Abstract

We present a new differential absorption lidar (DIAL) method for atmospheric trace SO2 using multiwavelength curve fitting. With this method we use five wavelengths around a SO2 absorption peak and obtain SO2 and O3 concentrations by fitting their absorption cross sections to measured DIAL and null results. A SO2 concentration of 6 parts in 109 (ppb) was obtained for an altitude of 1050 m with 150-m range resolution. In addition, we optimized the wavelengths for dual-DIAL SO2 measurement and demonstrated a high sensitivity of <0.5 ppb with 300-m range resolution. Comparison of these two methods is also presented.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Hayami, Y. Ichikawa, “Development of hybrid LRT model to estimate sulfur deposition in Japan,” Water, Air, Soil Pollut. 85, 2015–2020 (1995).
  2. Y. Ichikawa, S. Fujita, “An analysis of wet deposition of sulfate using a trajectory model for East Asia,” Water, Air, Soil Pollut. 85, 1927–1932 (1995).
  3. K. Fredriksson, B. Galle, K. Nystrom, S. Svanberg, “Lidar system applied in atmospheric pollution monitoring,” Appl. Opt. 18, 2998–3003 (1979).
    [CrossRef] [PubMed]
  4. A. Egeback, K. Fredriksson, H. Hertz, “DIAL techniques for the control of sulfur dioxide emissions,” Appl. Opt. 23, 722–729 (1984).
    [CrossRef] [PubMed]
  5. H. Edner, K. Fredriksson, A. Sunesson, S. Svanberg, L. Uneus, W. Wendt, “Mobile remote sensing system for atmospheric monitoring,” Appl. Opt. 26, 4330–4338 (1987).
    [CrossRef] [PubMed]
  6. M. Beniston, J. P. Wolf, M. Beniston-Rebetez, H. J. Kölsch, P. Rairoux, L. Wöste, “Use of lidar measurements and numerical model in air pollution research,” J. Geophys. Res. 95, 9879–9894 (1990).
    [CrossRef]
  7. H. Edner, P. Ragnarson, S. Svanberg, E. Wallinder, R. Ferrara, R. Cioni, B. Raco, G. Taddeucci, “Total fluxes of sulfur dioxide from the Italian volcanoes Etna, Stromboli, and Vulcano measured by differential absorption lidar and passive differential optical absorption spectroscopy,” J. Geophys. Res. 99, 18827–18838 (1994).
    [CrossRef]
  8. G. Ancellet, G. Megie, J. Pelon, R. Capitini, D. Renaut, “Lidar measurements of sulfur dioxide and ozone in the boundary layer during the 1983 Fos Berre Campaign,” Atmos. Environ. 21, 2215–2226 (1987).
    [CrossRef]
  9. C. Weitkamp, U. B. Goers, J. Glauer, S. Köhler, P. Rairoux, F. Immler, L. Wöste, M. Ulbricht, D. Weidauer, “Laser remote sensing of sulfur dioxide, nitrogen dioxide, toluene, ozone, and dust in the industrial area of Cubatao (Brazil),” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1997), pp. 411–414.
    [CrossRef]
  10. Z. Wang, J. Zhou, H. Hu, Z. Gong, “Evaluation of dual differential absorption lidar based on Raman-shifted Nd:YAG or KrF laser for tropospheric ozone measurements,” Appl. Phys. B 62, 143–147 (1996).
    [CrossRef]
  11. T. Fukuchi, N. Goto, T. Fujii, K. Nemoto, “Error analysis of SO2 measurement by multiwavelength differential absorption lidar,” Opt. Eng. 38, 141–145 (1999).
    [CrossRef]
  12. T. Fujii, T. Fukuchi, N. Goto, K. Nemoto, N. Takeuchi, “Dual differential absorption lidar for the measurement of atmospheric SO2 of the order of parts in 109,” Appl. Opt. 40, 949–956 (2001).
    [CrossRef]
  13. T. Fukuchi, T. Fujii, N. Goto, K. Nemoto, N. Takeuchi, “Evaluation of DIAL measurement error by simultaneous DIAL and null profiling,” Opt. Eng. 40, 392–397 (2001).
    [CrossRef]
  14. P. Rambaldi, M. Douard, J.-P. Wolf, “New UV tunable sold-state lasers for lidar applications,” Appl. Phys. B 61, 117–120 (1995).
    [CrossRef]
  15. H. Hayami, Central Research Institute of Electric Power Industry (personal communication, 1997).
  16. D. J. Brassington, “Sulfur dioxide absorption cross-section measurements from 290 nm to 317 nm,” Appl. Opt. 20, 3774–3779 (1981).
    [CrossRef] [PubMed]
  17. M. J. T. Milton, P. T. Woods, “Pulse averaging methods for a laser remote monitoring system using atmospheric backscatter,” Appl. Opt. 26, 2598–2603 (1987).
    [CrossRef] [PubMed]
  18. S. Wada, K. Akagawa, H. Tashiro, “Electronically tuned Ti:sapphire laser,” Opt. Lett. 21, 731–733 (1996).
    [CrossRef] [PubMed]
  19. P. Rairoux, H. Schillinger, S. Niedermeier, M. Rodriguez, F. Ronneberger, R. Sauerbrey, B. Stein, D. Waite, C. Wedekind, H. Wille, L. Wöste, C. Ziener, “Remote sensing of the atmosphere using ultrashort laser pulses,” Appl. Phys. B 71, 573–580 (2000).
    [CrossRef]

2001 (2)

T. Fujii, T. Fukuchi, N. Goto, K. Nemoto, N. Takeuchi, “Dual differential absorption lidar for the measurement of atmospheric SO2 of the order of parts in 109,” Appl. Opt. 40, 949–956 (2001).
[CrossRef]

T. Fukuchi, T. Fujii, N. Goto, K. Nemoto, N. Takeuchi, “Evaluation of DIAL measurement error by simultaneous DIAL and null profiling,” Opt. Eng. 40, 392–397 (2001).
[CrossRef]

2000 (1)

P. Rairoux, H. Schillinger, S. Niedermeier, M. Rodriguez, F. Ronneberger, R. Sauerbrey, B. Stein, D. Waite, C. Wedekind, H. Wille, L. Wöste, C. Ziener, “Remote sensing of the atmosphere using ultrashort laser pulses,” Appl. Phys. B 71, 573–580 (2000).
[CrossRef]

1999 (1)

T. Fukuchi, N. Goto, T. Fujii, K. Nemoto, “Error analysis of SO2 measurement by multiwavelength differential absorption lidar,” Opt. Eng. 38, 141–145 (1999).
[CrossRef]

1996 (2)

S. Wada, K. Akagawa, H. Tashiro, “Electronically tuned Ti:sapphire laser,” Opt. Lett. 21, 731–733 (1996).
[CrossRef] [PubMed]

Z. Wang, J. Zhou, H. Hu, Z. Gong, “Evaluation of dual differential absorption lidar based on Raman-shifted Nd:YAG or KrF laser for tropospheric ozone measurements,” Appl. Phys. B 62, 143–147 (1996).
[CrossRef]

1995 (3)

H. Hayami, Y. Ichikawa, “Development of hybrid LRT model to estimate sulfur deposition in Japan,” Water, Air, Soil Pollut. 85, 2015–2020 (1995).

Y. Ichikawa, S. Fujita, “An analysis of wet deposition of sulfate using a trajectory model for East Asia,” Water, Air, Soil Pollut. 85, 1927–1932 (1995).

P. Rambaldi, M. Douard, J.-P. Wolf, “New UV tunable sold-state lasers for lidar applications,” Appl. Phys. B 61, 117–120 (1995).
[CrossRef]

1994 (1)

H. Edner, P. Ragnarson, S. Svanberg, E. Wallinder, R. Ferrara, R. Cioni, B. Raco, G. Taddeucci, “Total fluxes of sulfur dioxide from the Italian volcanoes Etna, Stromboli, and Vulcano measured by differential absorption lidar and passive differential optical absorption spectroscopy,” J. Geophys. Res. 99, 18827–18838 (1994).
[CrossRef]

1990 (1)

M. Beniston, J. P. Wolf, M. Beniston-Rebetez, H. J. Kölsch, P. Rairoux, L. Wöste, “Use of lidar measurements and numerical model in air pollution research,” J. Geophys. Res. 95, 9879–9894 (1990).
[CrossRef]

1987 (3)

1984 (1)

1981 (1)

1979 (1)

Akagawa, K.

Ancellet, G.

G. Ancellet, G. Megie, J. Pelon, R. Capitini, D. Renaut, “Lidar measurements of sulfur dioxide and ozone in the boundary layer during the 1983 Fos Berre Campaign,” Atmos. Environ. 21, 2215–2226 (1987).
[CrossRef]

Beniston, M.

M. Beniston, J. P. Wolf, M. Beniston-Rebetez, H. J. Kölsch, P. Rairoux, L. Wöste, “Use of lidar measurements and numerical model in air pollution research,” J. Geophys. Res. 95, 9879–9894 (1990).
[CrossRef]

Beniston-Rebetez, M.

M. Beniston, J. P. Wolf, M. Beniston-Rebetez, H. J. Kölsch, P. Rairoux, L. Wöste, “Use of lidar measurements and numerical model in air pollution research,” J. Geophys. Res. 95, 9879–9894 (1990).
[CrossRef]

Brassington, D. J.

Capitini, R.

G. Ancellet, G. Megie, J. Pelon, R. Capitini, D. Renaut, “Lidar measurements of sulfur dioxide and ozone in the boundary layer during the 1983 Fos Berre Campaign,” Atmos. Environ. 21, 2215–2226 (1987).
[CrossRef]

Cioni, R.

H. Edner, P. Ragnarson, S. Svanberg, E. Wallinder, R. Ferrara, R. Cioni, B. Raco, G. Taddeucci, “Total fluxes of sulfur dioxide from the Italian volcanoes Etna, Stromboli, and Vulcano measured by differential absorption lidar and passive differential optical absorption spectroscopy,” J. Geophys. Res. 99, 18827–18838 (1994).
[CrossRef]

Douard, M.

P. Rambaldi, M. Douard, J.-P. Wolf, “New UV tunable sold-state lasers for lidar applications,” Appl. Phys. B 61, 117–120 (1995).
[CrossRef]

Edner, H.

H. Edner, P. Ragnarson, S. Svanberg, E. Wallinder, R. Ferrara, R. Cioni, B. Raco, G. Taddeucci, “Total fluxes of sulfur dioxide from the Italian volcanoes Etna, Stromboli, and Vulcano measured by differential absorption lidar and passive differential optical absorption spectroscopy,” J. Geophys. Res. 99, 18827–18838 (1994).
[CrossRef]

H. Edner, K. Fredriksson, A. Sunesson, S. Svanberg, L. Uneus, W. Wendt, “Mobile remote sensing system for atmospheric monitoring,” Appl. Opt. 26, 4330–4338 (1987).
[CrossRef] [PubMed]

Egeback, A.

Ferrara, R.

H. Edner, P. Ragnarson, S. Svanberg, E. Wallinder, R. Ferrara, R. Cioni, B. Raco, G. Taddeucci, “Total fluxes of sulfur dioxide from the Italian volcanoes Etna, Stromboli, and Vulcano measured by differential absorption lidar and passive differential optical absorption spectroscopy,” J. Geophys. Res. 99, 18827–18838 (1994).
[CrossRef]

Fredriksson, K.

Fujii, T.

T. Fukuchi, T. Fujii, N. Goto, K. Nemoto, N. Takeuchi, “Evaluation of DIAL measurement error by simultaneous DIAL and null profiling,” Opt. Eng. 40, 392–397 (2001).
[CrossRef]

T. Fujii, T. Fukuchi, N. Goto, K. Nemoto, N. Takeuchi, “Dual differential absorption lidar for the measurement of atmospheric SO2 of the order of parts in 109,” Appl. Opt. 40, 949–956 (2001).
[CrossRef]

T. Fukuchi, N. Goto, T. Fujii, K. Nemoto, “Error analysis of SO2 measurement by multiwavelength differential absorption lidar,” Opt. Eng. 38, 141–145 (1999).
[CrossRef]

Fujita, S.

Y. Ichikawa, S. Fujita, “An analysis of wet deposition of sulfate using a trajectory model for East Asia,” Water, Air, Soil Pollut. 85, 1927–1932 (1995).

Fukuchi, T.

T. Fujii, T. Fukuchi, N. Goto, K. Nemoto, N. Takeuchi, “Dual differential absorption lidar for the measurement of atmospheric SO2 of the order of parts in 109,” Appl. Opt. 40, 949–956 (2001).
[CrossRef]

T. Fukuchi, T. Fujii, N. Goto, K. Nemoto, N. Takeuchi, “Evaluation of DIAL measurement error by simultaneous DIAL and null profiling,” Opt. Eng. 40, 392–397 (2001).
[CrossRef]

T. Fukuchi, N. Goto, T. Fujii, K. Nemoto, “Error analysis of SO2 measurement by multiwavelength differential absorption lidar,” Opt. Eng. 38, 141–145 (1999).
[CrossRef]

Galle, B.

Glauer, J.

C. Weitkamp, U. B. Goers, J. Glauer, S. Köhler, P. Rairoux, F. Immler, L. Wöste, M. Ulbricht, D. Weidauer, “Laser remote sensing of sulfur dioxide, nitrogen dioxide, toluene, ozone, and dust in the industrial area of Cubatao (Brazil),” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1997), pp. 411–414.
[CrossRef]

Goers, U. B.

C. Weitkamp, U. B. Goers, J. Glauer, S. Köhler, P. Rairoux, F. Immler, L. Wöste, M. Ulbricht, D. Weidauer, “Laser remote sensing of sulfur dioxide, nitrogen dioxide, toluene, ozone, and dust in the industrial area of Cubatao (Brazil),” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1997), pp. 411–414.
[CrossRef]

Gong, Z.

Z. Wang, J. Zhou, H. Hu, Z. Gong, “Evaluation of dual differential absorption lidar based on Raman-shifted Nd:YAG or KrF laser for tropospheric ozone measurements,” Appl. Phys. B 62, 143–147 (1996).
[CrossRef]

Goto, N.

T. Fukuchi, T. Fujii, N. Goto, K. Nemoto, N. Takeuchi, “Evaluation of DIAL measurement error by simultaneous DIAL and null profiling,” Opt. Eng. 40, 392–397 (2001).
[CrossRef]

T. Fujii, T. Fukuchi, N. Goto, K. Nemoto, N. Takeuchi, “Dual differential absorption lidar for the measurement of atmospheric SO2 of the order of parts in 109,” Appl. Opt. 40, 949–956 (2001).
[CrossRef]

T. Fukuchi, N. Goto, T. Fujii, K. Nemoto, “Error analysis of SO2 measurement by multiwavelength differential absorption lidar,” Opt. Eng. 38, 141–145 (1999).
[CrossRef]

Hayami, H.

H. Hayami, Y. Ichikawa, “Development of hybrid LRT model to estimate sulfur deposition in Japan,” Water, Air, Soil Pollut. 85, 2015–2020 (1995).

H. Hayami, Central Research Institute of Electric Power Industry (personal communication, 1997).

Hertz, H.

Hu, H.

Z. Wang, J. Zhou, H. Hu, Z. Gong, “Evaluation of dual differential absorption lidar based on Raman-shifted Nd:YAG or KrF laser for tropospheric ozone measurements,” Appl. Phys. B 62, 143–147 (1996).
[CrossRef]

Ichikawa, Y.

H. Hayami, Y. Ichikawa, “Development of hybrid LRT model to estimate sulfur deposition in Japan,” Water, Air, Soil Pollut. 85, 2015–2020 (1995).

Y. Ichikawa, S. Fujita, “An analysis of wet deposition of sulfate using a trajectory model for East Asia,” Water, Air, Soil Pollut. 85, 1927–1932 (1995).

Immler, F.

C. Weitkamp, U. B. Goers, J. Glauer, S. Köhler, P. Rairoux, F. Immler, L. Wöste, M. Ulbricht, D. Weidauer, “Laser remote sensing of sulfur dioxide, nitrogen dioxide, toluene, ozone, and dust in the industrial area of Cubatao (Brazil),” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1997), pp. 411–414.
[CrossRef]

Köhler, S.

C. Weitkamp, U. B. Goers, J. Glauer, S. Köhler, P. Rairoux, F. Immler, L. Wöste, M. Ulbricht, D. Weidauer, “Laser remote sensing of sulfur dioxide, nitrogen dioxide, toluene, ozone, and dust in the industrial area of Cubatao (Brazil),” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1997), pp. 411–414.
[CrossRef]

Kölsch, H. J.

M. Beniston, J. P. Wolf, M. Beniston-Rebetez, H. J. Kölsch, P. Rairoux, L. Wöste, “Use of lidar measurements and numerical model in air pollution research,” J. Geophys. Res. 95, 9879–9894 (1990).
[CrossRef]

Megie, G.

G. Ancellet, G. Megie, J. Pelon, R. Capitini, D. Renaut, “Lidar measurements of sulfur dioxide and ozone in the boundary layer during the 1983 Fos Berre Campaign,” Atmos. Environ. 21, 2215–2226 (1987).
[CrossRef]

Milton, M. J. T.

Nemoto, K.

T. Fukuchi, T. Fujii, N. Goto, K. Nemoto, N. Takeuchi, “Evaluation of DIAL measurement error by simultaneous DIAL and null profiling,” Opt. Eng. 40, 392–397 (2001).
[CrossRef]

T. Fujii, T. Fukuchi, N. Goto, K. Nemoto, N. Takeuchi, “Dual differential absorption lidar for the measurement of atmospheric SO2 of the order of parts in 109,” Appl. Opt. 40, 949–956 (2001).
[CrossRef]

T. Fukuchi, N. Goto, T. Fujii, K. Nemoto, “Error analysis of SO2 measurement by multiwavelength differential absorption lidar,” Opt. Eng. 38, 141–145 (1999).
[CrossRef]

Niedermeier, S.

P. Rairoux, H. Schillinger, S. Niedermeier, M. Rodriguez, F. Ronneberger, R. Sauerbrey, B. Stein, D. Waite, C. Wedekind, H. Wille, L. Wöste, C. Ziener, “Remote sensing of the atmosphere using ultrashort laser pulses,” Appl. Phys. B 71, 573–580 (2000).
[CrossRef]

Nystrom, K.

Pelon, J.

G. Ancellet, G. Megie, J. Pelon, R. Capitini, D. Renaut, “Lidar measurements of sulfur dioxide and ozone in the boundary layer during the 1983 Fos Berre Campaign,” Atmos. Environ. 21, 2215–2226 (1987).
[CrossRef]

Raco, B.

H. Edner, P. Ragnarson, S. Svanberg, E. Wallinder, R. Ferrara, R. Cioni, B. Raco, G. Taddeucci, “Total fluxes of sulfur dioxide from the Italian volcanoes Etna, Stromboli, and Vulcano measured by differential absorption lidar and passive differential optical absorption spectroscopy,” J. Geophys. Res. 99, 18827–18838 (1994).
[CrossRef]

Ragnarson, P.

H. Edner, P. Ragnarson, S. Svanberg, E. Wallinder, R. Ferrara, R. Cioni, B. Raco, G. Taddeucci, “Total fluxes of sulfur dioxide from the Italian volcanoes Etna, Stromboli, and Vulcano measured by differential absorption lidar and passive differential optical absorption spectroscopy,” J. Geophys. Res. 99, 18827–18838 (1994).
[CrossRef]

Rairoux, P.

P. Rairoux, H. Schillinger, S. Niedermeier, M. Rodriguez, F. Ronneberger, R. Sauerbrey, B. Stein, D. Waite, C. Wedekind, H. Wille, L. Wöste, C. Ziener, “Remote sensing of the atmosphere using ultrashort laser pulses,” Appl. Phys. B 71, 573–580 (2000).
[CrossRef]

M. Beniston, J. P. Wolf, M. Beniston-Rebetez, H. J. Kölsch, P. Rairoux, L. Wöste, “Use of lidar measurements and numerical model in air pollution research,” J. Geophys. Res. 95, 9879–9894 (1990).
[CrossRef]

C. Weitkamp, U. B. Goers, J. Glauer, S. Köhler, P. Rairoux, F. Immler, L. Wöste, M. Ulbricht, D. Weidauer, “Laser remote sensing of sulfur dioxide, nitrogen dioxide, toluene, ozone, and dust in the industrial area of Cubatao (Brazil),” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1997), pp. 411–414.
[CrossRef]

Rambaldi, P.

P. Rambaldi, M. Douard, J.-P. Wolf, “New UV tunable sold-state lasers for lidar applications,” Appl. Phys. B 61, 117–120 (1995).
[CrossRef]

Renaut, D.

G. Ancellet, G. Megie, J. Pelon, R. Capitini, D. Renaut, “Lidar measurements of sulfur dioxide and ozone in the boundary layer during the 1983 Fos Berre Campaign,” Atmos. Environ. 21, 2215–2226 (1987).
[CrossRef]

Rodriguez, M.

P. Rairoux, H. Schillinger, S. Niedermeier, M. Rodriguez, F. Ronneberger, R. Sauerbrey, B. Stein, D. Waite, C. Wedekind, H. Wille, L. Wöste, C. Ziener, “Remote sensing of the atmosphere using ultrashort laser pulses,” Appl. Phys. B 71, 573–580 (2000).
[CrossRef]

Ronneberger, F.

P. Rairoux, H. Schillinger, S. Niedermeier, M. Rodriguez, F. Ronneberger, R. Sauerbrey, B. Stein, D. Waite, C. Wedekind, H. Wille, L. Wöste, C. Ziener, “Remote sensing of the atmosphere using ultrashort laser pulses,” Appl. Phys. B 71, 573–580 (2000).
[CrossRef]

Sauerbrey, R.

P. Rairoux, H. Schillinger, S. Niedermeier, M. Rodriguez, F. Ronneberger, R. Sauerbrey, B. Stein, D. Waite, C. Wedekind, H. Wille, L. Wöste, C. Ziener, “Remote sensing of the atmosphere using ultrashort laser pulses,” Appl. Phys. B 71, 573–580 (2000).
[CrossRef]

Schillinger, H.

