Abstract

We have developed an ultraviolet lidar system in which the upwelled laser beam and the telescope field of view can be made to overlap at any specified location in space. We refer to this system as the Selected Overlap Lidar Experiment. We discuss validation of our system by calculating relative Raman-scattering cross sections (with respect to the nitrogen scattering cross section) for oxygen and water vapor using data collected during field operations of our lidar. Our relative cross sections are consistent with those obtained by other researchers making similar measurements in laboratory environments.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. N. Whiteman, S. H. Melfi, R. A. Ferrare, K. D. Evans, “Daytime measurements of water vapor mixing ratio using scattering—techniques and assessment,” in presented at the 17th International Laser Radar Conference, Sendai, Japan, 25–29 July 1994, p. 137.
  2. F. Balsiger, C. R. Philbrick, “Comparison of lidar water vapor measurements using Raman scattering at 266 nm and 532 nm,” in Applications of Lidar to Current Atmospheric Topics, A. J. Sedlacek, ed., Proc. SPIE2833, 231–240 (1996).
    [CrossRef]
  3. I. Veselovskii, B. Brachunov, “Excimer-laser-based lidar for tropospheric ozone monitoring,” Appl. Phys. B 68, 1131–1137 (1999).
    [CrossRef]
  4. D. Renault, J. C. Pourny, R. Capitina, “Daytime Raman-lidar measurements of water vapor,” Opt. Lett. 5, 233–235 (1980).
    [CrossRef]
  5. D. A. Leonard, “Observation of Raman scattering from the atmosphere using a pulsed nitrogen ultraviolet laser,” Nature (London) 216, 142–143 (1967).
    [CrossRef]
  6. T. G. Slanger, L. E. Jusinski, G. Black, G. E. Gadd, “Formation of ozone by irradiation of oxygen at 248 nanometers,” Science 241, 945–950 (1988).
    [CrossRef] [PubMed]
  7. D. E. Freeman, K. Yoshino, W. H. Parkinson, “Technical comment on formation of ozone by irradiation of oxygen at 248 nanometers,” Science 250, 1432–1433 (1990).
    [CrossRef] [PubMed]
  8. D. E. Freeman, K. Yoshino, J. R. Esmond, W. H. Parkinson, “High resolution absorption cross-section measurements of ozone at 195 K in the wavelength region 240-350 nm,” Planet. Space Sci. 32 (2), 239–248 (1984).
    [CrossRef]
  9. S. H. Melfi, J. D. Lawrence, M. P. McCormick, “Observation of Raman scattering by water vapor in the atmosphere,” Appl. Phys. Lett. 15, 295–297 (1969).
    [CrossRef]
  10. W. E. Eichinger, D. I. Cooper, F. L. Archuletta, D. Hof, D. B. Holtkamp, R. R. Karl, C. R. Quick, J. Tiee, “Development of a scanning solar-blind, water Raman lidar,” Appl. Opt. 33, 3923–3932 (1994).
    [CrossRef] [PubMed]
  11. A. Farah, D. D. Venable, A. Thorpe, F. Marsh, W. Heaps, “Development of an excimer laser-based lidar system for tropospheric ozone concentration measurements,” in Proceedings of the International Conference on Lasers 99, V. J. Corcoran, T. A. Corcoran, eds (STS, McLean, Va., 2000), pp. 359–366.
  12. R. Penndorf, “Table of the refractive index for standard air and the Rayleigh scattering coefficients for the spectral region between 0.2 and 20.0 microns and their applications to atmospheric optics,” J. Opt. Soc. Am. 47, 176–182 (1957).
    [CrossRef]
  13. J. H. Seinfield, S. N. Pandis, Atmospheric Chemistry and Physics (Wiley, New York, 1998), pp. 780–781.
  14. J. Burris, T. J. McGee, W. Heaps, “UV Raman cross sections in nitrogen,” Appl. Spectrosc. 46, 1076 (1992).
    [CrossRef]
  15. W. K. Bischel, G. Black, “Wavelength dependence of Raman scattering cross sections from 200–600 nm,” in Digest of Topical Meeting on Excimer Lasers (Optical Society of America, Washington, D.C., 1983), paper TuB3, pp. 1–3.
  16. C. M. Penny, M. Lapp, “Raman-scattering cross sections for water vapor,” J. Opt. Soc. Am. 66, 422–425 (1976).
    [CrossRef]

1999 (1)

I. Veselovskii, B. Brachunov, “Excimer-laser-based lidar for tropospheric ozone monitoring,” Appl. Phys. B 68, 1131–1137 (1999).
[CrossRef]

1994 (1)

1992 (1)

1990 (1)

D. E. Freeman, K. Yoshino, W. H. Parkinson, “Technical comment on formation of ozone by irradiation of oxygen at 248 nanometers,” Science 250, 1432–1433 (1990).
[CrossRef] [PubMed]

1988 (1)

T. G. Slanger, L. E. Jusinski, G. Black, G. E. Gadd, “Formation of ozone by irradiation of oxygen at 248 nanometers,” Science 241, 945–950 (1988).
[CrossRef] [PubMed]

1984 (1)

D. E. Freeman, K. Yoshino, J. R. Esmond, W. H. Parkinson, “High resolution absorption cross-section measurements of ozone at 195 K in the wavelength region 240-350 nm,” Planet. Space Sci. 32 (2), 239–248 (1984).
[CrossRef]

1980 (1)

1976 (1)

1969 (1)

S. H. Melfi, J. D. Lawrence, M. P. McCormick, “Observation of Raman scattering by water vapor in the atmosphere,” Appl. Phys. Lett. 15, 295–297 (1969).
[CrossRef]

1967 (1)

D. A. Leonard, “Observation of Raman scattering from the atmosphere using a pulsed nitrogen ultraviolet laser,” Nature (London) 216, 142–143 (1967).
[CrossRef]

1957 (1)

Archuletta, F. L.

Balsiger, F.

F. Balsiger, C. R. Philbrick, “Comparison of lidar water vapor measurements using Raman scattering at 266 nm and 532 nm,” in Applications of Lidar to Current Atmospheric Topics, A. J. Sedlacek, ed., Proc. SPIE2833, 231–240 (1996).
[CrossRef]

Bischel, W. K.

W. K. Bischel, G. Black, “Wavelength dependence of Raman scattering cross sections from 200–600 nm,” in Digest of Topical Meeting on Excimer Lasers (Optical Society of America, Washington, D.C., 1983), paper TuB3, pp. 1–3.

Black, G.

T. G. Slanger, L. E. Jusinski, G. Black, G. E. Gadd, “Formation of ozone by irradiation of oxygen at 248 nanometers,” Science 241, 945–950 (1988).
[CrossRef] [PubMed]

W. K. Bischel, G. Black, “Wavelength dependence of Raman scattering cross sections from 200–600 nm,” in Digest of Topical Meeting on Excimer Lasers (Optical Society of America, Washington, D.C., 1983), paper TuB3, pp. 1–3.

Brachunov, B.

I. Veselovskii, B. Brachunov, “Excimer-laser-based lidar for tropospheric ozone monitoring,” Appl. Phys. B 68, 1131–1137 (1999).
[CrossRef]

Burris, J.

Capitina, R.

Cooper, D. I.

Eichinger, W. E.

Esmond, J. R.

D. E. Freeman, K. Yoshino, J. R. Esmond, W. H. Parkinson, “High resolution absorption cross-section measurements of ozone at 195 K in the wavelength region 240-350 nm,” Planet. Space Sci. 32 (2), 239–248 (1984).
[CrossRef]

Evans, K. D.

D. N. Whiteman, S. H. Melfi, R. A. Ferrare, K. D. Evans, “Daytime measurements of water vapor mixing ratio using scattering—techniques and assessment,” in presented at the 17th International Laser Radar Conference, Sendai, Japan, 25–29 July 1994, p. 137.

Farah, A.

A. Farah, D. D. Venable, A. Thorpe, F. Marsh, W. Heaps, “Development of an excimer laser-based lidar system for tropospheric ozone concentration measurements,” in Proceedings of the International Conference on Lasers 99, V. J. Corcoran, T. A. Corcoran, eds (STS, McLean, Va., 2000), pp. 359–366.

Ferrare, R. A.

D. N. Whiteman, S. H. Melfi, R. A. Ferrare, K. D. Evans, “Daytime measurements of water vapor mixing ratio using scattering—techniques and assessment,” in presented at the 17th International Laser Radar Conference, Sendai, Japan, 25–29 July 1994, p. 137.

Freeman, D. E.

D. E. Freeman, K. Yoshino, W. H. Parkinson, “Technical comment on formation of ozone by irradiation of oxygen at 248 nanometers,” Science 250, 1432–1433 (1990).
[CrossRef] [PubMed]

D. E. Freeman, K. Yoshino, J. R. Esmond, W. H. Parkinson, “High resolution absorption cross-section measurements of ozone at 195 K in the wavelength region 240-350 nm,” Planet. Space Sci. 32 (2), 239–248 (1984).
[CrossRef]

Gadd, G. E.

T. G. Slanger, L. E. Jusinski, G. Black, G. E. Gadd, “Formation of ozone by irradiation of oxygen at 248 nanometers,” Science 241, 945–950 (1988).
[CrossRef] [PubMed]

Heaps, W.

J. Burris, T. J. McGee, W. Heaps, “UV Raman cross sections in nitrogen,” Appl. Spectrosc. 46, 1076 (1992).
[CrossRef]

A. Farah, D. D. Venable, A. Thorpe, F. Marsh, W. Heaps, “Development of an excimer laser-based lidar system for tropospheric ozone concentration measurements,” in Proceedings of the International Conference on Lasers 99, V. J. Corcoran, T. A. Corcoran, eds (STS, McLean, Va., 2000), pp. 359–366.

Hof, D.

Holtkamp, D. B.

Jusinski, L. E.

T. G. Slanger, L. E. Jusinski, G. Black, G. E. Gadd, “Formation of ozone by irradiation of oxygen at 248 nanometers,” Science 241, 945–950 (1988).
[CrossRef] [PubMed]

Karl, R. R.

Lapp, M.

Lawrence, J. D.

S. H. Melfi, J. D. Lawrence, M. P. McCormick, “Observation of Raman scattering by water vapor in the atmosphere,” Appl. Phys. Lett. 15, 295–297 (1969).
[CrossRef]

Leonard, D. A.

D. A. Leonard, “Observation of Raman scattering from the atmosphere using a pulsed nitrogen ultraviolet laser,” Nature (London) 216, 142–143 (1967).
[CrossRef]

Marsh, F.

A. Farah, D. D. Venable, A. Thorpe, F. Marsh, W. Heaps, “Development of an excimer laser-based lidar system for tropospheric ozone concentration measurements,” in Proceedings of the International Conference on Lasers 99, V. J. Corcoran, T. A. Corcoran, eds (STS, McLean, Va., 2000), pp. 359–366.

McCormick, M. P.

S. H. Melfi, J. D. Lawrence, M. P. McCormick, “Observation of Raman scattering by water vapor in the atmosphere,” Appl. Phys. Lett. 15, 295–297 (1969).
[CrossRef]

McGee, T. J.

Melfi, S. H.

S. H. Melfi, J. D. Lawrence, M. P. McCormick, “Observation of Raman scattering by water vapor in the atmosphere,” Appl. Phys. Lett. 15, 295–297 (1969).
[CrossRef]

D. N. Whiteman, S. H. Melfi, R. A. Ferrare, K. D. Evans, “Daytime measurements of water vapor mixing ratio using scattering—techniques and assessment,” in presented at the 17th International Laser Radar Conference, Sendai, Japan, 25–29 July 1994, p. 137.

Pandis, S. N.

J. H. Seinfield, S. N. Pandis, Atmospheric Chemistry and Physics (Wiley, New York, 1998), pp. 780–781.

Parkinson, W. H.

D. E. Freeman, K. Yoshino, W. H. Parkinson, “Technical comment on formation of ozone by irradiation of oxygen at 248 nanometers,” Science 250, 1432–1433 (1990).
[CrossRef] [PubMed]

D. E. Freeman, K. Yoshino, J. R. Esmond, W. H. Parkinson, “High resolution absorption cross-section measurements of ozone at 195 K in the wavelength region 240-350 nm,” Planet. Space Sci. 32 (2), 239–248 (1984).
[CrossRef]

Penndorf, R.

Penny, C. M.

Philbrick, C. R.

F. Balsiger, C. R. Philbrick, “Comparison of lidar water vapor measurements using Raman scattering at 266 nm and 532 nm,” in Applications of Lidar to Current Atmospheric Topics, A. J. Sedlacek, ed., Proc. SPIE2833, 231–240 (1996).
[CrossRef]

Pourny, J. C.

Quick, C. R.

Renault, D.

Seinfield, J. H.

J. H. Seinfield, S. N. Pandis, Atmospheric Chemistry and Physics (Wiley, New York, 1998), pp. 780–781.

Slanger, T. G.

T. G. Slanger, L. E. Jusinski, G. Black, G. E. Gadd, “Formation of ozone by irradiation of oxygen at 248 nanometers,” Science 241, 945–950 (1988).
[CrossRef] [PubMed]

Thorpe, A.

A. Farah, D. D. Venable, A. Thorpe, F. Marsh, W. Heaps, “Development of an excimer laser-based lidar system for tropospheric ozone concentration measurements,” in Proceedings of the International Conference on Lasers 99, V. J. Corcoran, T. A. Corcoran, eds (STS, McLean, Va., 2000), pp. 359–366.

Tiee, J.

Venable, D. D.

A. Farah, D. D. Venable, A. Thorpe, F. Marsh, W. Heaps, “Development of an excimer laser-based lidar system for tropospheric ozone concentration measurements,” in Proceedings of the International Conference on Lasers 99, V. J. Corcoran, T. A. Corcoran, eds (STS, McLean, Va., 2000), pp. 359–366.

Veselovskii, I.

I. Veselovskii, B. Brachunov, “Excimer-laser-based lidar for tropospheric ozone monitoring,” Appl. Phys. B 68, 1131–1137 (1999).
[CrossRef]

Whiteman, D. N.

D. N. Whiteman, S. H. Melfi, R. A. Ferrare, K. D. Evans, “Daytime measurements of water vapor mixing ratio using scattering—techniques and assessment,” in presented at the 17th International Laser Radar Conference, Sendai, Japan, 25–29 July 1994, p. 137.

Yoshino, K.

D. E. Freeman, K. Yoshino, W. H. Parkinson, “Technical comment on formation of ozone by irradiation of oxygen at 248 nanometers,” Science 250, 1432–1433 (1990).
[CrossRef] [PubMed]

D. E. Freeman, K. Yoshino, J. R. Esmond, W. H. Parkinson, “High resolution absorption cross-section measurements of ozone at 195 K in the wavelength region 240-350 nm,” Planet. Space Sci. 32 (2), 239–248 (1984).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (1)

I. Veselovskii, B. Brachunov, “Excimer-laser-based lidar for tropospheric ozone monitoring,” Appl. Phys. B 68, 1131–1137 (1999).
[CrossRef]

Appl. Phys. Lett. (1)

S. H. Melfi, J. D. Lawrence, M. P. McCormick, “Observation of Raman scattering by water vapor in the atmosphere,” Appl. Phys. Lett. 15, 295–297 (1969).
[CrossRef]

Appl. Spectrosc. (1)

J. Opt. Soc. Am. (2)

Nature (London) (1)

D. A. Leonard, “Observation of Raman scattering from the atmosphere using a pulsed nitrogen ultraviolet laser,” Nature (London) 216, 142–143 (1967).
[CrossRef]

Opt. Lett. (1)

Planet. Space Sci. (1)

D. E. Freeman, K. Yoshino, J. R. Esmond, W. H. Parkinson, “High resolution absorption cross-section measurements of ozone at 195 K in the wavelength region 240-350 nm,” Planet. Space Sci. 32 (2), 239–248 (1984).
[CrossRef]

Science (2)

T. G. Slanger, L. E. Jusinski, G. Black, G. E. Gadd, “Formation of ozone by irradiation of oxygen at 248 nanometers,” Science 241, 945–950 (1988).
[CrossRef] [PubMed]

D. E. Freeman, K. Yoshino, W. H. Parkinson, “Technical comment on formation of ozone by irradiation of oxygen at 248 nanometers,” Science 250, 1432–1433 (1990).
[CrossRef] [PubMed]

Other (5)

D. N. Whiteman, S. H. Melfi, R. A. Ferrare, K. D. Evans, “Daytime measurements of water vapor mixing ratio using scattering—techniques and assessment,” in presented at the 17th International Laser Radar Conference, Sendai, Japan, 25–29 July 1994, p. 137.

F. Balsiger, C. R. Philbrick, “Comparison of lidar water vapor measurements using Raman scattering at 266 nm and 532 nm,” in Applications of Lidar to Current Atmospheric Topics, A. J. Sedlacek, ed., Proc. SPIE2833, 231–240 (1996).
[CrossRef]

J. H. Seinfield, S. N. Pandis, Atmospheric Chemistry and Physics (Wiley, New York, 1998), pp. 780–781.

A. Farah, D. D. Venable, A. Thorpe, F. Marsh, W. Heaps, “Development of an excimer laser-based lidar system for tropospheric ozone concentration measurements,” in Proceedings of the International Conference on Lasers 99, V. J. Corcoran, T. A. Corcoran, eds (STS, McLean, Va., 2000), pp. 359–366.

W. K. Bischel, G. Black, “Wavelength dependence of Raman scattering cross sections from 200–600 nm,” in Digest of Topical Meeting on Excimer Lasers (Optical Society of America, Washington, D.C., 1983), paper TuB3, pp. 1–3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Schematic representation of the SOLEX arrangement and diagram of the experimental setup with a typical oscillogram of trigger pulse (lower trace, photodiode output) and backscattered pulse (upper trace, preamplifier output). The oscillogram shown is for the 263.2-nm signal and represents the average of approximately 104 laser shots. The range can be determined from the temporal spacing between the two pulses. The width of the returned pulse contains information about the geometry of the interaction region. The telescope is fully maneuverable in both right ascension and declination axes, and the direction of the outwelled laser beam is fully controllable. Data acquisition and analysis are controlled by a desktop computer (CPU). The data in this paper were taken at an angle of 6° above the horizontal, and the maximum range was 270 ft (82 m). BS, beam splitter; A/DC, analog-to-digital converter; HVPS, high-voltage power supply.

Fig. 2
Fig. 2

Plot of the returned signal as a function of the wavelength showing the 258-nm Raman signal from O2 scattering, the 263.2-nm Raman signal from N2 scattering, and the 273-nm signal from water-vapor scattering. The 248-nm elastically backscattered signal is also shown.

Tables (1)

Tables Icon

Table 1 Measured Values of Relative Raman Cross Sections

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

SBSλL, λM, z  IL exp-AλLzNMσMλLΔz×exp-AλMzCezDeλM,
Aλ=NO3σaλ+NairσRλ.
=SBSλO2, RSBSλN2, R,
σO2λLσN2λL= DeλN2NN2DeλO2NO2expNO3ΔσaλO2, λN2R×expNairΔσRλO2, λN2R,
Δσaλ1, λ2=σaλ1-σaλ2, ΔσRλ1, λ2=σRλ1-σRλ2.
σO2λLσN2λL4.
σH2OλLσN2λL= DeλN2NN2DeλH2ONH2O×expNO3ΔσaλH2O, λN2R×expNairΔσRλH2O, λN2R,
=SBSλH2O, RSBSλN2, R.
σH2OλLσN2λLfT, Rh.

Metrics