Abstract

Using phase-matched third-harmonic generation we determine the effective nonlinear susceptibilities in Hg2Cl2 (Calomel) to |χeff,I3| = 4.5 × 10-22 m2V-2 and |χeff,II3| = 9.7 × 10-22m2V-2 for type I and type II phase matching, respectively. The type III phase matching uses the same tensor components as type I and is deduced to be |χeff,III3| ≅ 1.5 × 10-22m2V-2. The effective third-order susceptibilities of Hg2Cl2 are two orders of magnitude higher than those of CaCO3, and the tensor components χ11 - 3χ18 exceed the components of ADP by a factor of 5. These measurements demonstrate that Calomel might be a promising material to be used for nonlinear optical devices.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Barta, J. Gregora, J. Trnka, “Kristalle der Halogenide des einwertigen Quecksilbers und ihre optischen Grundeigenschaften,” Krist. Tech. 12, 33–39 (1977).
    [CrossRef]
  2. H. H. Sample, K. A. McCarthy, C. Barta, E. Kostal, M. Klima, C. Barta, “Zero optical power in mercurous chloride crystals,” Opt. Commun. 70, 325–326 (1989).
    [CrossRef]
  3. Z. B. Perekalina, C. Barta, I. Gretora, A. B. Wasiljew, I. D. Kislowskij, “Dichroism and birefringence of Calomel through all regions of its transmittance,” Opt. Spectrosc. (USSR) 42, 653–655 (1977).
  4. T. Osaka, “Far-infrared absorption spectra of mercurous halides,” J. Chem. Phys 54, 863–867 (1971).
    [CrossRef]
  5. A. Bohun, M. Rozsival, F. Brabec, “Ultraviolet absorption of mercurous halides,” Phys. Status Solidi B 45, K85–K87 (1971).
    [CrossRef]
  6. I. Pelant, M. N. Popova, J. Hála, M. Ambroz, V. Lhotská, K. Vacek, “Two-photon absorption and energy band structure of orthorhombic Hg2Cl2 crystals,” Czech. J. Phys. B 37, 1183–1197 (1987).
    [CrossRef]
  7. P. N. Butcher, D. Cotter, The Elements of Nonlinear Optics, Vol. 9 of Cambridge Studies in Modern Optics, P. L. Knight, W. J. Firth, eds. (Cambridge U. Press, Cambridge, 1990).
    [CrossRef]
  8. A. Penzkofer, F. Ossig, P. Qiu, “Picosecond third-harmonic light generation in calcite,” Appl. Phys. B 47, 71–81 (1988).
    [CrossRef]
  9. J. A. Armstrong, N. Bloembergen, J. Ducuing, P. S. Pershan, “Interaction between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1940 (1962).
    [CrossRef]
  10. J. E. Midwinter, J. Warner, “The effects of phase matching method and of crystal symmetry on the polar dependence of third-order nonlinear optical polarization,” Brit. J. Appl. Phys. 16, 1667–1674 (1965).
    [CrossRef]
  11. C. Barta, “Crystal growth of Hg2X2,” in Symposium on Mercury (I) Halides, Liblice, (Vyzkumny ustav zvukove, Obrazove a reprodukcni techniky, Prague, 1976), pp. 13–18.
  12. Crystals were grown by the authors but were also supplied by C. Barta, BBT Material Processing (Crystal Science and Technology Institute), Doubicka 11, 18400 Prague 8, Tschechei.
  13. P. Qiu, A. Penzkofer, “Picosecond third-harmonic light generation in β - BaB2O4,” Appl. Phys. B 45, 225–236 (1988).
    [CrossRef]
  14. E. Ejder, “Some optical properties of Hg2Cl2,” J. Phys. Chem. Solidi 31, 453–462 (1970).
    [CrossRef]
  15. S. Singh, CRC Handbook of Laser Science Technology, M. J. Weber, ed. (CRC Press, Boca Raton, Fla., 1986), vol. 3.

1989 (1)

H. H. Sample, K. A. McCarthy, C. Barta, E. Kostal, M. Klima, C. Barta, “Zero optical power in mercurous chloride crystals,” Opt. Commun. 70, 325–326 (1989).
[CrossRef]

1988 (2)

A. Penzkofer, F. Ossig, P. Qiu, “Picosecond third-harmonic light generation in calcite,” Appl. Phys. B 47, 71–81 (1988).
[CrossRef]

P. Qiu, A. Penzkofer, “Picosecond third-harmonic light generation in β - BaB2O4,” Appl. Phys. B 45, 225–236 (1988).
[CrossRef]

1987 (1)

I. Pelant, M. N. Popova, J. Hála, M. Ambroz, V. Lhotská, K. Vacek, “Two-photon absorption and energy band structure of orthorhombic Hg2Cl2 crystals,” Czech. J. Phys. B 37, 1183–1197 (1987).
[CrossRef]

1977 (2)

C. Barta, J. Gregora, J. Trnka, “Kristalle der Halogenide des einwertigen Quecksilbers und ihre optischen Grundeigenschaften,” Krist. Tech. 12, 33–39 (1977).
[CrossRef]

Z. B. Perekalina, C. Barta, I. Gretora, A. B. Wasiljew, I. D. Kislowskij, “Dichroism and birefringence of Calomel through all regions of its transmittance,” Opt. Spectrosc. (USSR) 42, 653–655 (1977).

1971 (2)

T. Osaka, “Far-infrared absorption spectra of mercurous halides,” J. Chem. Phys 54, 863–867 (1971).
[CrossRef]

A. Bohun, M. Rozsival, F. Brabec, “Ultraviolet absorption of mercurous halides,” Phys. Status Solidi B 45, K85–K87 (1971).
[CrossRef]

1970 (1)

E. Ejder, “Some optical properties of Hg2Cl2,” J. Phys. Chem. Solidi 31, 453–462 (1970).
[CrossRef]

1965 (1)

J. E. Midwinter, J. Warner, “The effects of phase matching method and of crystal symmetry on the polar dependence of third-order nonlinear optical polarization,” Brit. J. Appl. Phys. 16, 1667–1674 (1965).
[CrossRef]

1962 (1)

J. A. Armstrong, N. Bloembergen, J. Ducuing, P. S. Pershan, “Interaction between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1940 (1962).
[CrossRef]

Ambroz, M.

I. Pelant, M. N. Popova, J. Hála, M. Ambroz, V. Lhotská, K. Vacek, “Two-photon absorption and energy band structure of orthorhombic Hg2Cl2 crystals,” Czech. J. Phys. B 37, 1183–1197 (1987).
[CrossRef]

Armstrong, J. A.

J. A. Armstrong, N. Bloembergen, J. Ducuing, P. S. Pershan, “Interaction between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1940 (1962).
[CrossRef]

Barta, C.

H. H. Sample, K. A. McCarthy, C. Barta, E. Kostal, M. Klima, C. Barta, “Zero optical power in mercurous chloride crystals,” Opt. Commun. 70, 325–326 (1989).
[CrossRef]

H. H. Sample, K. A. McCarthy, C. Barta, E. Kostal, M. Klima, C. Barta, “Zero optical power in mercurous chloride crystals,” Opt. Commun. 70, 325–326 (1989).
[CrossRef]

C. Barta, J. Gregora, J. Trnka, “Kristalle der Halogenide des einwertigen Quecksilbers und ihre optischen Grundeigenschaften,” Krist. Tech. 12, 33–39 (1977).
[CrossRef]

Z. B. Perekalina, C. Barta, I. Gretora, A. B. Wasiljew, I. D. Kislowskij, “Dichroism and birefringence of Calomel through all regions of its transmittance,” Opt. Spectrosc. (USSR) 42, 653–655 (1977).

Bloembergen, N.

J. A. Armstrong, N. Bloembergen, J. Ducuing, P. S. Pershan, “Interaction between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1940 (1962).
[CrossRef]

Bohun, A.

A. Bohun, M. Rozsival, F. Brabec, “Ultraviolet absorption of mercurous halides,” Phys. Status Solidi B 45, K85–K87 (1971).
[CrossRef]

Brabec, F.

A. Bohun, M. Rozsival, F. Brabec, “Ultraviolet absorption of mercurous halides,” Phys. Status Solidi B 45, K85–K87 (1971).
[CrossRef]

Butcher, P. N.

P. N. Butcher, D. Cotter, The Elements of Nonlinear Optics, Vol. 9 of Cambridge Studies in Modern Optics, P. L. Knight, W. J. Firth, eds. (Cambridge U. Press, Cambridge, 1990).
[CrossRef]

Cotter, D.

P. N. Butcher, D. Cotter, The Elements of Nonlinear Optics, Vol. 9 of Cambridge Studies in Modern Optics, P. L. Knight, W. J. Firth, eds. (Cambridge U. Press, Cambridge, 1990).
[CrossRef]

Ducuing, J.

J. A. Armstrong, N. Bloembergen, J. Ducuing, P. S. Pershan, “Interaction between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1940 (1962).
[CrossRef]

Ejder, E.

E. Ejder, “Some optical properties of Hg2Cl2,” J. Phys. Chem. Solidi 31, 453–462 (1970).
[CrossRef]

Gregora, J.

C. Barta, J. Gregora, J. Trnka, “Kristalle der Halogenide des einwertigen Quecksilbers und ihre optischen Grundeigenschaften,” Krist. Tech. 12, 33–39 (1977).
[CrossRef]

Gretora, I.

Z. B. Perekalina, C. Barta, I. Gretora, A. B. Wasiljew, I. D. Kislowskij, “Dichroism and birefringence of Calomel through all regions of its transmittance,” Opt. Spectrosc. (USSR) 42, 653–655 (1977).

Hála, J.

I. Pelant, M. N. Popova, J. Hála, M. Ambroz, V. Lhotská, K. Vacek, “Two-photon absorption and energy band structure of orthorhombic Hg2Cl2 crystals,” Czech. J. Phys. B 37, 1183–1197 (1987).
[CrossRef]

Kislowskij, I. D.

Z. B. Perekalina, C. Barta, I. Gretora, A. B. Wasiljew, I. D. Kislowskij, “Dichroism and birefringence of Calomel through all regions of its transmittance,” Opt. Spectrosc. (USSR) 42, 653–655 (1977).

Klima, M.

H. H. Sample, K. A. McCarthy, C. Barta, E. Kostal, M. Klima, C. Barta, “Zero optical power in mercurous chloride crystals,” Opt. Commun. 70, 325–326 (1989).
[CrossRef]

Kostal, E.

H. H. Sample, K. A. McCarthy, C. Barta, E. Kostal, M. Klima, C. Barta, “Zero optical power in mercurous chloride crystals,” Opt. Commun. 70, 325–326 (1989).
[CrossRef]

Lhotská, V.

I. Pelant, M. N. Popova, J. Hála, M. Ambroz, V. Lhotská, K. Vacek, “Two-photon absorption and energy band structure of orthorhombic Hg2Cl2 crystals,” Czech. J. Phys. B 37, 1183–1197 (1987).
[CrossRef]

McCarthy, K. A.

H. H. Sample, K. A. McCarthy, C. Barta, E. Kostal, M. Klima, C. Barta, “Zero optical power in mercurous chloride crystals,” Opt. Commun. 70, 325–326 (1989).
[CrossRef]

Midwinter, J. E.

J. E. Midwinter, J. Warner, “The effects of phase matching method and of crystal symmetry on the polar dependence of third-order nonlinear optical polarization,” Brit. J. Appl. Phys. 16, 1667–1674 (1965).
[CrossRef]

Osaka, T.

T. Osaka, “Far-infrared absorption spectra of mercurous halides,” J. Chem. Phys 54, 863–867 (1971).
[CrossRef]

Ossig, F.

A. Penzkofer, F. Ossig, P. Qiu, “Picosecond third-harmonic light generation in calcite,” Appl. Phys. B 47, 71–81 (1988).
[CrossRef]

Pelant, I.

I. Pelant, M. N. Popova, J. Hála, M. Ambroz, V. Lhotská, K. Vacek, “Two-photon absorption and energy band structure of orthorhombic Hg2Cl2 crystals,” Czech. J. Phys. B 37, 1183–1197 (1987).
[CrossRef]

Penzkofer, A.

A. Penzkofer, F. Ossig, P. Qiu, “Picosecond third-harmonic light generation in calcite,” Appl. Phys. B 47, 71–81 (1988).
[CrossRef]

P. Qiu, A. Penzkofer, “Picosecond third-harmonic light generation in β - BaB2O4,” Appl. Phys. B 45, 225–236 (1988).
[CrossRef]

Perekalina, Z. B.

Z. B. Perekalina, C. Barta, I. Gretora, A. B. Wasiljew, I. D. Kislowskij, “Dichroism and birefringence of Calomel through all regions of its transmittance,” Opt. Spectrosc. (USSR) 42, 653–655 (1977).

Pershan, P. S.

J. A. Armstrong, N. Bloembergen, J. Ducuing, P. S. Pershan, “Interaction between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1940 (1962).
[CrossRef]

Popova, M. N.

I. Pelant, M. N. Popova, J. Hála, M. Ambroz, V. Lhotská, K. Vacek, “Two-photon absorption and energy band structure of orthorhombic Hg2Cl2 crystals,” Czech. J. Phys. B 37, 1183–1197 (1987).
[CrossRef]

Qiu, P.

P. Qiu, A. Penzkofer, “Picosecond third-harmonic light generation in β - BaB2O4,” Appl. Phys. B 45, 225–236 (1988).
[CrossRef]

A. Penzkofer, F. Ossig, P. Qiu, “Picosecond third-harmonic light generation in calcite,” Appl. Phys. B 47, 71–81 (1988).
[CrossRef]

Rozsival, M.

A. Bohun, M. Rozsival, F. Brabec, “Ultraviolet absorption of mercurous halides,” Phys. Status Solidi B 45, K85–K87 (1971).
[CrossRef]

Sample, H. H.

H. H. Sample, K. A. McCarthy, C. Barta, E. Kostal, M. Klima, C. Barta, “Zero optical power in mercurous chloride crystals,” Opt. Commun. 70, 325–326 (1989).
[CrossRef]

Singh, S.

S. Singh, CRC Handbook of Laser Science Technology, M. J. Weber, ed. (CRC Press, Boca Raton, Fla., 1986), vol. 3.

Trnka, J.

C. Barta, J. Gregora, J. Trnka, “Kristalle der Halogenide des einwertigen Quecksilbers und ihre optischen Grundeigenschaften,” Krist. Tech. 12, 33–39 (1977).
[CrossRef]

Vacek, K.

I. Pelant, M. N. Popova, J. Hála, M. Ambroz, V. Lhotská, K. Vacek, “Two-photon absorption and energy band structure of orthorhombic Hg2Cl2 crystals,” Czech. J. Phys. B 37, 1183–1197 (1987).
[CrossRef]

Warner, J.

J. E. Midwinter, J. Warner, “The effects of phase matching method and of crystal symmetry on the polar dependence of third-order nonlinear optical polarization,” Brit. J. Appl. Phys. 16, 1667–1674 (1965).
[CrossRef]

Wasiljew, A. B.

Z. B. Perekalina, C. Barta, I. Gretora, A. B. Wasiljew, I. D. Kislowskij, “Dichroism and birefringence of Calomel through all regions of its transmittance,” Opt. Spectrosc. (USSR) 42, 653–655 (1977).

Appl. Phys. B (2)

A. Penzkofer, F. Ossig, P. Qiu, “Picosecond third-harmonic light generation in calcite,” Appl. Phys. B 47, 71–81 (1988).
[CrossRef]

P. Qiu, A. Penzkofer, “Picosecond third-harmonic light generation in β - BaB2O4,” Appl. Phys. B 45, 225–236 (1988).
[CrossRef]

Brit. J. Appl. Phys. (1)

J. E. Midwinter, J. Warner, “The effects of phase matching method and of crystal symmetry on the polar dependence of third-order nonlinear optical polarization,” Brit. J. Appl. Phys. 16, 1667–1674 (1965).
[CrossRef]

Czech. J. Phys. B (1)

I. Pelant, M. N. Popova, J. Hála, M. Ambroz, V. Lhotská, K. Vacek, “Two-photon absorption and energy band structure of orthorhombic Hg2Cl2 crystals,” Czech. J. Phys. B 37, 1183–1197 (1987).
[CrossRef]

J. Chem. Phys (1)

T. Osaka, “Far-infrared absorption spectra of mercurous halides,” J. Chem. Phys 54, 863–867 (1971).
[CrossRef]

J. Phys. Chem. Solidi (1)

E. Ejder, “Some optical properties of Hg2Cl2,” J. Phys. Chem. Solidi 31, 453–462 (1970).
[CrossRef]

Krist. Tech. (1)

C. Barta, J. Gregora, J. Trnka, “Kristalle der Halogenide des einwertigen Quecksilbers und ihre optischen Grundeigenschaften,” Krist. Tech. 12, 33–39 (1977).
[CrossRef]

Opt. Commun. (1)

H. H. Sample, K. A. McCarthy, C. Barta, E. Kostal, M. Klima, C. Barta, “Zero optical power in mercurous chloride crystals,” Opt. Commun. 70, 325–326 (1989).
[CrossRef]

Opt. Spectrosc. (USSR) (1)

Z. B. Perekalina, C. Barta, I. Gretora, A. B. Wasiljew, I. D. Kislowskij, “Dichroism and birefringence of Calomel through all regions of its transmittance,” Opt. Spectrosc. (USSR) 42, 653–655 (1977).

Phys. Rev. (1)

J. A. Armstrong, N. Bloembergen, J. Ducuing, P. S. Pershan, “Interaction between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1940 (1962).
[CrossRef]

Phys. Status Solidi B (1)

A. Bohun, M. Rozsival, F. Brabec, “Ultraviolet absorption of mercurous halides,” Phys. Status Solidi B 45, K85–K87 (1971).
[CrossRef]

Other (4)

P. N. Butcher, D. Cotter, The Elements of Nonlinear Optics, Vol. 9 of Cambridge Studies in Modern Optics, P. L. Knight, W. J. Firth, eds. (Cambridge U. Press, Cambridge, 1990).
[CrossRef]

S. Singh, CRC Handbook of Laser Science Technology, M. J. Weber, ed. (CRC Press, Boca Raton, Fla., 1986), vol. 3.

C. Barta, “Crystal growth of Hg2X2,” in Symposium on Mercury (I) Halides, Liblice, (Vyzkumny ustav zvukove, Obrazove a reprodukcni techniky, Prague, 1976), pp. 13–18.

Crystals were grown by the authors but were also supplied by C. Barta, BBT Material Processing (Crystal Science and Technology Institute), Doubicka 11, 18400 Prague 8, Tschechei.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Normalized THG signal of type I phase matching versus third-harmonic wavelength. ◆, experimental data; curve, calculated phase-mismatch factor [Eq. (14)] for L effI) = 64 µm.

Fig. 2
Fig. 2

Normalized THG signal of type II phase matching versus third-harmonic wavelength. ■, experimental data; curve, calculated-phase mismatch factor [Eq. (14)] for L effII) = 60 µm.

Fig. 3
Fig. 3

Logarithmic plot of the conversion efficiency η for type I third-harmonic generation versus pump-pulse intensity I1(0). ◆, and solid line, experimental data and linear graph for their mean value; dashed line, conversion efficiency for the ideal beam with Δθ = 0°, ΔΦ = 0°, and Δλ = 0, i.e., corrected linear graph for their mean value considering mismatch factors (16) and (17).

Fig. 4
Fig. 4

Double logarithmic plot of the conversion efficiency η of type II third-harmonic generation versus pump-pulse intensity I1(0). ■ and solid line, experimental data and linear graph for their mean value; dashed line, conversion efficiency of an ideal beam with Δθ = 0°, ΔΦ = 0°, and Δλ = 0, i.e., corrected linear graph for their mean value considering mismatch factors (16) and (17).

Tables (2)

Tables Icon

Table 1 Crystal Orientation for the Three Types of Phase Matching

Tables Icon

Table 2 χeff Values for Various Materials

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

n o 2 = 1 + 2.595 λ 2 λ 2 - 0.03648 , n e 2 = 1 + 2.490 λ 2 λ 2 - 0.08237 + 2.479 λ 2 λ 2 - 0.03803 ,
n e θ = sin 2   θ n e 2 + cos 2   θ n o 2 - 1 / 2 ,
n 3 ω o = n ω e θ I .
n 3 ω o = 1 3 2 n ω e θ II + n ω o .
n 3 ω o = 1 3 n ω e θ III + 2 n ω o .
tan   α = 1 2 sin 2 θ n e 2 θ 1 n e 2 90 ° - 1 n o 2 .
L eff = 3 2   ln   2 1 / 2 Δ d 2 α ,
χ eff 3 = e 3 o   χ 3 e 1 a e 1 b e 1 c ,     a ,   b ,   c   =   e   or   o ,
e o = sin   Φ - cos   Φ 0 and     e e = cos θ + α cos   Φ cos θ + α sin   Φ - sin θ + α .
χ 3 = χ 11 0 0 0 0 χ 16 0 χ 18 0 0 0 χ 11 0 χ 16 0 0 0 0 χ 18 0 0 0 χ 33 0 χ 35 0 χ 35 0 0 0 .
χ eff , I 3 = 1 4 cos 3 θ + α sin 4 Φ χ 11 - 3 χ 18 .
χ eff , II 3 = 1 2 χ 11 - 3 χ 18 cos 2 θ + α sin 2 2 Φ + χ 16   sin 2 θ + α + χ 18   cos 2 θ + α .
χ eff , III 3 = - 1 4 cos θ + α sin 4 Φ χ 11 - 3 χ 18 .
P 3 L eff = P 1 3 0 L eff 2 λ 2 sin 2 Δ k λ L eff 2 Δ k λ L eff 2 2 .
P 1 0 / Δ d / 2 2 π = 250   MW / cm 2 .
E ω - 3 ω 0     0 0   g ω 1 - ω 0 g ω 2 - ω 0 ×   g ω - ω 2 - ω 1 - ω 0 d ω 1 d ω 2 ,
η I = P 3 L eff , I P 1 0 = 9 ω 2 L eff , I 2 16 n e 1 3 θ I n o 3 c 0 4 0 2 P 1 2 0 r 0 4 π 2   | χ eff , I | 2 × F 1 Δ λ F 3 Δ θ F 4 Δ Φ .
η II = P 3 L eff , II P 1 0 = 9 ω 2 L eff , II 2   sin 4   β   cos 2   β 16 n o 3 n e 1 2 θ II n o 1 c 0 4 0 2 × P 1 2 0 r 0 4 π 2   | χ eff , II | 2 F 1 Δ λ F 3 Δ θ F 4 Δ Φ .

Metrics