P. Rairoux, H. Schillinger, S. Niedermeier, M. Rodriguez, F. Ronneberger, R. Sauerbrey, B. Stein, D. Waite, C. Wedekind, H. Wille, L. Wöste, C. Ziener, “Remote sensing of the atmosphere using ultrashort laser pulses,” Appl. Phys. B 71, 573–580 (2000).
[CrossRef]

Stein, B.

P. Rairoux, H. Schillinger, S. Niedermeier, M. Rodriguez, F. Ronneberger, R. Sauerbrey, B. Stein, D. Waite, C. Wedekind, H. Wille, L. Wöste, C. Ziener, “Remote sensing of the atmosphere using ultrashort laser pulses,” Appl. Phys. B 71, 573–580 (2000).
[CrossRef]

Sunesson, A.

Svanberg, S.

H. Edner, P. Ragnarson, S. Svanberg, E. Wallinder, R. Ferrara, R. Cioni, B. Raco, G. Taddeucci, “Total fluxes of sulfur dioxide from the Italian volcanoes Etna, Stromboli, and Vulcano measured by differential absorption lidar and passive differential optical absorption spectroscopy,” J. Geophys. Res. 99, 18827–18838 (1994).
[CrossRef]

H. Edner, K. Fredriksson, A. Sunesson, S. Svanberg, L. Uneus, W. Wendt, “Mobile remote sensing system for atmospheric monitoring,” Appl. Opt. 26, 4330–4338 (1987).
[CrossRef] [PubMed]

K. Fredriksson, B. Galle, K. Nystrom, S. Svanberg, “Lidar system applied in atmospheric pollution monitoring,” Appl. Opt. 18, 2998–3003 (1979).
[CrossRef] [PubMed]

Taddeucci, G.

H. Edner, P. Ragnarson, S. Svanberg, E. Wallinder, R. Ferrara, R. Cioni, B. Raco, G. Taddeucci, “Total fluxes of sulfur dioxide from the Italian volcanoes Etna, Stromboli, and Vulcano measured by differential absorption lidar and passive differential optical absorption spectroscopy,” J. Geophys. Res. 99, 18827–18838 (1994).
[CrossRef]

Takeuchi, N.

T. Fukuchi, T. Fujii, N. Goto, K. Nemoto, N. Takeuchi, “Evaluation of DIAL measurement error by simultaneous DIAL and null profiling,” Opt. Eng. 40, 392–397 (2001).
[CrossRef]

T. Fujii, T. Fukuchi, N. Goto, K. Nemoto, N. Takeuchi, “Dual differential absorption lidar for the measurement of atmospheric SO2 of the order of parts in 109,” Appl. Opt. 40, 949–956 (2001).
[CrossRef]

Tashiro, H.

Ulbricht, M.

C. Weitkamp, U. B. Goers, J. Glauer, S. Köhler, P. Rairoux, F. Immler, L. Wöste, M. Ulbricht, D. Weidauer, “Laser remote sensing of sulfur dioxide, nitrogen dioxide, toluene, ozone, and dust in the industrial area of Cubatao (Brazil),” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1997), pp. 411–414.
[CrossRef]

Uneus, L.

Wada, S.

Waite, D.

P. Rairoux, H. Schillinger, S. Niedermeier, M. Rodriguez, F. Ronneberger, R. Sauerbrey, B. Stein, D. Waite, C. Wedekind, H. Wille, L. Wöste, C. Ziener, “Remote sensing of the atmosphere using ultrashort laser pulses,” Appl. Phys. B 71, 573–580 (2000).
[CrossRef]

Wallinder, E.

H. Edner, P. Ragnarson, S. Svanberg, E. Wallinder, R. Ferrara, R. Cioni, B. Raco, G. Taddeucci, “Total fluxes of sulfur dioxide from the Italian volcanoes Etna, Stromboli, and Vulcano measured by differential absorption lidar and passive differential optical absorption spectroscopy,” J. Geophys. Res. 99, 18827–18838 (1994).
[CrossRef]

Wang, Z.

Z. Wang, J. Zhou, H. Hu, Z. Gong, “Evaluation of dual differential absorption lidar based on Raman-shifted Nd:YAG or KrF laser for tropospheric ozone measurements,” Appl. Phys. B 62, 143–147 (1996).
[CrossRef]

Wedekind, C.

P. Rairoux, H. Schillinger, S. Niedermeier, M. Rodriguez, F. Ronneberger, R. Sauerbrey, B. Stein, D. Waite, C. Wedekind, H. Wille, L. Wöste, C. Ziener, “Remote sensing of the atmosphere using ultrashort laser pulses,” Appl. Phys. B 71, 573–580 (2000).
[CrossRef]

Weidauer, D.

C. Weitkamp, U. B. Goers, J. Glauer, S. Köhler, P. Rairoux, F. Immler, L. Wöste, M. Ulbricht, D. Weidauer, “Laser remote sensing of sulfur dioxide, nitrogen dioxide, toluene, ozone, and dust in the industrial area of Cubatao (Brazil),” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1997), pp. 411–414.
[CrossRef]

Weitkamp, C.

C. Weitkamp, U. B. Goers, J. Glauer, S. Köhler, P. Rairoux, F. Immler, L. Wöste, M. Ulbricht, D. Weidauer, “Laser remote sensing of sulfur dioxide, nitrogen dioxide, toluene, ozone, and dust in the industrial area of Cubatao (Brazil),” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1997), pp. 411–414.
[CrossRef]

Wendt, W.

Wille, H.

P. Rairoux, H. Schillinger, S. Niedermeier, M. Rodriguez, F. Ronneberger, R. Sauerbrey, B. Stein, D. Waite, C. Wedekind, H. Wille, L. Wöste, C. Ziener, “Remote sensing of the atmosphere using ultrashort laser pulses,” Appl. Phys. B 71, 573–580 (2000).
[CrossRef]

Wolf, J. P.

M. Beniston, J. P. Wolf, M. Beniston-Rebetez, H. J. Kölsch, P. Rairoux, L. Wöste, “Use of lidar measurements and numerical model in air pollution research,” J. Geophys. Res. 95, 9879–9894 (1990).
[CrossRef]

Wolf, J.-P.

P. Rambaldi, M. Douard, J.-P. Wolf, “New UV tunable sold-state lasers for lidar applications,” Appl. Phys. B 61, 117–120 (1995).
[CrossRef]

Woods, P. T.

Wöste, L.

P. Rairoux, H. Schillinger, S. Niedermeier, M. Rodriguez, F. Ronneberger, R. Sauerbrey, B. Stein, D. Waite, C. Wedekind, H. Wille, L. Wöste, C. Ziener, “Remote sensing of the atmosphere using ultrashort laser pulses,” Appl. Phys. B 71, 573–580 (2000).
[CrossRef]

M. Beniston, J. P. Wolf, M. Beniston-Rebetez, H. J. Kölsch, P. Rairoux, L. Wöste, “Use of lidar measurements and numerical model in air pollution research,” J. Geophys. Res. 95, 9879–9894 (1990).
[CrossRef]

C. Weitkamp, U. B. Goers, J. Glauer, S. Köhler, P. Rairoux, F. Immler, L. Wöste, M. Ulbricht, D. Weidauer, “Laser remote sensing of sulfur dioxide, nitrogen dioxide, toluene, ozone, and dust in the industrial area of Cubatao (Brazil),” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1997), pp. 411–414.
[CrossRef]

Zhou, J.

Z. Wang, J. Zhou, H. Hu, Z. Gong, “Evaluation of dual differential absorption lidar based on Raman-shifted Nd:YAG or KrF laser for tropospheric ozone measurements,” Appl. Phys. B 62, 143–147 (1996).
[CrossRef]

Ziener, C.

P. Rairoux, H. Schillinger, S. Niedermeier, M. Rodriguez, F. Ronneberger, R. Sauerbrey, B. Stein, D. Waite, C. Wedekind, H. Wille, L. Wöste, C. Ziener, “Remote sensing of the atmosphere using ultrashort laser pulses,” Appl. Phys. B 71, 573–580 (2000).
[CrossRef]

Appl. Opt. (6)

Appl. Phys. B (3)

P. Rambaldi, M. Douard, J.-P. Wolf, “New UV tunable sold-state lasers for lidar applications,” Appl. Phys. B 61, 117–120 (1995).
[CrossRef]

Z. Wang, J. Zhou, H. Hu, Z. Gong, “Evaluation of dual differential absorption lidar based on Raman-shifted Nd:YAG or KrF laser for tropospheric ozone measurements,” Appl. Phys. B 62, 143–147 (1996).
[CrossRef]

P. Rairoux, H. Schillinger, S. Niedermeier, M. Rodriguez, F. Ronneberger, R. Sauerbrey, B. Stein, D. Waite, C. Wedekind, H. Wille, L. Wöste, C. Ziener, “Remote sensing of the atmosphere using ultrashort laser pulses,” Appl. Phys. B 71, 573–580 (2000).
[CrossRef]

Atmos. Environ. (1)

G. Ancellet, G. Megie, J. Pelon, R. Capitini, D. Renaut, “Lidar measurements of sulfur dioxide and ozone in the boundary layer during the 1983 Fos Berre Campaign,” Atmos. Environ. 21, 2215–2226 (1987).
[CrossRef]

J. Geophys. Res. (2)

M. Beniston, J. P. Wolf, M. Beniston-Rebetez, H. J. Kölsch, P. Rairoux, L. Wöste, “Use of lidar measurements and numerical model in air pollution research,” J. Geophys. Res. 95, 9879–9894 (1990).
[CrossRef]

H. Edner, P. Ragnarson, S. Svanberg, E. Wallinder, R. Ferrara, R. Cioni, B. Raco, G. Taddeucci, “Total fluxes of sulfur dioxide from the Italian volcanoes Etna, Stromboli, and Vulcano measured by differential absorption lidar and passive differential optical absorption spectroscopy,” J. Geophys. Res. 99, 18827–18838 (1994).
[CrossRef]

Opt. Eng. (2)

T. Fukuchi, N. Goto, T. Fujii, K. Nemoto, “Error analysis of SO2 measurement by multiwavelength differential absorption lidar,” Opt. Eng. 38, 141–145 (1999).
[CrossRef]

T. Fukuchi, T. Fujii, N. Goto, K. Nemoto, N. Takeuchi, “Evaluation of DIAL measurement error by simultaneous DIAL and null profiling,” Opt. Eng. 40, 392–397 (2001).
[CrossRef]

Opt. Lett. (1)

Water, Air, Soil Pollut. (2)

H. Hayami, Y. Ichikawa, “Development of hybrid LRT model to estimate sulfur deposition in Japan,” Water, Air, Soil Pollut. 85, 2015–2020 (1995).

Y. Ichikawa, S. Fujita, “An analysis of wet deposition of sulfate using a trajectory model for East Asia,” Water, Air, Soil Pollut. 85, 1927–1932 (1995).

Other (2)

C. Weitkamp, U. B. Goers, J. Glauer, S. Köhler, P. Rairoux, F. Immler, L. Wöste, M. Ulbricht, D. Weidauer, “Laser remote sensing of sulfur dioxide, nitrogen dioxide, toluene, ozone, and dust in the industrial area of Cubatao (Brazil),” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1997), pp. 411–414.
[CrossRef]

H. Hayami, Central Research Institute of Electric Power Industry (personal communication, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Block diagram of MDIAL system. SHG, second-harmonic generation.

Fig. 2
Fig. 2

Absorption cross sections of SO2 and O3 and the wavelengths used in the curve-fitting method for SO2.

Fig. 3
Fig. 3

S values versus λ b in the curve-fitting method for SO2 measurement at the altitude of 1050 and 1500 m. λ a is fixed at 299.70 nm and treated as the off wavelength. Because the absorption cross sections of SO2 at 299.70 and 301.10 nm are equal, the difference in S value at these two wavelengths is due to O3 and aerosols.

Fig. 4
Fig. 4

Curve fitting to the SO2 measurement results for the altitude 1050 m. From curve fitting, concentrations of SO2 and O3 are estimated to be 6 and 60 ppb, respectively. *, S value versus λ b at the altitude of 1050 m shown in Fig. 3 without error bars; , corrected S value by O3 effect; ○, curve fitting of SO2 absorption cross section.

Fig. 5
Fig. 5

Absorption cross sections of SO2 and O3 and wavelengths used in dual DIAL for SO2.

Fig. 6
Fig. 6

SO2 concentration profiles obtained by conventional two-wavelength DIAL and three-wavelength dual DIAL, with 300-m range resolution. (a) 3:29–4:50 JST on 5 February 2000; (b) 17:25–18:49 JST on 12 February 2000. The two-wavelength DIAL profiles show erroneous values because of the interference of O3, which is removed in the dual-DIAL profiles. ○, DIAL measurements (DIAL 1) using dye laser 1; ×, DIAL measurements (DIAL 1) using dye laser 2; *, dual-DIAL measurements using dye lasers 1 and 2.

Tables (2)

Tables Icon

Table 1 Laser Wavelengths used for the Multiwavelength Curve-Fitting Method and the Wavelength-Optimized Dual DIAL

Tables Icon

Table 2 Averaged Errors of SO2 Concentration Measurement by Conventional Two-Wavelength DIAL and Three-Wavelength Dual DIAL

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Si=1m ei ln NR, λiNR+ΔR, λ1=2ΔRΔσ0n+Δαx,
Δσ0=i=1m eiσ0λi,  Δαx=i=1m eiαxλi.
EB=12ΔσΔλλon4-κddRS-1S,

Metrics