Abstract

A detailed examination of the nonlinear dynamical behavior of an acousto-optic Bragg cell in the near-Bragg regime of operation for the case of four scattered orders under intensity feedback is carried out. This problem is an extension of the standard ideal-Bragg feedback model whereby traditionally bistability, hysteresis, and chaotic oscillations are observed under zeroth- or first-order feedback of the scattered light. For the present case, the closed-loop equations are developed from a priori knowledge of the open-loop analytical solutions for four-order near-Bragg scattering. The results, obtained via computer simulation, reveal a variety of interesting dynamics, including bistability, bifurcation, hysteresis, chaotic oscillations (including in this case the relatively uncommon period-three behavior, in addition to the more usual period-doubling phenomenon en route to chaos), and potentially useful parametric dependence of these features. The observed results are interpreted in terms of system behavior for varying feedback gain and bias, the so-called Klein-Cook parameter Q, and time delay, and are compared with earlier work based on the ideal Bragg regime.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (21)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription