Abstract

A new type of Faraday effect optical current transformer has been developed that uses a single block of square flint glass with dielectric-coated total reflection surfaces as the sensing element. Numerical calculation has shown that the coating of two dielectric layers of 45.59-nm-thick Ta2O5 and 448.35-nm-thick SiO2 films on a flint glass surface produces zero retardation total reflection for the 45° incident angle of light at λ = 840 nm with great incident angle, wavelength, and film thickness tolerances. A fiber-linked current transformer has been constructed and experimentally demonstrated to exhibit high isolation from surrounding currents as well as high stability against mechanical disturbances.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Yoshino, Y. Takahashi, T. Simoyama, “Accurate Faraday effect current sensor,” in Advances in Optical Fiber Sensors, B. Culshaw, E. L. Moore, Z. Zhang, eds. (SPIE Press, Bellingham, Wash., 1992), pp. 208–217.
  2. T. Yoshino, M. Gojuki, Y. Takahashi, T. Shimoyama, “Single glass block Faraday effect current sensor with homogeneous isotropic closed optical circuit,” Appl. Opt. 36, 5566–5573 (1997).
    [CrossRef] [PubMed]
  3. K. B. Rochford, A. H. Rose, M. N. Deeter, G. W. Day, “Faraday effect current sensor with improved sensitivity-bandwidth product,” Opt. Lett. 19, 1903–1905 (1994).
    [CrossRef]
  4. J. H. Apfel, “Phase retardance of periodic multiplayer mirrors,” Appl. Opt. 21, 733–738 (1982).
    [CrossRef] [PubMed]
  5. P. G. Kard, “On the influence of thin films on total reflection,” Opt. Sepctrosc. 51, 339–341 (1959).
  6. M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1964), p. 49.
  7. Ref. 6, p. 62.

1997 (1)

1994 (1)

1982 (1)

1959 (1)

P. G. Kard, “On the influence of thin films on total reflection,” Opt. Sepctrosc. 51, 339–341 (1959).

Apfel, J. H.

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1964), p. 49.

Day, G. W.

Deeter, M. N.

Gojuki, M.

Kard, P. G.

P. G. Kard, “On the influence of thin films on total reflection,” Opt. Sepctrosc. 51, 339–341 (1959).

Rochford, K. B.

Rose, A. H.

Shimoyama, T.

Simoyama, T.

T. Yoshino, Y. Takahashi, T. Simoyama, “Accurate Faraday effect current sensor,” in Advances in Optical Fiber Sensors, B. Culshaw, E. L. Moore, Z. Zhang, eds. (SPIE Press, Bellingham, Wash., 1992), pp. 208–217.

Takahashi, Y.

T. Yoshino, M. Gojuki, Y. Takahashi, T. Shimoyama, “Single glass block Faraday effect current sensor with homogeneous isotropic closed optical circuit,” Appl. Opt. 36, 5566–5573 (1997).
[CrossRef] [PubMed]

T. Yoshino, Y. Takahashi, T. Simoyama, “Accurate Faraday effect current sensor,” in Advances in Optical Fiber Sensors, B. Culshaw, E. L. Moore, Z. Zhang, eds. (SPIE Press, Bellingham, Wash., 1992), pp. 208–217.

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1964), p. 49.

Yoshino, T.

T. Yoshino, M. Gojuki, Y. Takahashi, T. Shimoyama, “Single glass block Faraday effect current sensor with homogeneous isotropic closed optical circuit,” Appl. Opt. 36, 5566–5573 (1997).
[CrossRef] [PubMed]

T. Yoshino, Y. Takahashi, T. Simoyama, “Accurate Faraday effect current sensor,” in Advances in Optical Fiber Sensors, B. Culshaw, E. L. Moore, Z. Zhang, eds. (SPIE Press, Bellingham, Wash., 1992), pp. 208–217.

Appl. Opt. (2)

Opt. Lett. (1)

Opt. Sepctrosc. (1)

P. G. Kard, “On the influence of thin films on total reflection,” Opt. Sepctrosc. 51, 339–341 (1959).

Other (3)

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1964), p. 49.

Ref. 6, p. 62.

T. Yoshino, Y. Takahashi, T. Simoyama, “Accurate Faraday effect current sensor,” in Advances in Optical Fiber Sensors, B. Culshaw, E. L. Moore, Z. Zhang, eds. (SPIE Press, Bellingham, Wash., 1992), pp. 208–217.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Medium structure of two thin-film-coated total reflection surfaces.

Fig. 2
Fig. 2

Calculated incident angle θ0 dependent on retardation Γ.

Fig. 3
Fig. 3

Calculated wavelength λ dependent on retardation Γ.

Fig. 4
Fig. 4

Measured polarization characteristics of the Faraday cell.

Fig. 5
Fig. 5

Current sensor system.

Fig. 6
Fig. 6

Measured current characteristics of the OCT.

Fig. 7
Fig. 7

Measured isolation ratio ρ at different angular positions of the outside current.

Fig. 8
Fig. 8

Measured weight characteristics of the Faraday cell. The units for dc and ac signals are different.

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

Γ=0,
dΓ/dδk=0,
δk=4π/λnkdk cos θk
R1,j=exp iΦ1,j,
R2,j=exp iΦ2,j,
R3,j=exp iΦ3,j,
Φ3,j=Δj,
tanΔs/2=-sin2 θ2-1/n221/2/cos θ2,
tanΔp/2=-n22sin2 θ2-1/n221/2/cos θ2,
n0 sin θ0=n1 sin θ1=n2 sin θ2.
R2,j=r2,j+expiΦ3,jexpiδ2/1+r2,j×expiΦ3,jexpiδ2, =exp iΦ3,j+δ21+r2,j exp-iΦ3,j+δ2/1+r2,j exp iΦ3,j+δ2, =exp iΦ3,j+δ2+α2,j,
Φ2,j=Φ3,j+δ2+α2,j,
tanα2,j/2=-r2,j sinΦ3,j+δ2/1+r2,j×cosΦ3,j+δ2,
δ2=4π/λn2d2 cos θ2,
Φ1,j=Φ2,j+δ1+α1,j,
tanα1,j/2=-r1,j sinΦ2,j+δ1/1+r1,j×cosΦ2,j+δ1,
δ1=4π/λn1d1 cos θ1,
Γ=Φ1,s-Φ1,p,
Γ=Δs-Δp+α1,s-α1,p+α2,s-α2,p.

Metrics