Abstract

We demonstrate the sensing and correction of an isoplanatic refractive distortion (not lens aberrations), using the complete measurement of the partially coherent field in an aperture that the previously described astigmatic coherence sensor provides. Isoplanatic distortions, and in general distortions that do not cause energy loss, maintain the orthogonality of the coherent modes. We use the fact that a common distortion will occur to all coherent modes to separate the distortion from the source behind it, rather than requiring a reference source at a different wavelength. Digital deconvolution was performed on the full four-dimensional partially coherent field for simultaneously computing the distortion and the source intensity distribution.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. Y. Kwon, “Real-time radial-shear interferometer,” in Adaptive Optics, J. E. Ludman, ed., Proc. SPIE551, 32–35 (1985).
    [CrossRef]
  2. R. N. Smartt, W. H. Steel, “Theory and application of point-diffraction interferometers (telescope testing),” Jpn. J. Appl. Phys. 14, 351–356 (1975).
  3. R. L. Kendrick, D. S. Acton, A. L. Duncan, “Phase-diversity wave-front sensor for imaging systems,” Appl. Opt. 33, 6533–6546 (1994).
    [CrossRef] [PubMed]
  4. R. A. Gonsalves, “Nonisoplanatic imaging by phase diversity,” Opt. Lett. 19, 495–497 (1994).
    [CrossRef]
  5. E. Atad, J. W. Harris, C. M. Humphries, V. C. Salter, “Lateral shearing interferometry. Evaluation and control of the optical performance of astronomical telescopes,” in Advanced Technology Optical Telescopes IV, L. D. Barr, ed., Proc. SPIE1236, 575–584 (1990).
    [CrossRef]
  6. L. E. Schmutz, “Hartmann sensing at Adaptive Optics Associates,” in Electromechanical System Interaction with Optical Design, S. Gowrinathan, ed., Proc. SPIE779, 13–17 (1987).
    [CrossRef]
  7. R. G. Lane, M. Tallon, “Wave-front reconstruction using a Shack-Hartmann sensor,” Appl. Opt. 31, 6902–6908 (1992).
    [CrossRef] [PubMed]
  8. R. C. Cannon, “Global wave-front reconstruction using Shack-Hartmann sensors,” J. Opt. Soc. Am. A 12, 2031–2039 (1995).
    [CrossRef]
  9. R. Benedict, J. B. Breckinridge, D. L. Fried, “Atmospheric compensation technology: Introduction,” J. Opt. Soc. Am. A 11, 257–262 (1994).
    [CrossRef]
  10. W. B. Bridges, P. T. Brunner, S. P. Lazzara, T. A. Nussmeier, T. R. O’Meara, J. A. Sanguinet, W. P. Brown, “Coherent optical adaptive techniques,” Appl. Opt. 13, 291–300 (1974).
    [CrossRef] [PubMed]
  11. C. E. Max, K. Avicola, J. M. Brase, H. W. Friedman, H. D. Bissinger, J. Duff, D. T. Gavel, J. A. Horton, R. Kiefer, “Design, layout, and early results of a feasibility experiment for sodium-layer laser-guide-star adaptive optics,” J. Opt. Soc. Am. A 11, 813–824 (1994).
    [CrossRef]
  12. K. Avicola, J. M. Brase, J. R. Morris, H. D. Bissinger, J. M. Duff, H. W. Friedman, D. T. Gavel, C. E. Max, S. S. Olivier, R. W. Presta, D. A. Rapp, J. T. Salmon, K. E. Waltjen, “Sodium-layer laser-guide-star experimental results,” J. Opt. Soc. Am. A 11, 825–831 (1994).
    [CrossRef]
  13. P. M. Birch, J. Gourlay, G. D. Love, A. Purvis, “Real-time optical aberration correction with a ferroelectric liquid-crystal spatial light modulator,” Appl. Opt. 37, 2164–2169 (1998).
    [CrossRef]
  14. G. D. Love, “Wave-front correction and production of Zernike modes with a liquid-crystal spatial light modulator,” Appl. Opt. 36, 1517–1524 (1997).
    [CrossRef] [PubMed]
  15. V. A. Berenberg, A. A. Leshchev, L. N. Soms, M. V. Vasilev, V. Y. Venediktov, A. P. Onokhov, L. A. Beresbev, “Polychromatic dynamic holographic one-way image correction using liquid crystal SLMs,” Opt. Commun. 166, 181–188 (1999).
    [CrossRef]
  16. J. Primot, G. Rousset, J. C. Fontanella, “Deconvolution from wave-front sensing: a new technique for compensating turbulence-degraded images,” J. Opt. Soc. Am. A 7, 1598–1608 (1990).
    [CrossRef]
  17. D. L. Marks, R. A. Stack, D. J. Brady, “Astigmatic coherence sensor for digital imaging,” Opt. Lett. 25, 1726–1728 (2000).
    [CrossRef]
  18. L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, Cambridge, UK, 1995).
    [CrossRef]
  19. E. Wolf, “New theory of partial coherence in the space-frequency domain. I. Spectra and cross spectra of steady-state sources,” J. Opt. Soc. Am. 72, 343–351 (1982).
    [CrossRef]
  20. G. H. Golub, C. F. Van Loan, Matrix Computations (Johns Hopkins University, Baltimore, Md., 1996).

2000 (1)

1999 (1)

V. A. Berenberg, A. A. Leshchev, L. N. Soms, M. V. Vasilev, V. Y. Venediktov, A. P. Onokhov, L. A. Beresbev, “Polychromatic dynamic holographic one-way image correction using liquid crystal SLMs,” Opt. Commun. 166, 181–188 (1999).
[CrossRef]

1998 (1)

1997 (1)

1995 (1)

1994 (5)

1992 (1)

1990 (1)

1982 (1)

1975 (1)

R. N. Smartt, W. H. Steel, “Theory and application of point-diffraction interferometers (telescope testing),” Jpn. J. Appl. Phys. 14, 351–356 (1975).

1974 (1)

Acton, D. S.

Atad, E.

E. Atad, J. W. Harris, C. M. Humphries, V. C. Salter, “Lateral shearing interferometry. Evaluation and control of the optical performance of astronomical telescopes,” in Advanced Technology Optical Telescopes IV, L. D. Barr, ed., Proc. SPIE1236, 575–584 (1990).
[CrossRef]

Avicola, K.

Benedict, R.

Berenberg, V. A.

V. A. Berenberg, A. A. Leshchev, L. N. Soms, M. V. Vasilev, V. Y. Venediktov, A. P. Onokhov, L. A. Beresbev, “Polychromatic dynamic holographic one-way image correction using liquid crystal SLMs,” Opt. Commun. 166, 181–188 (1999).
[CrossRef]

Beresbev, L. A.

V. A. Berenberg, A. A. Leshchev, L. N. Soms, M. V. Vasilev, V. Y. Venediktov, A. P. Onokhov, L. A. Beresbev, “Polychromatic dynamic holographic one-way image correction using liquid crystal SLMs,” Opt. Commun. 166, 181–188 (1999).
[CrossRef]

Birch, P. M.

Bissinger, H. D.

Brady, D. J.

Brase, J. M.

Breckinridge, J. B.

Bridges, W. B.

Brown, W. P.

Brunner, P. T.

Cannon, R. C.

Duff, J.

Duff, J. M.

Duncan, A. L.

Fontanella, J. C.

Fried, D. L.

Friedman, H. W.

Gavel, D. T.

Golub, G. H.

G. H. Golub, C. F. Van Loan, Matrix Computations (Johns Hopkins University, Baltimore, Md., 1996).

Gonsalves, R. A.

R. A. Gonsalves, “Nonisoplanatic imaging by phase diversity,” Opt. Lett. 19, 495–497 (1994).
[CrossRef]

Gourlay, J.

Harris, J. W.

E. Atad, J. W. Harris, C. M. Humphries, V. C. Salter, “Lateral shearing interferometry. Evaluation and control of the optical performance of astronomical telescopes,” in Advanced Technology Optical Telescopes IV, L. D. Barr, ed., Proc. SPIE1236, 575–584 (1990).
[CrossRef]

Horton, J. A.

Humphries, C. M.

E. Atad, J. W. Harris, C. M. Humphries, V. C. Salter, “Lateral shearing interferometry. Evaluation and control of the optical performance of astronomical telescopes,” in Advanced Technology Optical Telescopes IV, L. D. Barr, ed., Proc. SPIE1236, 575–584 (1990).
[CrossRef]

Kendrick, R. L.

Kiefer, R.

Kwon, O. Y.

O. Y. Kwon, “Real-time radial-shear interferometer,” in Adaptive Optics, J. E. Ludman, ed., Proc. SPIE551, 32–35 (1985).
[CrossRef]

Lane, R. G.

Lazzara, S. P.

Leshchev, A. A.

V. A. Berenberg, A. A. Leshchev, L. N. Soms, M. V. Vasilev, V. Y. Venediktov, A. P. Onokhov, L. A. Beresbev, “Polychromatic dynamic holographic one-way image correction using liquid crystal SLMs,” Opt. Commun. 166, 181–188 (1999).
[CrossRef]

Love, G. D.

Mandel, L.

L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, Cambridge, UK, 1995).
[CrossRef]

Marks, D. L.

Max, C. E.

Morris, J. R.

Nussmeier, T. A.

O’Meara, T. R.

Olivier, S. S.

Onokhov, A. P.

V. A. Berenberg, A. A. Leshchev, L. N. Soms, M. V. Vasilev, V. Y. Venediktov, A. P. Onokhov, L. A. Beresbev, “Polychromatic dynamic holographic one-way image correction using liquid crystal SLMs,” Opt. Commun. 166, 181–188 (1999).
[CrossRef]

Presta, R. W.

Primot, J.

Purvis, A.

Rapp, D. A.

Rousset, G.

Salmon, J. T.

Salter, V. C.

E. Atad, J. W. Harris, C. M. Humphries, V. C. Salter, “Lateral shearing interferometry. Evaluation and control of the optical performance of astronomical telescopes,” in Advanced Technology Optical Telescopes IV, L. D. Barr, ed., Proc. SPIE1236, 575–584 (1990).
[CrossRef]

Sanguinet, J. A.

Schmutz, L. E.

L. E. Schmutz, “Hartmann sensing at Adaptive Optics Associates,” in Electromechanical System Interaction with Optical Design, S. Gowrinathan, ed., Proc. SPIE779, 13–17 (1987).
[CrossRef]

Smartt, R. N.

R. N. Smartt, W. H. Steel, “Theory and application of point-diffraction interferometers (telescope testing),” Jpn. J. Appl. Phys. 14, 351–356 (1975).

Soms, L. N.

V. A. Berenberg, A. A. Leshchev, L. N. Soms, M. V. Vasilev, V. Y. Venediktov, A. P. Onokhov, L. A. Beresbev, “Polychromatic dynamic holographic one-way image correction using liquid crystal SLMs,” Opt. Commun. 166, 181–188 (1999).
[CrossRef]

Stack, R. A.

Steel, W. H.

R. N. Smartt, W. H. Steel, “Theory and application of point-diffraction interferometers (telescope testing),” Jpn. J. Appl. Phys. 14, 351–356 (1975).

Tallon, M.

Van Loan, C. F.

G. H. Golub, C. F. Van Loan, Matrix Computations (Johns Hopkins University, Baltimore, Md., 1996).

Vasilev, M. V.

V. A. Berenberg, A. A. Leshchev, L. N. Soms, M. V. Vasilev, V. Y. Venediktov, A. P. Onokhov, L. A. Beresbev, “Polychromatic dynamic holographic one-way image correction using liquid crystal SLMs,” Opt. Commun. 166, 181–188 (1999).
[CrossRef]

Venediktov, V. Y.

V. A. Berenberg, A. A. Leshchev, L. N. Soms, M. V. Vasilev, V. Y. Venediktov, A. P. Onokhov, L. A. Beresbev, “Polychromatic dynamic holographic one-way image correction using liquid crystal SLMs,” Opt. Commun. 166, 181–188 (1999).
[CrossRef]

Waltjen, K. E.

Wolf, E.

Appl. Opt. (5)

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (5)

Jpn. J. Appl. Phys. (1)

R. N. Smartt, W. H. Steel, “Theory and application of point-diffraction interferometers (telescope testing),” Jpn. J. Appl. Phys. 14, 351–356 (1975).

Opt. Commun. (1)

V. A. Berenberg, A. A. Leshchev, L. N. Soms, M. V. Vasilev, V. Y. Venediktov, A. P. Onokhov, L. A. Beresbev, “Polychromatic dynamic holographic one-way image correction using liquid crystal SLMs,” Opt. Commun. 166, 181–188 (1999).
[CrossRef]

Opt. Lett. (2)

R. A. Gonsalves, “Nonisoplanatic imaging by phase diversity,” Opt. Lett. 19, 495–497 (1994).
[CrossRef]

D. L. Marks, R. A. Stack, D. J. Brady, “Astigmatic coherence sensor for digital imaging,” Opt. Lett. 25, 1726–1728 (2000).
[CrossRef]

Other (5)

E. Atad, J. W. Harris, C. M. Humphries, V. C. Salter, “Lateral shearing interferometry. Evaluation and control of the optical performance of astronomical telescopes,” in Advanced Technology Optical Telescopes IV, L. D. Barr, ed., Proc. SPIE1236, 575–584 (1990).
[CrossRef]

L. E. Schmutz, “Hartmann sensing at Adaptive Optics Associates,” in Electromechanical System Interaction with Optical Design, S. Gowrinathan, ed., Proc. SPIE779, 13–17 (1987).
[CrossRef]

O. Y. Kwon, “Real-time radial-shear interferometer,” in Adaptive Optics, J. E. Ludman, ed., Proc. SPIE551, 32–35 (1985).
[CrossRef]

L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, Cambridge, UK, 1995).
[CrossRef]

G. H. Golub, C. F. Van Loan, Matrix Computations (Johns Hopkins University, Baltimore, Md., 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Diagram of the setup of the source and ACS.

Fig. 2
Fig. 2

Test object and reference viewed with a spherical lens with distortion.

Fig. 3
Fig. 3

Real part of the analytic field of the distortion as determined by coherent-mode expansion, sampled to a 64 × 64 grid of 96-µm resolution.

Fig. 4
Fig. 4

Intensity of test object and reference viewed after the partially coherent field has the conjugate distortion applied to it, sampled to a 64 × 64 grid at 1.02 × 10-4 rad resolution.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

z2Ixz, yz, 1fx-1z, 1fy-1z=12AA×JΔx, Δy, qx, qy|ΔxΔy|expi 2πλ4qx1fx-1z+4qy1fy-1zexp-i2πλz-4xΔx-4yΔy×dqxdqydΔxdΔy,
ϕr2=λkA ϕr1Jr1, r2dr1ϕj=λki ϕiJri-rj, ri+rj2,
ϕx, y=ϕ1*x, y|ϕ1x, y|+0.01ϕmax.
JΔx, Δy, xˆΔx, ŷΔy=JΔx, Δy, xˆΔx, ŷΔyϕxˆ-Δx,-Δy× ϕ*xˆ+Δx, ŷ+Δy/|ΔxΔy|.

Metrics