Abstract

We compare wave-front measurements using double-exposure digital holography and a Shack-Hartmann sensor. A voltage-driven liquid-crystal wedge modulates the optical wave front and provides a refractive-index gradient typical of interesting transparent materials. Measurement accuracy and reliability are similar for both methods. In our opinion, digital holographic interferometry has several advantages for both laboratory and field environments. When compared with Shack-Hartmann methods, these advantages include hardware simplicity and robustness, relative insensitivity to sample dynamic range, and less computational demanding and more straightforward data evaluation algorithms. We believe that digital holography provides the methodology of choice for field studies of transparent materials such as microgravity protein crystal growth experiments.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. B. Owen, “Interferometry and holography in a low-gravity environment,” Appl. Opt. 21, 1349–1355 (1982).
    [CrossRef] [PubMed]
  2. M. H. Johnston, R. B. Owen, “Optical observations of unidirectional solidification in microgravity,” Metall. Trans. A 14, 2163–2167 (1983).
    [CrossRef]
  3. R. B. Owen, R. L. Kroes, W. K. Witherow, “Results and further experiments using Spacelab holography,” Opt. Lett. 11, 407–409 (1986).
    [CrossRef] [PubMed]
  4. R. V. Shack, J. D. Rancourt, H. Morrow, “Effects of dilution on a six-element synthetic aperture,” Appl. Opt. 10, 257–259 (1971).
    [CrossRef] [PubMed]
  5. U. Schnars, “Direct phase determination in hologram interferometry with use of digitally recorded holograms,” J. Opt. Soc. Am. A 11, 2011–2015 (1994).
    [CrossRef]
  6. U. Schnars, W. P. O. Jüptner, “Digital recording and reconstruction of holograms in holographic interferometry and shearography,” Appl. Opt. 33, 4373–4377 (1994).
    [CrossRef] [PubMed]
  7. R. B. Owen, A. A. Zozulya, M. R. Benoit, D. M. Klaus, “Microgravity materials and life sciences research applications of digital holography,” Appl. Opt. 41, 3927–3935 (2002).
    [CrossRef] [PubMed]
  8. J. Pfund, N. Lindlein, J. Schwider, R. Burow, Th. Blümel, K.-E. Elssner, “Absolute sphericity measurement: a comparative study of the use of interferometry and a Shack–Hartmann sensor,” Opt. Lett. 23, 742–744 (1998).
    [CrossRef]
  9. J. A. Koch, R. W. Presta, R. A. Sacks, R. A. Zacharias, E. S. Bliss, M. J. Dailey, M. Feldman, A. A. Grey, F. R. Holdener, J. T. Salmon, L. G. Seppala, J. S. Toeppen, L. Van Atta, B. M. Van Wonterghem, W. T. Whistler, S. E. Winters, B. W. Woods, “Experimental comparison of a Shack-Hartmann sensor and a phase-shifting interferometer for large-optics metrology applications,” Appl. Opt. 39, 4540–4546 (2000).
    [CrossRef]
  10. S. Groening, B. Sick, K. Donner, J. Pfund, N. Lindelein, J. Schwider, “Wave-front reconstruction with a Shack-Hartmann sensor with an iterative spline fitting method,” Appl. Opt. 39, 561–567 (2000).
    [CrossRef]
  11. L. E. Schmutz, B. M. Levine, “Hartmann sensors detect optical fabrication errors,” Laser Focus World 32(4), 111–117 (1996).
  12. J. Pfund, N. Lindlein, J. Schwider, “Dynamic range expansion of a Shack–Hartmann sensor by use of a modified unwrapping algorithm,” Opt. Lett. 23, 995–997 (1998).
    [CrossRef]
  13. R. B. Owen, A. A. Zozulya, “In-line digital holographic sensor for monitoring and characterizing marine particulates,” Opt. Eng. 39, 2187–2197 (2000).
    [CrossRef]

2002

2000

1998

1996

L. E. Schmutz, B. M. Levine, “Hartmann sensors detect optical fabrication errors,” Laser Focus World 32(4), 111–117 (1996).

1994

1986

1983

M. H. Johnston, R. B. Owen, “Optical observations of unidirectional solidification in microgravity,” Metall. Trans. A 14, 2163–2167 (1983).
[CrossRef]

1982

1971

Benoit, M. R.

Bliss, E. S.

Blümel, Th.

Burow, R.

Dailey, M. J.

Donner, K.

Elssner, K.-E.

Feldman, M.

Grey, A. A.

Groening, S.

Holdener, F. R.

Johnston, M. H.

M. H. Johnston, R. B. Owen, “Optical observations of unidirectional solidification in microgravity,” Metall. Trans. A 14, 2163–2167 (1983).
[CrossRef]

Jüptner, W. P. O.

Klaus, D. M.

Koch, J. A.

Kroes, R. L.

Levine, B. M.

L. E. Schmutz, B. M. Levine, “Hartmann sensors detect optical fabrication errors,” Laser Focus World 32(4), 111–117 (1996).

Lindelein, N.

Lindlein, N.

Morrow, H.

Owen, R. B.

Pfund, J.

Presta, R. W.

Rancourt, J. D.

Sacks, R. A.

Salmon, J. T.

Schmutz, L. E.

L. E. Schmutz, B. M. Levine, “Hartmann sensors detect optical fabrication errors,” Laser Focus World 32(4), 111–117 (1996).

Schnars, U.

Schwider, J.

Seppala, L. G.

Shack, R. V.

Sick, B.

Toeppen, J. S.

Van Atta, L.

Van Wonterghem, B. M.

Whistler, W. T.

Winters, S. E.

Witherow, W. K.

Woods, B. W.

Zacharias, R. A.

Zozulya, A. A.

R. B. Owen, A. A. Zozulya, M. R. Benoit, D. M. Klaus, “Microgravity materials and life sciences research applications of digital holography,” Appl. Opt. 41, 3927–3935 (2002).
[CrossRef] [PubMed]

R. B. Owen, A. A. Zozulya, “In-line digital holographic sensor for monitoring and characterizing marine particulates,” Opt. Eng. 39, 2187–2197 (2000).
[CrossRef]

Appl. Opt.

J. Opt. Soc. Am. A

Laser Focus World

L. E. Schmutz, B. M. Levine, “Hartmann sensors detect optical fabrication errors,” Laser Focus World 32(4), 111–117 (1996).

Metall. Trans. A

M. H. Johnston, R. B. Owen, “Optical observations of unidirectional solidification in microgravity,” Metall. Trans. A 14, 2163–2167 (1983).
[CrossRef]

Opt. Eng.

R. B. Owen, A. A. Zozulya, “In-line digital holographic sensor for monitoring and characterizing marine particulates,” Opt. Eng. 39, 2187–2197 (2000).
[CrossRef]

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Upper part shows the arrangement used to produce the interferometric color bands that can be seen in the lower part. The driver potential direction and the wedge major axis are perpendicular to the color bands. There is little change in phase modulation perpendicular to the wedge major axis.

Fig. 2
Fig. 2

Digital holographic hardware geometry.

Fig. 3
Fig. 3

Typical phase difference map measured by double-exposure digital holographic interferometry.

Fig. 4
Fig. 4

Wave-front tilt introduced by the liquid-crystal wedge.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ϕr, t=knr, td=2πλ nd.
Δϕ=kdnr, t1-nr, t2=kdδn.

Metrics