Abstract

A compact reflection Fourier-transform spectrometer without moving parts is developed. The spectrometer consists of two spherical reflectors: a Sagnac interferometer and a linear detector. The developed system is as small as 202 mm long × 185 mm wide × 100 mm high. The optics and the system configuration are described, and the preliminary experimental results are shown.

© 2002 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. J. Persky, “A review of space infrared Fourier transform spectrometers for remote sensing,” Rev. Sci. Instrum. 66, 4763–4797 (1995).
    [CrossRef]
  2. P. D. Hammer, F. P. J. Valcro, D. L. Peterson, “An imaging interferometer for terrestrial remote sensing,” in Imaging Spectrometry of the Terrestrial Environment, G. Vane, ed., Proc. SPIE1937, 244–255 (1993).
  3. S. Prunet, B. Journet, G. Fortunato, “Exact calculation of the optical path difference and description of a new birefringent interferometer,” Opt. Eng. 38, 983–990 (1999).
    [CrossRef]
  4. L. J. Otten, E. W. Butler, “The design of an airborne Fourier transform visible hyperspectral imaging system for light aircraft environment remote sensing,” in Imaging Spectrometry, M. R. Descour, J. M. Mooney, D. L. Perry, L. Illing, eds., Proc. SPIE2480, 418–424 (1995).
  5. B. A. Patterson, M. Antoni, J. Courtial, A. J. Duncan, W. Sibbett, M. J. Padgett, “An ultra-compact static Fourier-transform spectrometer based on a single birefringent component,” Opt. Commun. 130, 1–6 (1996).
    [CrossRef]
  6. M. J. Padgett, A. R. Harvey, “A static Fourier-transform spectrometer based on Wollaston prisms,” Rev. Sci. Instrum. 66, 2807–2811 (1995).
    [CrossRef]
  7. J. Rafert, R. G. Sellar, J. H. Blatt, “Monolithic Fourier-transform imaging spectrometer,” Appl. Opt. 34, 7228–7230 (1995).
    [CrossRef] [PubMed]
  8. M. Hashimoto, S. Kawata, “Multichannel Fourier-transform infrared spectrometer,” Appl. Opt. 31, 6096–6101 (1992).
    [CrossRef] [PubMed]
  9. R. G. Sellar, J. B. Rafert, “Effects of aberrations on spatially modulated Fourier transform spectrometers,” Opt. Eng. 33, 3087–3092 (1994).
    [CrossRef]
  10. R. G. Sellar, J. B. Rafert, “Fourier-transform imaging spectrometer with a single toroidal optic,” Appl. Opt. 34, 2931–2933 (1995).
    [CrossRef] [PubMed]

1999 (1)

S. Prunet, B. Journet, G. Fortunato, “Exact calculation of the optical path difference and description of a new birefringent interferometer,” Opt. Eng. 38, 983–990 (1999).
[CrossRef]

1996 (1)

B. A. Patterson, M. Antoni, J. Courtial, A. J. Duncan, W. Sibbett, M. J. Padgett, “An ultra-compact static Fourier-transform spectrometer based on a single birefringent component,” Opt. Commun. 130, 1–6 (1996).
[CrossRef]

1995 (4)

M. J. Padgett, A. R. Harvey, “A static Fourier-transform spectrometer based on Wollaston prisms,” Rev. Sci. Instrum. 66, 2807–2811 (1995).
[CrossRef]

R. G. Sellar, J. B. Rafert, “Fourier-transform imaging spectrometer with a single toroidal optic,” Appl. Opt. 34, 2931–2933 (1995).
[CrossRef] [PubMed]

J. Rafert, R. G. Sellar, J. H. Blatt, “Monolithic Fourier-transform imaging spectrometer,” Appl. Opt. 34, 7228–7230 (1995).
[CrossRef] [PubMed]

M. J. Persky, “A review of space infrared Fourier transform spectrometers for remote sensing,” Rev. Sci. Instrum. 66, 4763–4797 (1995).
[CrossRef]

1994 (1)

R. G. Sellar, J. B. Rafert, “Effects of aberrations on spatially modulated Fourier transform spectrometers,” Opt. Eng. 33, 3087–3092 (1994).
[CrossRef]

1992 (1)

Antoni, M.

B. A. Patterson, M. Antoni, J. Courtial, A. J. Duncan, W. Sibbett, M. J. Padgett, “An ultra-compact static Fourier-transform spectrometer based on a single birefringent component,” Opt. Commun. 130, 1–6 (1996).
[CrossRef]

Blatt, J. H.

Butler, E. W.

L. J. Otten, E. W. Butler, “The design of an airborne Fourier transform visible hyperspectral imaging system for light aircraft environment remote sensing,” in Imaging Spectrometry, M. R. Descour, J. M. Mooney, D. L. Perry, L. Illing, eds., Proc. SPIE2480, 418–424 (1995).

Courtial, J.

B. A. Patterson, M. Antoni, J. Courtial, A. J. Duncan, W. Sibbett, M. J. Padgett, “An ultra-compact static Fourier-transform spectrometer based on a single birefringent component,” Opt. Commun. 130, 1–6 (1996).
[CrossRef]

Duncan, A. J.

B. A. Patterson, M. Antoni, J. Courtial, A. J. Duncan, W. Sibbett, M. J. Padgett, “An ultra-compact static Fourier-transform spectrometer based on a single birefringent component,” Opt. Commun. 130, 1–6 (1996).
[CrossRef]

Fortunato, G.

S. Prunet, B. Journet, G. Fortunato, “Exact calculation of the optical path difference and description of a new birefringent interferometer,” Opt. Eng. 38, 983–990 (1999).
[CrossRef]

Hammer, P. D.

P. D. Hammer, F. P. J. Valcro, D. L. Peterson, “An imaging interferometer for terrestrial remote sensing,” in Imaging Spectrometry of the Terrestrial Environment, G. Vane, ed., Proc. SPIE1937, 244–255 (1993).

Harvey, A. R.

M. J. Padgett, A. R. Harvey, “A static Fourier-transform spectrometer based on Wollaston prisms,” Rev. Sci. Instrum. 66, 2807–2811 (1995).
[CrossRef]

Hashimoto, M.

Journet, B.

S. Prunet, B. Journet, G. Fortunato, “Exact calculation of the optical path difference and description of a new birefringent interferometer,” Opt. Eng. 38, 983–990 (1999).
[CrossRef]

Kawata, S.

Otten, L. J.

L. J. Otten, E. W. Butler, “The design of an airborne Fourier transform visible hyperspectral imaging system for light aircraft environment remote sensing,” in Imaging Spectrometry, M. R. Descour, J. M. Mooney, D. L. Perry, L. Illing, eds., Proc. SPIE2480, 418–424 (1995).

Padgett, M. J.

B. A. Patterson, M. Antoni, J. Courtial, A. J. Duncan, W. Sibbett, M. J. Padgett, “An ultra-compact static Fourier-transform spectrometer based on a single birefringent component,” Opt. Commun. 130, 1–6 (1996).
[CrossRef]

M. J. Padgett, A. R. Harvey, “A static Fourier-transform spectrometer based on Wollaston prisms,” Rev. Sci. Instrum. 66, 2807–2811 (1995).
[CrossRef]

Patterson, B. A.

B. A. Patterson, M. Antoni, J. Courtial, A. J. Duncan, W. Sibbett, M. J. Padgett, “An ultra-compact static Fourier-transform spectrometer based on a single birefringent component,” Opt. Commun. 130, 1–6 (1996).
[CrossRef]

Persky, M. J.

M. J. Persky, “A review of space infrared Fourier transform spectrometers for remote sensing,” Rev. Sci. Instrum. 66, 4763–4797 (1995).
[CrossRef]

Peterson, D. L.

P. D. Hammer, F. P. J. Valcro, D. L. Peterson, “An imaging interferometer for terrestrial remote sensing,” in Imaging Spectrometry of the Terrestrial Environment, G. Vane, ed., Proc. SPIE1937, 244–255 (1993).

Prunet, S.

S. Prunet, B. Journet, G. Fortunato, “Exact calculation of the optical path difference and description of a new birefringent interferometer,” Opt. Eng. 38, 983–990 (1999).
[CrossRef]

Rafert, J.

Rafert, J. B.

R. G. Sellar, J. B. Rafert, “Fourier-transform imaging spectrometer with a single toroidal optic,” Appl. Opt. 34, 2931–2933 (1995).
[CrossRef] [PubMed]

R. G. Sellar, J. B. Rafert, “Effects of aberrations on spatially modulated Fourier transform spectrometers,” Opt. Eng. 33, 3087–3092 (1994).
[CrossRef]

Sellar, R. G.

Sibbett, W.

B. A. Patterson, M. Antoni, J. Courtial, A. J. Duncan, W. Sibbett, M. J. Padgett, “An ultra-compact static Fourier-transform spectrometer based on a single birefringent component,” Opt. Commun. 130, 1–6 (1996).
[CrossRef]

Valcro, F. P. J.

P. D. Hammer, F. P. J. Valcro, D. L. Peterson, “An imaging interferometer for terrestrial remote sensing,” in Imaging Spectrometry of the Terrestrial Environment, G. Vane, ed., Proc. SPIE1937, 244–255 (1993).

Appl. Opt. (3)

Opt. Commun. (1)

B. A. Patterson, M. Antoni, J. Courtial, A. J. Duncan, W. Sibbett, M. J. Padgett, “An ultra-compact static Fourier-transform spectrometer based on a single birefringent component,” Opt. Commun. 130, 1–6 (1996).
[CrossRef]

Opt. Eng. (2)

S. Prunet, B. Journet, G. Fortunato, “Exact calculation of the optical path difference and description of a new birefringent interferometer,” Opt. Eng. 38, 983–990 (1999).
[CrossRef]

R. G. Sellar, J. B. Rafert, “Effects of aberrations on spatially modulated Fourier transform spectrometers,” Opt. Eng. 33, 3087–3092 (1994).
[CrossRef]

Rev. Sci. Instrum. (2)

M. J. Persky, “A review of space infrared Fourier transform spectrometers for remote sensing,” Rev. Sci. Instrum. 66, 4763–4797 (1995).
[CrossRef]

M. J. Padgett, A. R. Harvey, “A static Fourier-transform spectrometer based on Wollaston prisms,” Rev. Sci. Instrum. 66, 2807–2811 (1995).
[CrossRef]

Other (2)

P. D. Hammer, F. P. J. Valcro, D. L. Peterson, “An imaging interferometer for terrestrial remote sensing,” in Imaging Spectrometry of the Terrestrial Environment, G. Vane, ed., Proc. SPIE1937, 244–255 (1993).

L. J. Otten, E. W. Butler, “The design of an airborne Fourier transform visible hyperspectral imaging system for light aircraft environment remote sensing,” in Imaging Spectrometry, M. R. Descour, J. M. Mooney, D. L. Perry, L. Illing, eds., Proc. SPIE2480, 418–424 (1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics