics, Reston, Va., 2001).

McIntosh, R. E.

K. Sassen, G. G. Mace, Z. Wang, M. R. Poellet, S. M. Sekelsky, R. E. McIntosh, “Continental stratus clouds: a case study of coordinated remote sensing and aircraft measurements,” J. Atmos. Sci. 56, 2345–2358 (1999).
[CrossRef]

Nakane, H.

Platt, C. M. R.

Poellet, M. R.

K. Sassen, G. G. Mace, Z. Wang, M. R. Poellet, S. M. Sekelsky, R. E. McIntosh, “Continental stratus clouds: a case study of coordinated remote sensing and aircraft measurements,” J. Atmos. Sci. 56, 2345–2358 (1999).
[CrossRef]

Polonsky, I. N.

Poutier, L.

L. R. Bissonnette, G. Roy, L. Poutier, S. G. Cober, G. A. Isaac, “Lidar remote sensing of cloud liquid water content and effective droplet diameter: retrieval method and comparison with Monte Carlo simulations and in situ measurements,” TR 2002-20 (Defence Research and Development Canada Establishment Valcartier, 2459 Pie XI Blvd. North, Val-Bélair, Québec G3J 1X5, Canada), to be published.

L. Poutier, “Evaluation de la technique de sondage par lidar à champs de vue multiples,” Technical Report No. RTS 2/05101 DOTA (ONERA, Office National d’Etudes et Recherches Aéronautiques, Centre de Toulouse, 2 ave Edouard Belin, 31055 Toulouse, France, 2001).

Prikhach, A. S.

Ratvasky, T. P.

G. A. Isaac, S. G. Cober, J. W. Strapp, D. Hudak, T. P. Ratvasky, D. L. Marcotte, F. Fabry, “Preliminary results from the Alliance Icing Research Study (AIRS),” paper AIAA-2001-0393, presented at the 39th Aerospace Science Meeting and Exhibit, Reno Nevada, 8–11 January 2001, (American Institute of Aeronautics and Astronautics, Reston, Va., 2001).

Reagan, J. A.

J. D. Spinhirne, J. A. Reagan, B. M. Herman, “Vertical distribution of aerosol extinction cross section and inference of aerosol imaginary index in the troposphere by lidar technique,” J. Appl. Meteorol. 19, 426–438 (1980).
[CrossRef]

Riebesell, M.

Roesler, F. L.

Roy, G.

L. R. Bissonnette, G. Roy, F. Fabry, “Range-height scans of lidar depolarization for characterizing properties and phase of clouds and precipitation,” J. Atmos. Oceanic Technol. 18, 1429–1446 (2001).
[CrossRef]

G. Roy, L. R. Bissonnette, “Strong dependence of rain-induced lidar depolarization on the illumination angle: experimental evidence and geometrical-optics interpretation,” Appl. Opt. 40, 4770–4789 (2001).
[CrossRef]

G. Roy, L. R. Bissonnette, C. Bastille, G. Vallée, “Retrieval of droplet-size density distribution from multiple-field-of-view cross-polarized lidar signals,” Appl. Opt. 38, 5202–5211 (1999).
[CrossRef]

G. Roy, G. Vallée, M. Jean, “Lidar-inversion technique based on total integrated backscatter calibrated curves,” Appl. Opt. 32, 6754–6763 (1993).
[CrossRef] [PubMed]

L. R. Bissonnette, G. Roy, L. Poutier, S. G. Cober, G. A. Isaac, “Lidar remote sensing of cloud liquid water content and effective droplet diameter: retrieval method and comparison with Monte Carlo simulations and in situ measurements,” TR 2002-20 (Defence Research and Development Canada Establishment Valcartier, 2459 Pie XI Blvd. North, Val-Bélair, Québec G3J 1X5, Canada), to be published.

Sasano, Y.

Sassen, K.

K. Sassen, G. G. Mace, Z. Wang, M. R. Poellet, S. M. Sekelsky, R. E. McIntosh, “Continental stratus clouds: a case study of coordinated remote sensing and aircraft measurements,” J. Atmos. Sci. 56, 2345–2358 (1999).
[CrossRef]

K. Sassen, “The polarization lidar technique: a review and current assessment,” Bull. Am. Meteorol. Soc. 72, 1848–1866 (1991).
[CrossRef]

Sekelsky, S. M.

K. Sassen, G. G. Mace, Z. Wang, M. R. Poellet, S. M. Sekelsky, R. E. McIntosh, “Continental stratus clouds: a case study of coordinated remote sensing and aircraft measurements,” J. Atmos. Sci. 56, 2345–2358 (1999).
[CrossRef]

Shipley, S. T.

Spinhirne, J. D.

J. D. Spinhirne, J. A. Reagan, B. M. Herman, “Vertical distribution of aerosol extinction cross section and inference of aerosol imaginary index in the troposphere by lidar technique,” J. Appl. Meteorol. 19, 426–438 (1980).
[CrossRef]

Strapp, J. W.

G. A. Isaac, S. G. Cober, J. W. Strapp, A. V. Korolev, A. Tremblay, D. L. Marcotte, “Recent Canadian research on aircraft in-flight icing,” Can. Aeronaut. Space J. 47(3), 213–221 (2001).

S. G. Cober, G. A. Isaac, A. V. Korolev, J. W. Strapp, “Assessing cloud phase conditions,” J. Appl. Meteorol. 40, 1967–1983 (2001).
[CrossRef]

G. A. Isaac, S. G. Cober, J. W. Strapp, D. Hudak, T. P. Ratvasky, D. L. Marcotte, F. Fabry, “Preliminary results from the Alliance Icing Research Study (AIRS),” paper AIAA-2001-0393, presented at the 39th Aerospace Science Meeting and Exhibit, Reno Nevada, 8–11 January 2001, (American Institute of Aeronautics and Astronautics, Reston, Va., 2001).

Stroga, J. T.

Takashima, T.

Tracy, D. H.

Trauger, J. T.

Tremblay, A.

G. A. Isaac, S. G. Cober, J. W. Strapp, A. V. Korolev, A. Tremblay, D. L. Marcotte, “Recent Canadian research on aircraft in-flight icing,” Can. Aeronaut. Space J. 47(3), 213–221 (2001).

Tryon, P. J.

Vallée, G.

Wang, Z.

K. Sassen, G. G. Mace, Z. Wang, M. R. Poellet, S. M. Sekelsky, R. E. McIntosh, “Continental stratus clouds: a case study of coordinated remote sensing and aircraft measurements,” J. Atmos. Sci. 56, 2345–2358 (1999).
[CrossRef]

Weinman, J. A.

Weitkamp, C.

Young, S. A.

Zaccanti, G.

P. Bruscaglioni, A. Ismaelli, G. Zaccanti, “Monte-Carlo calculations of lidar returns: procedure and results,” Appl. Phys. B 60, 325–329 (1995).
[CrossRef]

Zege, E. P.

Appl. Opt. (19)

R. J. Allen, C. M. R. Platt, “Lidar for multiple backscattering and depolarization observations,” Appl. Opt. 16, 3193–3199 (1977).
[CrossRef] [PubMed]

J. D. Klett, “Stable analytical inversion solutions for processing lidar returns,” Appl. Opt. 20, 211–220 (1981).
[CrossRef] [PubMed]

S. T. Shipley, D. H. Tracy, E. W. Eloranta, J. T. Trauger, J. T. Stroga, F. L. Roesler, J. A. Weinman, “High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 1. Theory and instrumentation,” Appl. Opt. 22, 3716–3724 (1983).
[CrossRef] [PubMed]

J. T. Stroga, E. W. Eloranta, S. T. Shipley, F. L. Roesler, P. J. Tryon, “High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 2. Calibration and data analysis,” Appl. Opt. 22, 3725–3732 (1983).
[CrossRef]

F. G. Fernald, “Analysis of atmospheric lidar observations: some comments,” Appl. Opt. 23, 652–653 (1984).
[CrossRef] [PubMed]

L. R. Bissonnette, “Sensitivity analysis of lidar inversion algorithms,” Appl. Opt. 25, 2122–2125 (1986).
[CrossRef] [PubMed]

C. M. R. Platt, T. Takashima, “Retrieval of water cloud properties from carbon dioxide lidar soundings,” Appl. Opt. 26, 1257–1263 (1987).
[CrossRef]

G. J. Kunz, G. de Leeuw, “Inversion of lidar signals with the slope method,” Appl. Opt. 32, 3249–3256 (1993).
[CrossRef] [PubMed]

D. Gutkowicz-Krusin, “Multiangle lidar performance in the presence of horizontal inhomogeneities in atmospheric extinction and scattering,” Appl. Opt. 32, 3266–3272 (1993).
[CrossRef] [PubMed]

D. L. Hutt, L. R. Bissonnette, L. Durand, “Multiple field of view lidar returns from atmospheric aerosols,” Appl. Opt. 33, 2338–2348 (1994).
[CrossRef] [PubMed]

E. W. Eloranta, “Practical model for the calculation of multiply scattered lidar returns,” Appl. Opt. 37, 2464–2472 (1998).
[CrossRef]

G. Roy, L. R. Bissonnette, C. Bastille, G. Vallée, “Retrieval of droplet-size density distribution from multiple-field-of-view cross-polarized lidar signals,” Appl. Opt. 38, 5202–5211 (1999).
[CrossRef]

L. R. Bissonnette, D. L. Hutt, “Multiply scattered aerosol lidar returns: inversion method and comparison with in situ measurements,” Appl. Opt. 34, 6959–6975 (1995).
[CrossRef] [PubMed]

S. A. Young, “Analysis of lidar backscatter profiles in optically thin clouds,” Appl. Opt. 34, 7019–7031 (1995).
[CrossRef] [PubMed]

L. R. Bissonnette, “Multiple-scattering lidar equation,” Appl. Opt. 35, 6449–6465 (1996).
[CrossRef] [PubMed]

G. Roy, G. Vallée, M. Jean, “Lidar-inversion technique based on total integrated backscatter calibrated curves,” Appl. Opt. 32, 6754–6763 (1993).
[CrossRef] [PubMed]

G. Roy, L. R. Bissonnette, “Strong dependence of rain-induced lidar depolarization on the illumination angle: experimental evidence and geometrical-optics interpretation,” Appl. Opt. 40, 4770–4789 (2001).
[CrossRef]

L. R. Bissonnette, D. L. Hutt, “Multiple scattering lidar,” Appl. Opt. 29, 5045–5046 (1990).
[CrossRef] [PubMed]

Y. Sasano, H. Nakane, “Quantitative analysis of RHI lidar data by an iterative adjustment of the boundary condition term in the lidar solution,” Appl. Opt. 26, 615–616 (1987).
[CrossRef] [PubMed]

Appl. Phys. B (2)

C. Flesia, P. Schwendimann, eds., Topical feature on Multiple-Scattering Lidar Experiments, Appl. Phys. B 60, 315–362 (1995).

P. Bruscaglioni, A. Ismaelli, G. Zaccanti, “Monte-Carlo calculations of lidar returns: procedure and results,” Appl. Phys. B 60, 325–329 (1995).
[CrossRef]

Bull. Am. Meteorol. Soc. (1)

K. Sassen, “The polarization lidar technique: a review and current assessment,” Bull. Am. Meteorol. Soc. 72, 1848–1866 (1991).
[CrossRef]

Can. Aeronaut. Space J. (1)

G. A. Isaac, S. G. Cober, J. W. Strapp, A. V. Korolev, A. Tremblay, D. L. Marcotte, “Recent Canadian research on aircraft in-flight icing,” Can. Aeronaut. Space J. 47(3), 213–221 (2001).

J. Appl. Meteorol. (2)

J. D. Spinhirne, J. A. Reagan, B. M. Herman, “Vertical distribution of aerosol extinction cross section and inference of aerosol imaginary index in the troposphere by lidar technique,” J. Appl. Meteorol. 19, 426–438 (1980).
[CrossRef]

S. G. Cober, G. A. Isaac, A. V. Korolev, J. W. Strapp, “Assessing cloud phase conditions,” J. Appl. Meteorol. 40, 1967–1983 (2001).
[CrossRef]

J. Atmos. Oceanic Technol. (2)

S. G. Cober, G. A. Isaac, A. V. Korolev, “Assessing the Rosemount icing detector with in-situ measurements,” J. Atmos. Oceanic Technol. 18, 515–528 (2001).
[CrossRef]

L. R. Bissonnette, G. Roy, F. Fabry, “Range-height scans of lidar depolarization for characterizing properties and phase of clouds and precipitation,” J. Atmos. Oceanic Technol. 18, 1429–1446 (2001).
[CrossRef]

J. Atmos. Sci. (2)

K. Sassen, G. G. Mace, Z. Wang, M. R. Poellet, S. M. Sekelsky, R. E. McIntosh, “Continental stratus clouds: a case study of coordinated remote sensing and aircraft measurements,” J. Atmos. Sci. 56, 2345–2358 (1999).
[CrossRef]

C. M. R. Platt, “Remote sensing of high clouds III: Monte Carlo calculations of multiple-scattered lidar returns,” J. Atmos. Sci. 38, 156–167 (1981).
[CrossRef]

J. Mod. Opt. (1)

S. Elouragini, “Useful algorithms to derive the optical properties of clouds from a backscatter lidar return,” J. Mod. Opt. 42, 1439–1446 (1995).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Lett. (1)

Other (4)

L. R. Bissonnette, G. Roy, L. Poutier, S. G. Cober, G. A. Isaac, “Lidar remote sensing of cloud liquid water content and effective droplet diameter: retrieval method and comparison with Monte Carlo simulations and in situ measurements,” TR 2002-20 (Defence Research and Development Canada Establishment Valcartier, 2459 Pie XI Blvd. North, Val-Bélair, Québec G3J 1X5, Canada), to be published.

L. Poutier, “Evaluation de la technique de sondage par lidar à champs de vue multiples,” Technical Report No. RTS 2/05101 DOTA (ONERA, Office National d’Etudes et Recherches Aéronautiques, Centre de Toulouse, 2 ave Edouard Belin, 31055 Toulouse, France, 2001).

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983), Appendix A.

G. A. Isaac, S. G. Cober, J. W. Strapp, D. Hudak, T. P. Ratvasky, D. L. Marcotte, F. Fabry, “Preliminary results from the Alliance Icing Research Study (AIRS),” paper AIAA-2001-0393, presented at the 39th Aerospace Science Meeting and Exhibit, Reno Nevada, 8–11 January 2001, (American Institute of Aeronautics and Astronautics, Reston, Va., 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics