Abstract

We propose an optical apparatus enabling the measurement of spherical power, cylindrical power, and optical center coordinates of ophthalmic lenses. The main advantage of this new focimeter is to provide a full bidimensional mapping of the characteristics of ophthalmic glasses. This is made possible thanks to the use of a large-area and high-resolution position-sensitive detector. We describe the measurement principle and present some typical mappings, particularly for progressive lenses. We then discuss the advantages in terms of speed and versatility of such a focimeter for the measurement of complex lens mappings.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Shalon, M. L. Pund, “Automated lensometer,” U.S. Patent5,331,394 (19July1994).
  2. J.-P. Lormois, “Automatic topographic lensmeter,” French Patent372,575,99Luneau (February1994).
  3. L. Liu, “Contour mapping of spectacle lenses,” Optom. Vision Sci. 71, 265–272 (1994).
    [CrossRef]
  4. T. Spiers, C. C. Hull, “Optical Fourier filtering for whole lens assessment of progressive power lenses,” Ophthalmic Physiol. Opt. 20, 281–289 (2000).
    [CrossRef] [PubMed]
  5. P. Simonet, Y. Papineau, D. Gordon, “A scanning focimeter to measure the peripheral lens powers,” Ophthalmic Physiol. Opt. 3, 305–310 (1993).
    [CrossRef]
  6. D. A. Atchison, M. Kris, “Off-axis measurements of plano distance power progressive addition lens,” Ophthalmic Physiol. Opt. 13, 322–326 (1993).
    [CrossRef] [PubMed]
  7. J. E. Sheedy, I. L. Bayley, J. Azus, I. M. Borish, “Optics of progressive addition lenses,” Am. J. Optom. Physiol. Opt. 64, 90–99 (1987).
    [CrossRef] [PubMed]
  8. C. W. Fowler, C. M. Sullivan, “A comparison of three methods for the measurement of progressive addition lenses,” Ophthalmic Physiol. Opt. 9, 81–85 (1989).
    [CrossRef] [PubMed]
  9. W. Mohr, “Interferometry and progressive lenses,” Optométrie 2, 31–35 (1989).
  10. D. Malacara, Z. Malacara, “Testing and centering of lenses by means of a Hartmann test with four holes,” Opt. Eng. 31, 1551–1555 (1992).
    [CrossRef]
  11. C. Castellini, F. Francini, B. Tribilli, “Hartmann test modification for measuring ophthalmic progressive lenses,” Appl. Opt. 33, 4120–4124 (1994).
    [CrossRef] [PubMed]
  12. K. Gnanvo, Z. Y. Wu, A. Labouret, “The current-position response of a a-Si:H thin film position sensitive detector and the Rload and RTCO effect on it,” Solid State Electron. 44, 1191–1195 (2000).
    [CrossRef]
  13. K. Gnanvo, Z. Y. Wu, “Calibration of a two dimensional hydrogenated amorphous silicon thin film position sensitive detector (2-D a-Si:H TF PSD),” submitted to Eur. Phys. J. Appl. Phys.

2000

T. Spiers, C. C. Hull, “Optical Fourier filtering for whole lens assessment of progressive power lenses,” Ophthalmic Physiol. Opt. 20, 281–289 (2000).
[CrossRef] [PubMed]

K. Gnanvo, Z. Y. Wu, A. Labouret, “The current-position response of a a-Si:H thin film position sensitive detector and the Rload and RTCO effect on it,” Solid State Electron. 44, 1191–1195 (2000).
[CrossRef]

1994

1993

P. Simonet, Y. Papineau, D. Gordon, “A scanning focimeter to measure the peripheral lens powers,” Ophthalmic Physiol. Opt. 3, 305–310 (1993).
[CrossRef]

D. A. Atchison, M. Kris, “Off-axis measurements of plano distance power progressive addition lens,” Ophthalmic Physiol. Opt. 13, 322–326 (1993).
[CrossRef] [PubMed]

1992

D. Malacara, Z. Malacara, “Testing and centering of lenses by means of a Hartmann test with four holes,” Opt. Eng. 31, 1551–1555 (1992).
[CrossRef]

1989

C. W. Fowler, C. M. Sullivan, “A comparison of three methods for the measurement of progressive addition lenses,” Ophthalmic Physiol. Opt. 9, 81–85 (1989).
[CrossRef] [PubMed]

W. Mohr, “Interferometry and progressive lenses,” Optométrie 2, 31–35 (1989).

1987

J. E. Sheedy, I. L. Bayley, J. Azus, I. M. Borish, “Optics of progressive addition lenses,” Am. J. Optom. Physiol. Opt. 64, 90–99 (1987).
[CrossRef] [PubMed]

Atchison, D. A.

D. A. Atchison, M. Kris, “Off-axis measurements of plano distance power progressive addition lens,” Ophthalmic Physiol. Opt. 13, 322–326 (1993).
[CrossRef] [PubMed]

Azus, J.

J. E. Sheedy, I. L. Bayley, J. Azus, I. M. Borish, “Optics of progressive addition lenses,” Am. J. Optom. Physiol. Opt. 64, 90–99 (1987).
[CrossRef] [PubMed]

Bayley, I. L.

J. E. Sheedy, I. L. Bayley, J. Azus, I. M. Borish, “Optics of progressive addition lenses,” Am. J. Optom. Physiol. Opt. 64, 90–99 (1987).
[CrossRef] [PubMed]

Borish, I. M.

J. E. Sheedy, I. L. Bayley, J. Azus, I. M. Borish, “Optics of progressive addition lenses,” Am. J. Optom. Physiol. Opt. 64, 90–99 (1987).
[CrossRef] [PubMed]

Castellini, C.

Fowler, C. W.

C. W. Fowler, C. M. Sullivan, “A comparison of three methods for the measurement of progressive addition lenses,” Ophthalmic Physiol. Opt. 9, 81–85 (1989).
[CrossRef] [PubMed]

Francini, F.

Gnanvo, K.

K. Gnanvo, Z. Y. Wu, A. Labouret, “The current-position response of a a-Si:H thin film position sensitive detector and the Rload and RTCO effect on it,” Solid State Electron. 44, 1191–1195 (2000).
[CrossRef]

K. Gnanvo, Z. Y. Wu, “Calibration of a two dimensional hydrogenated amorphous silicon thin film position sensitive detector (2-D a-Si:H TF PSD),” submitted to Eur. Phys. J. Appl. Phys.

Gordon, D.

P. Simonet, Y. Papineau, D. Gordon, “A scanning focimeter to measure the peripheral lens powers,” Ophthalmic Physiol. Opt. 3, 305–310 (1993).
[CrossRef]

Hull, C. C.

T. Spiers, C. C. Hull, “Optical Fourier filtering for whole lens assessment of progressive power lenses,” Ophthalmic Physiol. Opt. 20, 281–289 (2000).
[CrossRef] [PubMed]

Kris, M.

D. A. Atchison, M. Kris, “Off-axis measurements of plano distance power progressive addition lens,” Ophthalmic Physiol. Opt. 13, 322–326 (1993).
[CrossRef] [PubMed]

Labouret, A.

K. Gnanvo, Z. Y. Wu, A. Labouret, “The current-position response of a a-Si:H thin film position sensitive detector and the Rload and RTCO effect on it,” Solid State Electron. 44, 1191–1195 (2000).
[CrossRef]

Liu, L.

L. Liu, “Contour mapping of spectacle lenses,” Optom. Vision Sci. 71, 265–272 (1994).
[CrossRef]

Lormois, J.-P.

J.-P. Lormois, “Automatic topographic lensmeter,” French Patent372,575,99Luneau (February1994).

Malacara, D.

D. Malacara, Z. Malacara, “Testing and centering of lenses by means of a Hartmann test with four holes,” Opt. Eng. 31, 1551–1555 (1992).
[CrossRef]

Malacara, Z.

D. Malacara, Z. Malacara, “Testing and centering of lenses by means of a Hartmann test with four holes,” Opt. Eng. 31, 1551–1555 (1992).
[CrossRef]

Mohr, W.

W. Mohr, “Interferometry and progressive lenses,” Optométrie 2, 31–35 (1989).

Papineau, Y.

P. Simonet, Y. Papineau, D. Gordon, “A scanning focimeter to measure the peripheral lens powers,” Ophthalmic Physiol. Opt. 3, 305–310 (1993).
[CrossRef]

Pund, M. L.

T. Shalon, M. L. Pund, “Automated lensometer,” U.S. Patent5,331,394 (19July1994).

Shalon, T.

T. Shalon, M. L. Pund, “Automated lensometer,” U.S. Patent5,331,394 (19July1994).

Sheedy, J. E.

J. E. Sheedy, I. L. Bayley, J. Azus, I. M. Borish, “Optics of progressive addition lenses,” Am. J. Optom. Physiol. Opt. 64, 90–99 (1987).
[CrossRef] [PubMed]

Simonet, P.

P. Simonet, Y. Papineau, D. Gordon, “A scanning focimeter to measure the peripheral lens powers,” Ophthalmic Physiol. Opt. 3, 305–310 (1993).
[CrossRef]

Spiers, T.

T. Spiers, C. C. Hull, “Optical Fourier filtering for whole lens assessment of progressive power lenses,” Ophthalmic Physiol. Opt. 20, 281–289 (2000).
[CrossRef] [PubMed]

Sullivan, C. M.

C. W. Fowler, C. M. Sullivan, “A comparison of three methods for the measurement of progressive addition lenses,” Ophthalmic Physiol. Opt. 9, 81–85 (1989).
[CrossRef] [PubMed]

Tribilli, B.

Wu, Z. Y.

K. Gnanvo, Z. Y. Wu, A. Labouret, “The current-position response of a a-Si:H thin film position sensitive detector and the Rload and RTCO effect on it,” Solid State Electron. 44, 1191–1195 (2000).
[CrossRef]

K. Gnanvo, Z. Y. Wu, “Calibration of a two dimensional hydrogenated amorphous silicon thin film position sensitive detector (2-D a-Si:H TF PSD),” submitted to Eur. Phys. J. Appl. Phys.

Am. J. Optom. Physiol. Opt.

J. E. Sheedy, I. L. Bayley, J. Azus, I. M. Borish, “Optics of progressive addition lenses,” Am. J. Optom. Physiol. Opt. 64, 90–99 (1987).
[CrossRef] [PubMed]

Appl. Opt.

Ophthalmic Physiol. Opt.

C. W. Fowler, C. M. Sullivan, “A comparison of three methods for the measurement of progressive addition lenses,” Ophthalmic Physiol. Opt. 9, 81–85 (1989).
[CrossRef] [PubMed]

T. Spiers, C. C. Hull, “Optical Fourier filtering for whole lens assessment of progressive power lenses,” Ophthalmic Physiol. Opt. 20, 281–289 (2000).
[CrossRef] [PubMed]

P. Simonet, Y. Papineau, D. Gordon, “A scanning focimeter to measure the peripheral lens powers,” Ophthalmic Physiol. Opt. 3, 305–310 (1993).
[CrossRef]

D. A. Atchison, M. Kris, “Off-axis measurements of plano distance power progressive addition lens,” Ophthalmic Physiol. Opt. 13, 322–326 (1993).
[CrossRef] [PubMed]

Opt. Eng.

D. Malacara, Z. Malacara, “Testing and centering of lenses by means of a Hartmann test with four holes,” Opt. Eng. 31, 1551–1555 (1992).
[CrossRef]

Optom. Vision Sci.

L. Liu, “Contour mapping of spectacle lenses,” Optom. Vision Sci. 71, 265–272 (1994).
[CrossRef]

Optométrie

W. Mohr, “Interferometry and progressive lenses,” Optométrie 2, 31–35 (1989).

Solid State Electron.

K. Gnanvo, Z. Y. Wu, A. Labouret, “The current-position response of a a-Si:H thin film position sensitive detector and the Rload and RTCO effect on it,” Solid State Electron. 44, 1191–1195 (2000).
[CrossRef]

Other

K. Gnanvo, Z. Y. Wu, “Calibration of a two dimensional hydrogenated amorphous silicon thin film position sensitive detector (2-D a-Si:H TF PSD),” submitted to Eur. Phys. J. Appl. Phys.

T. Shalon, M. L. Pund, “Automated lensometer,” U.S. Patent5,331,394 (19July1994).

J.-P. Lormois, “Automatic topographic lensmeter,” French Patent372,575,99Luneau (February1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Principle of the large-area automatic focimeter and view of the experimental setup.

Fig. 2
Fig. 2

Measurement of the local optical properties at point P 0 of the test lens by use of four points in the P 0 neighborhood.

Fig. 3
Fig. 3

Three-dimensional view of the large-area 2-D a-Si:HTFPSD and illustration of the photolateral effect.

Fig. 4
Fig. 4

Two-dimensional surface of the error between calculated coordinates X(x, y) (mm) and real spot coordinates x(mm) of the measured positions within the PSD calibrated area (a) before and (b) after calibration.

Fig. 5
Fig. 5

(a) Isosphere and (b) isocylinder graphs over a 15 mm × 15 mm area of a spherical lens. The mean values are (a) 4.67 and (b) 0.45. The standard deviations are (a) 0.09 and (b) 0.08, and the power in diopters is (a) spherical and (b) cylindrical.

Fig. 6
Fig. 6

(a) Isosphere and (b) isocylinder graphs over a 20 mm × 20 mm area of a spherocylindrical lens. The mean values are (a) -2.15 and (b) 0.66. The standard deviations are (a) 0.07 and (b) 0.10, and the power in diopters is (a) spherical and (b) cylindrical.

Fig. 7
Fig. 7

Mapping of (a) the spherical power of a bifocal lens and (b) its associated isosphere graph over a 30 mm × 30 mm area.

Fig. 8
Fig. 8

Mapping of (a) the spherical and (b) the cylindrical power of a progressive lens over a 30 mm × 30 mm area.

Fig. 9
Fig. 9

Errors of the calculated spherical powers according to (a) the PSD resolution for several spherical power lenses and (b) the step Δ for a given PSD resolution.

Tables (1)

Tables Icon

Table 1 Specifications for Ophthalmic Lenses According to the French National Standard

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

W=Px cosϕ+y sinϕ+0.5Sx2+y2+0.5C[x sinθ+y cosθ]2+Bx cosβ+y sinβ,
tan θxi=xifL, tan θyi=yifL,
a1=tan θx1-tan θx32Δ,a2=tan θx4-tan θx22Δb1=tan θy4-tan θy22Δ,b2=tan θy1-tan θy32Δ,c1=tan θx1+tan θx32,c2=tan θx4+tan θx22,d1=tan θy4+tan θy22,d2=tan θy1+tan θy32,e=a1x+a2+b2y2-c1,f=b1y+a2+b2x2-d1.
x0=b1e-a2+b22 fa1b1-a2+b222, y0=a1f-a2+b22 ea1b1-a2+b222.
tan 2θ=a2+b2a1-b1.
C=1000a2+b2sin 2θ=1000a1-b12+a2+b221/2.
S=-1000a1+b12+C2.
tan ϕ=c1/d1.
ΔP=100c12+d12.
Xx, y=L2IX2x, y-IX1x, yIX2x, y+IX1x, y, Yx, y=L2IY2x, y-IY1x, yIY2x, y+IY1x, y.

Metrics