Abstract

We report on the results of proton and gamma irradiation tests performed on nonlinear crystals for second- (SHG) and third-harmonic generation. β-barium borate (BBO), lithium triborate (LBO), and KTP crystals were exposed to three different energies of proton radiation (8, 70, and 300 MeV) and incremental doses of gamma radiation (up to 139 krad) in order to investigate the change in SHG performance and transmission spectra. BBO and LBO crystals turned out to be a suitable choice for SHG under radiative conditions.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. S. Rose, M. S. Hopkins, R. A. Fields, “Characterisation and control of gamma and proton radiation effects on the performance of Nd:YAG and Nd:YLF lasers,” IEEE J. Quantum Electron. 31, 1593–1602 (1995).
    [CrossRef]
  2. A. J. Tylka, J. H. Adams, P. R. Boberg, “CREME96: a revision of the cosmic ray effects on micro-electronics code,” IEEE Trans. Nucl. Sci. 44, 2150–2160 (1997).
    [CrossRef]
  3. V. G. Dmitriev, G. G. Gurzadyan, D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals, Vol. 64Springer Series in Optical Sciences (Springer-Verlag, New York, 1999).
    [CrossRef]
  4. W. Koechner, Solid-State Laser Engineering (Springer-Verlag, New York, 1996).
    [CrossRef]
  5. R. C. Eckardt, H. Masuda, Y. X. Fan, R. L. Byer, “Absolute and relative nonlinear optical coefficients of KDP, KD*P, BaB2O4, LiLO3, MgO:LiNbO3, and KTP measured by phase-matched second-harmonic generation,” IEEE J. Quantum Electron. 26, 922–933 (1990).
    [CrossRef]
  6. D. J. Armstrong, W. J. Alford, T. D. Raymond, A. V. Smith, “Absolute measurement of the effective nonlinearities of KTP and BBO crystals by optical parametric amplification,” Appl. Opt. 35, 2032–2040 (1996).
    [CrossRef] [PubMed]
  7. A. Yariv, Optical Electronics in Modern Communication5th ed. (Oxford U. Press, New York, 1997).

1997 (1)

A. J. Tylka, J. H. Adams, P. R. Boberg, “CREME96: a revision of the cosmic ray effects on micro-electronics code,” IEEE Trans. Nucl. Sci. 44, 2150–2160 (1997).
[CrossRef]

1996 (1)

1995 (1)

T. S. Rose, M. S. Hopkins, R. A. Fields, “Characterisation and control of gamma and proton radiation effects on the performance of Nd:YAG and Nd:YLF lasers,” IEEE J. Quantum Electron. 31, 1593–1602 (1995).
[CrossRef]

1990 (1)

R. C. Eckardt, H. Masuda, Y. X. Fan, R. L. Byer, “Absolute and relative nonlinear optical coefficients of KDP, KD*P, BaB2O4, LiLO3, MgO:LiNbO3, and KTP measured by phase-matched second-harmonic generation,” IEEE J. Quantum Electron. 26, 922–933 (1990).
[CrossRef]

Adams, J. H.

A. J. Tylka, J. H. Adams, P. R. Boberg, “CREME96: a revision of the cosmic ray effects on micro-electronics code,” IEEE Trans. Nucl. Sci. 44, 2150–2160 (1997).
[CrossRef]

Alford, W. J.

Armstrong, D. J.

Boberg, P. R.

A. J. Tylka, J. H. Adams, P. R. Boberg, “CREME96: a revision of the cosmic ray effects on micro-electronics code,” IEEE Trans. Nucl. Sci. 44, 2150–2160 (1997).
[CrossRef]

Byer, R. L.

R. C. Eckardt, H. Masuda, Y. X. Fan, R. L. Byer, “Absolute and relative nonlinear optical coefficients of KDP, KD*P, BaB2O4, LiLO3, MgO:LiNbO3, and KTP measured by phase-matched second-harmonic generation,” IEEE J. Quantum Electron. 26, 922–933 (1990).
[CrossRef]

Dmitriev, V. G.

V. G. Dmitriev, G. G. Gurzadyan, D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals, Vol. 64Springer Series in Optical Sciences (Springer-Verlag, New York, 1999).
[CrossRef]

Eckardt, R. C.

R. C. Eckardt, H. Masuda, Y. X. Fan, R. L. Byer, “Absolute and relative nonlinear optical coefficients of KDP, KD*P, BaB2O4, LiLO3, MgO:LiNbO3, and KTP measured by phase-matched second-harmonic generation,” IEEE J. Quantum Electron. 26, 922–933 (1990).
[CrossRef]

Fan, Y. X.

R. C. Eckardt, H. Masuda, Y. X. Fan, R. L. Byer, “Absolute and relative nonlinear optical coefficients of KDP, KD*P, BaB2O4, LiLO3, MgO:LiNbO3, and KTP measured by phase-matched second-harmonic generation,” IEEE J. Quantum Electron. 26, 922–933 (1990).
[CrossRef]

Fields, R. A.

T. S. Rose, M. S. Hopkins, R. A. Fields, “Characterisation and control of gamma and proton radiation effects on the performance of Nd:YAG and Nd:YLF lasers,” IEEE J. Quantum Electron. 31, 1593–1602 (1995).
[CrossRef]

Gurzadyan, G. G.

V. G. Dmitriev, G. G. Gurzadyan, D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals, Vol. 64Springer Series in Optical Sciences (Springer-Verlag, New York, 1999).
[CrossRef]

Hopkins, M. S.

T. S. Rose, M. S. Hopkins, R. A. Fields, “Characterisation and control of gamma and proton radiation effects on the performance of Nd:YAG and Nd:YLF lasers,” IEEE J. Quantum Electron. 31, 1593–1602 (1995).
[CrossRef]

Koechner, W.

W. Koechner, Solid-State Laser Engineering (Springer-Verlag, New York, 1996).
[CrossRef]

Masuda, H.

R. C. Eckardt, H. Masuda, Y. X. Fan, R. L. Byer, “Absolute and relative nonlinear optical coefficients of KDP, KD*P, BaB2O4, LiLO3, MgO:LiNbO3, and KTP measured by phase-matched second-harmonic generation,” IEEE J. Quantum Electron. 26, 922–933 (1990).
[CrossRef]

Nikogosyan, D. N.

V. G. Dmitriev, G. G. Gurzadyan, D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals, Vol. 64Springer Series in Optical Sciences (Springer-Verlag, New York, 1999).
[CrossRef]

Raymond, T. D.

Rose, T. S.

T. S. Rose, M. S. Hopkins, R. A. Fields, “Characterisation and control of gamma and proton radiation effects on the performance of Nd:YAG and Nd:YLF lasers,” IEEE J. Quantum Electron. 31, 1593–1602 (1995).
[CrossRef]

Smith, A. V.

Tylka, A. J.

A. J. Tylka, J. H. Adams, P. R. Boberg, “CREME96: a revision of the cosmic ray effects on micro-electronics code,” IEEE Trans. Nucl. Sci. 44, 2150–2160 (1997).
[CrossRef]

Yariv, A.

A. Yariv, Optical Electronics in Modern Communication5th ed. (Oxford U. Press, New York, 1997).

Appl. Opt. (1)

IEEE J. Quantum Electron. (2)

R. C. Eckardt, H. Masuda, Y. X. Fan, R. L. Byer, “Absolute and relative nonlinear optical coefficients of KDP, KD*P, BaB2O4, LiLO3, MgO:LiNbO3, and KTP measured by phase-matched second-harmonic generation,” IEEE J. Quantum Electron. 26, 922–933 (1990).
[CrossRef]

T. S. Rose, M. S. Hopkins, R. A. Fields, “Characterisation and control of gamma and proton radiation effects on the performance of Nd:YAG and Nd:YLF lasers,” IEEE J. Quantum Electron. 31, 1593–1602 (1995).
[CrossRef]

IEEE Trans. Nucl. Sci. (1)

A. J. Tylka, J. H. Adams, P. R. Boberg, “CREME96: a revision of the cosmic ray effects on micro-electronics code,” IEEE Trans. Nucl. Sci. 44, 2150–2160 (1997).
[CrossRef]

Other (3)

V. G. Dmitriev, G. G. Gurzadyan, D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals, Vol. 64Springer Series in Optical Sciences (Springer-Verlag, New York, 1999).
[CrossRef]

W. Koechner, Solid-State Laser Engineering (Springer-Verlag, New York, 1996).
[CrossRef]

A. Yariv, Optical Electronics in Modern Communication5th ed. (Oxford U. Press, New York, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Setup of the mode-locked Nd:YLF laser and the second-harmonic measurement. The output power was 650 mW with a pulse duration of 75 ps at a repetition rate of 111 MHz. ROC, radius of curvature; SBR, saturable Bragg reflector; OC, output coppler; f, focal length; BG 18, high-pass filter.

Fig. 2
Fig. 2

SH measurements for KTP, BBO, and LBO. The ordinate shows the SH signal of the crystal relative to the corresponding reference crystal. The abscissa shows the different irradiation steps. The irradiation was performed with (a) 8-MeV protons with 7.1 × 1010 p+/cm2 and 1012 p+/cm2, respectively, and (b) 70-MeV protons with 5 × 109 p+/cm2 and 1012 p+/cm2 respectively. (c) Irradiation performed with 300 MeV protons with 1012 p+/cm2. The second irradiation on this sample was performed with a subsequent dose of 129 krad (H2O) of γ irradiation with a rate of 127 rad/min. (d) γ irradiation performed on sample 4. The four irradiation steps were 10, 10, 29.8, and 89 krad (H2O), with a rate of 2.4 rad/min.

Fig. 3
Fig. 3

Transmission measurements for BBO, LBO, and KTP. The underlaid band in gray shows the transmission of the reference crystal with a ±5% uncertainty interval. The irradiation was performed with (a) 8 MeV, (b) 70 MeV, and (c) 300 MeV protons with 1012 p+/cm2.

Fig. 4
Fig. 4

Transmission measurements for BBO, LBO, and KTP. The underlaid band in gray shows the transmission of the reference crystal with a ±5% uncertainty interval. The irradiation was performed with a 60Co source with 2.4 rad/min.

Fig. 5
Fig. 5

Transmission measurements for BBO, LBO, and KTP. The underlaid band in grey shows the transmission of the reference crystal with a ±5% uncertainty interval. The irradiation was performed with a 60Co source with a high dose rate of 127 rad/min. The corresponding dose is indicated in the legend.

Tables (2)

Tables Icon

Table 1 Specifications of the Crystal Samples

Tables Icon

Table 2 Irradiations Performed on the Samples 1–5 of the Different Crystals

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

P2ω  Pω2A

Metrics