Abstract

Flexible hollow fibers for delivery of the second, third, and fourth harmonic pulses of Q-switched Nd:YAG lasers are introduced. For the doubled (532-nm) wavelength, we fabricated a hollow fiber with an internal metal and polymer film by using a silver-mirror plating and a liquid-phase-coating method. For tripled (355-nm) and quadrupled (266-nm) Nd:YAG in the ultraviolet region, we fabricated aluminum hollow fibers with or without an internal polymer layer by using the metal-organic chemical-vapor deposition method. Both types of fiber show high stability for the transmission of high-peak power laser pulses with low transmission losses.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. W. Allison, G. T. Gillies, D. W. Magnuson, T. S. Pagano, “Pulsed laser damage to optical fiber,” Appl. Opt. 24, 3140–3148 (1985).
    [CrossRef]
  2. D. P. Hand, P. St. J. Russel, “Solitary thermal shock waves and optical damage in optical fibers: the fiber fuse,” Opt. Lett. 13, 767–780 (1988).
    [CrossRef] [PubMed]
  3. W. H. Trott, K. D. Meeks, “High-power Nd:glass laser transmission through optical fibers and its use in acceleration of thin foil targets,” J. Appl. Phys. 67, 3297–3301 (1990).
    [CrossRef]
  4. B. Richou, I. Schertz, I. Gobin, J. Richou, “Delivery of 10-MW Nd:YAG laser pulses by large-core optical fibers: dependence of the laser intensity profile on beam propagation,” Appl. Opt. 36, 1610–1614 (1997).
    [CrossRef] [PubMed]
  5. U. Sturm, R. Sattmann, R. Noll, “Optical fiber transmission of multiple Q-switch Nd:YAG laser pulses with microsecond interpulse separations,” Appl. Phys. B 63, 363–370 (1996).
  6. D. Su, A. A. P. Boechat, J. D. C. Jones, “Beam delivery by large core fibers: effect of launching conditions on near-field output power,” Appl. Opt. 31, 5816–5821 (1992).
    [CrossRef] [PubMed]
  7. Y. Matsuura, K. Hanamoto, S. Sato, M. Miyagi, “Hollow-fiber delivery of high-power pulsed Nd:YAG laser light,” Opt. Lett. 23, 1858–1860 (1998).
    [CrossRef]
  8. Y. Matsuura, M. Miyagi, “Flexible hollow waveguides for delivery of excimer-laser light,” Opt. Lett. 23, 1226–1228 (1998).
    [CrossRef]
  9. H. Jelinkova, J. Sulc, P. Cerny, Y. W. Shi, Y. Matsuura, M. Miyagi, “High power Nd:YAG laser picosecond pulse delivery by polymer-coated silver hollow glass waveguide,” Opt. Lett. 24, 957–959 (1999).
    [CrossRef]
  10. M. Miyagi, S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” IEEE J. Lightwave Technol. LT-2, 116–126 (1984).
    [CrossRef]
  11. S. Sato, H. Ashida, T. Arai, Y. Shi, Y. Matsuura, M. Miyagi, “Vacuum-cored hollow waveguide for transmission of high-energy, nanosecond Nd:YAG laser pulses and its application to biological tissue ablation,” Opt. Lett. 25, 49–51 (2000).
    [CrossRef]

2000

1999

1998

1997

1996

U. Sturm, R. Sattmann, R. Noll, “Optical fiber transmission of multiple Q-switch Nd:YAG laser pulses with microsecond interpulse separations,” Appl. Phys. B 63, 363–370 (1996).

1992

1990

W. H. Trott, K. D. Meeks, “High-power Nd:glass laser transmission through optical fibers and its use in acceleration of thin foil targets,” J. Appl. Phys. 67, 3297–3301 (1990).
[CrossRef]

1988

1985

1984

M. Miyagi, S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” IEEE J. Lightwave Technol. LT-2, 116–126 (1984).
[CrossRef]

Allison, S. W.

Arai, T.

Ashida, H.

Boechat, A. A. P.

Cerny, P.

Gillies, G. T.

Gobin, I.

Hanamoto, K.

Hand, D. P.

Jelinkova, H.

Jones, J. D. C.

Kawakami, S.

M. Miyagi, S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” IEEE J. Lightwave Technol. LT-2, 116–126 (1984).
[CrossRef]

Magnuson, D. W.

Matsuura, Y.

Meeks, K. D.

W. H. Trott, K. D. Meeks, “High-power Nd:glass laser transmission through optical fibers and its use in acceleration of thin foil targets,” J. Appl. Phys. 67, 3297–3301 (1990).
[CrossRef]

Miyagi, M.

Noll, R.

U. Sturm, R. Sattmann, R. Noll, “Optical fiber transmission of multiple Q-switch Nd:YAG laser pulses with microsecond interpulse separations,” Appl. Phys. B 63, 363–370 (1996).

Pagano, T. S.

Richou, B.

Richou, J.

Russel, P. St. J.

Sato, S.

Sattmann, R.

U. Sturm, R. Sattmann, R. Noll, “Optical fiber transmission of multiple Q-switch Nd:YAG laser pulses with microsecond interpulse separations,” Appl. Phys. B 63, 363–370 (1996).

Schertz, I.

Shi, Y.

Shi, Y. W.

Sturm, U.

U. Sturm, R. Sattmann, R. Noll, “Optical fiber transmission of multiple Q-switch Nd:YAG laser pulses with microsecond interpulse separations,” Appl. Phys. B 63, 363–370 (1996).

Su, D.

Sulc, J.

Trott, W. H.

W. H. Trott, K. D. Meeks, “High-power Nd:glass laser transmission through optical fibers and its use in acceleration of thin foil targets,” J. Appl. Phys. 67, 3297–3301 (1990).
[CrossRef]

Appl. Opt.

Appl. Phys. B

U. Sturm, R. Sattmann, R. Noll, “Optical fiber transmission of multiple Q-switch Nd:YAG laser pulses with microsecond interpulse separations,” Appl. Phys. B 63, 363–370 (1996).

IEEE J. Lightwave Technol.

M. Miyagi, S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” IEEE J. Lightwave Technol. LT-2, 116–126 (1984).
[CrossRef]

J. Appl. Phys.

W. H. Trott, K. D. Meeks, “High-power Nd:glass laser transmission through optical fibers and its use in acceleration of thin foil targets,” J. Appl. Phys. 67, 3297–3301 (1990).
[CrossRef]

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Theoretical losses of hollow fibers for the HE11 mode. The inner diameter of the fiber is assumed to be 1 mm.

Fig. 2
Fig. 2

Silver coated setup with the water-cooled system.

Fig. 3
Fig. 3

AFM photographs of the silver-coated surfaces as deposited by (a) a water-cooled system and (b) an air-cooled system.

Fig. 4
Fig. 4

Measured bending losses of COP/Ag-coated and Ag-coated hollow fibers for the doubled Nd:YAG laser light. The fibers had a 1-mm inner diameter and an 80-cm bent length.

Fig. 5
Fig. 5

Measured bending losses of COP/Al-coated and Al-coated hollow fibers for the third harmonic generation (THG) and the fourth harmonic generation (FHG) Nd:YAG laser light. The fibers had a 1-mm inner diameter and an 80-cm bent length.

Tables (1)

Tables Icon

Table 1 Results of High-Power Capability Tests with Second Nd:YAG Laser Lighta

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

d=λ2πn0n2-1tan-1nn2-11/4,

Metrics