Abstract

A compact helicopter-based lidar system is developed and tested under laboratory and field conditions. It is shown that the lidar can measure concentrations of chlorophyll a and dissolved organic matter at the surface of water bodies, detect fluorescence spectra of ground vegetation at a distance of up to 530 m, and determine the vertical profile of light-scattering particle concentration in the upper ocean. The possibilities of the lidar system are demonstrated by detection of polluted areas at the ocean surface, by online monitoring of three-dimensional distribution of light-scattering layers, and by recognition of plant types and physiological states.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. S. Bucreev, S. K. Vartapetov, I. V. Veselovskii, A. S. Galusov, Y. M. Kovalev, E. S. Svetogorov, S. S. Khmelevtsov, “Combined lidar system for stratospheric and tropospheric ozone measurements,” Appl. Phys. B 62, 97–101 (1996).
    [CrossRef]
  2. H. E. Jorgensen, T. Mikkelsen, J. Streicher, H. Herrmann, C. Werner, E. Lyck, “Lidar calibration experiments,” Appl. Phys. B 64, 355–361 (1997).
    [CrossRef]
  3. Z. S. Liu, W. B. Chen, T. L. Zhang, J. W. Hair, C. Y. She, “An incoherent Doppler lidar for ground-based atmospheric wind profiling,” Appl. Phys. B 64, 561–566 (1997).
    [CrossRef]
  4. M. Bristow, D. Nielsen, D. Bundy, R. Furtek, “Use of water Raman emission to correct airborne laser fluorosensor data for effects of water optical attenuation,” Appl. Opt. 20, 2889–2906 (1981).
    [CrossRef] [PubMed]
  5. E. W. Chapelle, J. E. McMirtrey, M. W. Frank, “Laser-induced fluorescence of green plants caused by nutrient deficiencies in corn,” Appl. Opt. 23, 139–142 (1984).
    [CrossRef]
  6. R. M. Measures, Laser Remote Sensing: Fundamentals and Applications (Wiley, New York, 1985).
  7. A. F. Bunkin, D. V. Vlasov, D. M. Mirkamilov, Physical Fundamentals of Laser Aerosensing of the Earth’s Surface (Fan, Tashkent, Uzbekistan, 1987), in Russian.
  8. A. F. Bunkin, M. A. Davydov, A. V. Rezov, A. L. Surovegin, D. Yu. Tsipenyuk, “Helicopter-based lidar complex for emission and fluorescence remote sensing of terrain surfaces,” Laser Phys. 4, 1198–1201 (1994).
  9. F. E. Hoge, C. W. Wright, T. M. Kana, R. N. Swift, J. K. Yungel, “Spatial variability of oceanic phycoerythrin spectral types derived from airborne laser-induced fluorescence emissions,” Appl. Opt. 37, 4744–4749 (1998).
    [CrossRef]
  10. A. S. Monin, Optics of the Ocean (Nauka, Moscow, 1983), in Russian, Vol. 1.

1998 (1)

1997 (2)

H. E. Jorgensen, T. Mikkelsen, J. Streicher, H. Herrmann, C. Werner, E. Lyck, “Lidar calibration experiments,” Appl. Phys. B 64, 355–361 (1997).
[CrossRef]

Z. S. Liu, W. B. Chen, T. L. Zhang, J. W. Hair, C. Y. She, “An incoherent Doppler lidar for ground-based atmospheric wind profiling,” Appl. Phys. B 64, 561–566 (1997).
[CrossRef]

1996 (1)

V. S. Bucreev, S. K. Vartapetov, I. V. Veselovskii, A. S. Galusov, Y. M. Kovalev, E. S. Svetogorov, S. S. Khmelevtsov, “Combined lidar system for stratospheric and tropospheric ozone measurements,” Appl. Phys. B 62, 97–101 (1996).
[CrossRef]

1994 (1)

A. F. Bunkin, M. A. Davydov, A. V. Rezov, A. L. Surovegin, D. Yu. Tsipenyuk, “Helicopter-based lidar complex for emission and fluorescence remote sensing of terrain surfaces,” Laser Phys. 4, 1198–1201 (1994).

1984 (1)

1981 (1)

Bristow, M.

Bucreev, V. S.

V. S. Bucreev, S. K. Vartapetov, I. V. Veselovskii, A. S. Galusov, Y. M. Kovalev, E. S. Svetogorov, S. S. Khmelevtsov, “Combined lidar system for stratospheric and tropospheric ozone measurements,” Appl. Phys. B 62, 97–101 (1996).
[CrossRef]

Bundy, D.

Bunkin, A. F.

A. F. Bunkin, M. A. Davydov, A. V. Rezov, A. L. Surovegin, D. Yu. Tsipenyuk, “Helicopter-based lidar complex for emission and fluorescence remote sensing of terrain surfaces,” Laser Phys. 4, 1198–1201 (1994).

A. F. Bunkin, D. V. Vlasov, D. M. Mirkamilov, Physical Fundamentals of Laser Aerosensing of the Earth’s Surface (Fan, Tashkent, Uzbekistan, 1987), in Russian.

Chapelle, E. W.

Chen, W. B.

Z. S. Liu, W. B. Chen, T. L. Zhang, J. W. Hair, C. Y. She, “An incoherent Doppler lidar for ground-based atmospheric wind profiling,” Appl. Phys. B 64, 561–566 (1997).
[CrossRef]

Davydov, M. A.

A. F. Bunkin, M. A. Davydov, A. V. Rezov, A. L. Surovegin, D. Yu. Tsipenyuk, “Helicopter-based lidar complex for emission and fluorescence remote sensing of terrain surfaces,” Laser Phys. 4, 1198–1201 (1994).

Frank, M. W.

Furtek, R.

Galusov, A. S.

V. S. Bucreev, S. K. Vartapetov, I. V. Veselovskii, A. S. Galusov, Y. M. Kovalev, E. S. Svetogorov, S. S. Khmelevtsov, “Combined lidar system for stratospheric and tropospheric ozone measurements,” Appl. Phys. B 62, 97–101 (1996).
[CrossRef]

Hair, J. W.

Z. S. Liu, W. B. Chen, T. L. Zhang, J. W. Hair, C. Y. She, “An incoherent Doppler lidar for ground-based atmospheric wind profiling,” Appl. Phys. B 64, 561–566 (1997).
[CrossRef]

Herrmann, H.

H. E. Jorgensen, T. Mikkelsen, J. Streicher, H. Herrmann, C. Werner, E. Lyck, “Lidar calibration experiments,” Appl. Phys. B 64, 355–361 (1997).
[CrossRef]

Hoge, F. E.

Jorgensen, H. E.

H. E. Jorgensen, T. Mikkelsen, J. Streicher, H. Herrmann, C. Werner, E. Lyck, “Lidar calibration experiments,” Appl. Phys. B 64, 355–361 (1997).
[CrossRef]

Kana, T. M.

Khmelevtsov, S. S.

V. S. Bucreev, S. K. Vartapetov, I. V. Veselovskii, A. S. Galusov, Y. M. Kovalev, E. S. Svetogorov, S. S. Khmelevtsov, “Combined lidar system for stratospheric and tropospheric ozone measurements,” Appl. Phys. B 62, 97–101 (1996).
[CrossRef]

Kovalev, Y. M.

V. S. Bucreev, S. K. Vartapetov, I. V. Veselovskii, A. S. Galusov, Y. M. Kovalev, E. S. Svetogorov, S. S. Khmelevtsov, “Combined lidar system for stratospheric and tropospheric ozone measurements,” Appl. Phys. B 62, 97–101 (1996).
[CrossRef]

Liu, Z. S.

Z. S. Liu, W. B. Chen, T. L. Zhang, J. W. Hair, C. Y. She, “An incoherent Doppler lidar for ground-based atmospheric wind profiling,” Appl. Phys. B 64, 561–566 (1997).
[CrossRef]

Lyck, E.

H. E. Jorgensen, T. Mikkelsen, J. Streicher, H. Herrmann, C. Werner, E. Lyck, “Lidar calibration experiments,” Appl. Phys. B 64, 355–361 (1997).
[CrossRef]

McMirtrey, J. E.

Measures, R. M.

R. M. Measures, Laser Remote Sensing: Fundamentals and Applications (Wiley, New York, 1985).

Mikkelsen, T.

H. E. Jorgensen, T. Mikkelsen, J. Streicher, H. Herrmann, C. Werner, E. Lyck, “Lidar calibration experiments,” Appl. Phys. B 64, 355–361 (1997).
[CrossRef]

Mirkamilov, D. M.

A. F. Bunkin, D. V. Vlasov, D. M. Mirkamilov, Physical Fundamentals of Laser Aerosensing of the Earth’s Surface (Fan, Tashkent, Uzbekistan, 1987), in Russian.

Monin, A. S.

A. S. Monin, Optics of the Ocean (Nauka, Moscow, 1983), in Russian, Vol. 1.

Nielsen, D.

Rezov, A. V.

A. F. Bunkin, M. A. Davydov, A. V. Rezov, A. L. Surovegin, D. Yu. Tsipenyuk, “Helicopter-based lidar complex for emission and fluorescence remote sensing of terrain surfaces,” Laser Phys. 4, 1198–1201 (1994).

She, C. Y.

Z. S. Liu, W. B. Chen, T. L. Zhang, J. W. Hair, C. Y. She, “An incoherent Doppler lidar for ground-based atmospheric wind profiling,” Appl. Phys. B 64, 561–566 (1997).
[CrossRef]

Streicher, J.

H. E. Jorgensen, T. Mikkelsen, J. Streicher, H. Herrmann, C. Werner, E. Lyck, “Lidar calibration experiments,” Appl. Phys. B 64, 355–361 (1997).
[CrossRef]

Surovegin, A. L.

A. F. Bunkin, M. A. Davydov, A. V. Rezov, A. L. Surovegin, D. Yu. Tsipenyuk, “Helicopter-based lidar complex for emission and fluorescence remote sensing of terrain surfaces,” Laser Phys. 4, 1198–1201 (1994).

Svetogorov, E. S.

V. S. Bucreev, S. K. Vartapetov, I. V. Veselovskii, A. S. Galusov, Y. M. Kovalev, E. S. Svetogorov, S. S. Khmelevtsov, “Combined lidar system for stratospheric and tropospheric ozone measurements,” Appl. Phys. B 62, 97–101 (1996).
[CrossRef]

Swift, R. N.

Tsipenyuk, D. Yu.

A. F. Bunkin, M. A. Davydov, A. V. Rezov, A. L. Surovegin, D. Yu. Tsipenyuk, “Helicopter-based lidar complex for emission and fluorescence remote sensing of terrain surfaces,” Laser Phys. 4, 1198–1201 (1994).

Vartapetov, S. K.

V. S. Bucreev, S. K. Vartapetov, I. V. Veselovskii, A. S. Galusov, Y. M. Kovalev, E. S. Svetogorov, S. S. Khmelevtsov, “Combined lidar system for stratospheric and tropospheric ozone measurements,” Appl. Phys. B 62, 97–101 (1996).
[CrossRef]

Veselovskii, I. V.

V. S. Bucreev, S. K. Vartapetov, I. V. Veselovskii, A. S. Galusov, Y. M. Kovalev, E. S. Svetogorov, S. S. Khmelevtsov, “Combined lidar system for stratospheric and tropospheric ozone measurements,” Appl. Phys. B 62, 97–101 (1996).
[CrossRef]

Vlasov, D. V.

A. F. Bunkin, D. V. Vlasov, D. M. Mirkamilov, Physical Fundamentals of Laser Aerosensing of the Earth’s Surface (Fan, Tashkent, Uzbekistan, 1987), in Russian.

Werner, C.

H. E. Jorgensen, T. Mikkelsen, J. Streicher, H. Herrmann, C. Werner, E. Lyck, “Lidar calibration experiments,” Appl. Phys. B 64, 355–361 (1997).
[CrossRef]

Wright, C. W.

Yungel, J. K.

Zhang, T. L.

Z. S. Liu, W. B. Chen, T. L. Zhang, J. W. Hair, C. Y. She, “An incoherent Doppler lidar for ground-based atmospheric wind profiling,” Appl. Phys. B 64, 561–566 (1997).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. B (3)

V. S. Bucreev, S. K. Vartapetov, I. V. Veselovskii, A. S. Galusov, Y. M. Kovalev, E. S. Svetogorov, S. S. Khmelevtsov, “Combined lidar system for stratospheric and tropospheric ozone measurements,” Appl. Phys. B 62, 97–101 (1996).
[CrossRef]

H. E. Jorgensen, T. Mikkelsen, J. Streicher, H. Herrmann, C. Werner, E. Lyck, “Lidar calibration experiments,” Appl. Phys. B 64, 355–361 (1997).
[CrossRef]

Z. S. Liu, W. B. Chen, T. L. Zhang, J. W. Hair, C. Y. She, “An incoherent Doppler lidar for ground-based atmospheric wind profiling,” Appl. Phys. B 64, 561–566 (1997).
[CrossRef]

Laser Phys. (1)

A. F. Bunkin, M. A. Davydov, A. V. Rezov, A. L. Surovegin, D. Yu. Tsipenyuk, “Helicopter-based lidar complex for emission and fluorescence remote sensing of terrain surfaces,” Laser Phys. 4, 1198–1201 (1994).

Other (3)

A. S. Monin, Optics of the Ocean (Nauka, Moscow, 1983), in Russian, Vol. 1.

R. M. Measures, Laser Remote Sensing: Fundamentals and Applications (Wiley, New York, 1985).

A. F. Bunkin, D. V. Vlasov, D. M. Mirkamilov, Physical Fundamentals of Laser Aerosensing of the Earth’s Surface (Fan, Tashkent, Uzbekistan, 1987), in Russian.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Diagram of a fluorescence lidar: 1, rotating mirror; 2, telescope; 3, polychromator with a signal-input unit; 4, 5, CCD arrays with an image intensifier; 6, computer; 7, laser cooling system; 8, laser power supply; 9, Nd:YAG master oscillator; 10, crystals for frequency doubling and tripling.

Fig. 2
Fig. 2

Lidar system in the cabin of the Kamov 32 helicopter.

Fig. 3
Fig. 3

Return-signal spectra of seawater sampled in 1, Ipanema and 2, the Leblon districts of Rio de Janeiro City; 3, spectra of distilled water. Organics is the fluorescence of dissolved organic matter, Raman is the Raman signal from water molecules, and Chlorophyll is the fluorescence of chlorophyll a.

Fig. 4
Fig. 4

Return-signal spectra of 1, soil; 2, tree leaves; 3, seawater.

Fig. 5
Fig. 5

Remote recognition of the type of vegetation by laser-excited fluorescence spectra of (a) 1, deciduous and 2, 3 different palm trees at a distance of approximately 500 m and (b) 1, a palm at 175 m and different deciduous trees at 2, 530 and 3, 500 m.

Fig. 6
Fig. 6

Spectra of seawater (a) excited by the Nd:YAG laser second harmonic and recorded onboard a vessel in the south Atlantic Ocean (vicinity of Port Macaé) at local time (LT); peaks from left to right correspond to the dissolved organic fluorescence, Raman scattering, and chlorophyll fluorescence; concentration of all the organic substances decreases with the offshore distance. (b) Spectra of seawater excited by the laser third harmonic: the spectrum varies rapidly depending on vessel position.

Fig. 7
Fig. 7

Characteristic shape of (a) a backscattered laser pulse and (b) its depth gradient. t 0 represents the gating pulse trailing edge.

Fig. 8
Fig. 8

Vertical profiles of 〈ΔP(k)〉max (solid curves) and 〈ΔP(k)〉min (dashed curves). The sample consists of (a) 447 successive pulses for the 3.8-km helicopter track; (b) 290 pulses (each fifth in the train of 1450 shots); (c) 50 pulses (each third from 150).

Fig. 9
Fig. 9

Different-scale samples that belong to one track: 201 (each third from 603) and 30 pulses (each fiftieth from 1500, where the dash–dot and dotted curves represent 〈ΔP(k)〉max and 〈ΔP(k)〉min, respectively). The vertical dashed curves represent a presumable depth of the strongest light-scattering layer.

Fig. 10
Fig. 10

Vertical temperature profile measured by a thermistor from the research vessel.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

PL=AσLnH+L2exp-2 0L εldl,A=PCτη2nnζ1-ρD sin βtan α2.
ΔPk=Pk+1-PkP1,

Metrics