Abstract

A compact configuration for a coarse wavelength-division multiplexer (CWDM) and a coarse wavelength-division demultiplexer (CWDDM) that are based on reflection volume phase gratings is formed. The design and calculated results for four-channel CWDM and CWDDM configurations in the region near 800 nm are presented. Theoretical predictions are experimentally verified with a four-channel CWDDM whose channels are centered at 775, 800, 825, and 850 nm.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Kazovsky, “Multichannel systems,” in Optical Fiber Communication Systems, S. Benedetto, A. Willner, eds. (Artech House, Norwood, Mass., 1996), pp. 513–616.
  2. H. Taga, “Long distance transmission experiments using the WDM technology,” J. Lightwave Technol. 14, 1287–1298 (1996).
    [CrossRef]
  3. J. J. Petiote, “Low-cost components give coarse WDM an edge,” in WDM Solutions (January2001), pp. 47–51.
  4. J. Minowo, Y. Fuji, “Dielectric multilayer thin-film filters for WDM transmission systems,” J. Lightwave Technol. LT-1, 116–121 (1983).
    [CrossRef]
  5. Y. T. Huang, D. C. Su, Y. K. Tsai, “Wavelength-division-multiplexing and -demultiplexing by using a substrate-mode grating pair,” Opt. Lett. 17, 629–1631 (1992).
    [CrossRef]
  6. M. M. Li, R. T. Chen, “Five-channel surface-normal wavelength-division demultiplexer using substrate-guided waves in conjunction with a polymer-based Littrow hologram,” Opt. Lett. 20, 797–799 (1995).
    [CrossRef] [PubMed]
  7. Y. K. Tsai, Y. T. Huang, D. C. Su, “Multiband wavelength-division demultiplexing with a cascaded substrate-mode grating structure,” Appl. Opt. 34, 5582–5588 (1995).
    [CrossRef] [PubMed]
  8. Y. Amitai, “Design of wavelength-division multiplexing/demultiplexing using substrate-mode holographic elements,” Opt. Commun. 98, 24–28 (1993).
    [CrossRef]
  9. Y-K. Tsai, Y.-T. Huang, D. C. Su, “A reflection-type substrate-mode grating structure for wavelength-division-multi/demultiplexing,” Optik (Stuttgart) 97, 62–69 (1994).
  10. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
    [CrossRef]
  11. L. Dhar, A. Hale, “Recording media that exhibit high dynamic range for digital holographic data storage,” Opt. Lett. 24, 487–489 (1999).
    [CrossRef]
  12. B. L. Booth, “Photopolymer material for holography,” Appl. Opt. 14, 593–601 (1975).
    [CrossRef] [PubMed]
  13. W. K. Smothers, B. M. Monroe, A. M. Weber, D. E. Keys, “Photopolymers for holography,” in Practical Holography IV, S. A. Benton, ed., Proc. SPIE1212, 20–29 (1990).
    [CrossRef]

1999

1996

H. Taga, “Long distance transmission experiments using the WDM technology,” J. Lightwave Technol. 14, 1287–1298 (1996).
[CrossRef]

1995

1994

Y-K. Tsai, Y.-T. Huang, D. C. Su, “A reflection-type substrate-mode grating structure for wavelength-division-multi/demultiplexing,” Optik (Stuttgart) 97, 62–69 (1994).

1993

Y. Amitai, “Design of wavelength-division multiplexing/demultiplexing using substrate-mode holographic elements,” Opt. Commun. 98, 24–28 (1993).
[CrossRef]

1992

Y. T. Huang, D. C. Su, Y. K. Tsai, “Wavelength-division-multiplexing and -demultiplexing by using a substrate-mode grating pair,” Opt. Lett. 17, 629–1631 (1992).
[CrossRef]

1983

J. Minowo, Y. Fuji, “Dielectric multilayer thin-film filters for WDM transmission systems,” J. Lightwave Technol. LT-1, 116–121 (1983).
[CrossRef]

1975

1969

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

Amitai, Y.

Y. Amitai, “Design of wavelength-division multiplexing/demultiplexing using substrate-mode holographic elements,” Opt. Commun. 98, 24–28 (1993).
[CrossRef]

Booth, B. L.

Chen, R. T.

Dhar, L.

Fuji, Y.

J. Minowo, Y. Fuji, “Dielectric multilayer thin-film filters for WDM transmission systems,” J. Lightwave Technol. LT-1, 116–121 (1983).
[CrossRef]

Hale, A.

Huang, Y. T.

Y. K. Tsai, Y. T. Huang, D. C. Su, “Multiband wavelength-division demultiplexing with a cascaded substrate-mode grating structure,” Appl. Opt. 34, 5582–5588 (1995).
[CrossRef] [PubMed]

Y. T. Huang, D. C. Su, Y. K. Tsai, “Wavelength-division-multiplexing and -demultiplexing by using a substrate-mode grating pair,” Opt. Lett. 17, 629–1631 (1992).
[CrossRef]

Huang, Y.-T.

Y-K. Tsai, Y.-T. Huang, D. C. Su, “A reflection-type substrate-mode grating structure for wavelength-division-multi/demultiplexing,” Optik (Stuttgart) 97, 62–69 (1994).

Kazovsky, L.

L. Kazovsky, “Multichannel systems,” in Optical Fiber Communication Systems, S. Benedetto, A. Willner, eds. (Artech House, Norwood, Mass., 1996), pp. 513–616.

Keys, D. E.

W. K. Smothers, B. M. Monroe, A. M. Weber, D. E. Keys, “Photopolymers for holography,” in Practical Holography IV, S. A. Benton, ed., Proc. SPIE1212, 20–29 (1990).
[CrossRef]

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

Li, M. M.

Minowo, J.

J. Minowo, Y. Fuji, “Dielectric multilayer thin-film filters for WDM transmission systems,” J. Lightwave Technol. LT-1, 116–121 (1983).
[CrossRef]

Monroe, B. M.

W. K. Smothers, B. M. Monroe, A. M. Weber, D. E. Keys, “Photopolymers for holography,” in Practical Holography IV, S. A. Benton, ed., Proc. SPIE1212, 20–29 (1990).
[CrossRef]

Petiote, J. J.

J. J. Petiote, “Low-cost components give coarse WDM an edge,” in WDM Solutions (January2001), pp. 47–51.

Smothers, W. K.

W. K. Smothers, B. M. Monroe, A. M. Weber, D. E. Keys, “Photopolymers for holography,” in Practical Holography IV, S. A. Benton, ed., Proc. SPIE1212, 20–29 (1990).
[CrossRef]

Su, D. C.

Y. K. Tsai, Y. T. Huang, D. C. Su, “Multiband wavelength-division demultiplexing with a cascaded substrate-mode grating structure,” Appl. Opt. 34, 5582–5588 (1995).
[CrossRef] [PubMed]

Y-K. Tsai, Y.-T. Huang, D. C. Su, “A reflection-type substrate-mode grating structure for wavelength-division-multi/demultiplexing,” Optik (Stuttgart) 97, 62–69 (1994).

Y. T. Huang, D. C. Su, Y. K. Tsai, “Wavelength-division-multiplexing and -demultiplexing by using a substrate-mode grating pair,” Opt. Lett. 17, 629–1631 (1992).
[CrossRef]

Taga, H.

H. Taga, “Long distance transmission experiments using the WDM technology,” J. Lightwave Technol. 14, 1287–1298 (1996).
[CrossRef]

Tsai, Y. K.

Y. K. Tsai, Y. T. Huang, D. C. Su, “Multiband wavelength-division demultiplexing with a cascaded substrate-mode grating structure,” Appl. Opt. 34, 5582–5588 (1995).
[CrossRef] [PubMed]

Y. T. Huang, D. C. Su, Y. K. Tsai, “Wavelength-division-multiplexing and -demultiplexing by using a substrate-mode grating pair,” Opt. Lett. 17, 629–1631 (1992).
[CrossRef]

Tsai, Y-K.

Y-K. Tsai, Y.-T. Huang, D. C. Su, “A reflection-type substrate-mode grating structure for wavelength-division-multi/demultiplexing,” Optik (Stuttgart) 97, 62–69 (1994).

Weber, A. M.

W. K. Smothers, B. M. Monroe, A. M. Weber, D. E. Keys, “Photopolymers for holography,” in Practical Holography IV, S. A. Benton, ed., Proc. SPIE1212, 20–29 (1990).
[CrossRef]

Appl. Opt.

Bell Syst. Tech. J.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

J. Lightwave Technol.

H. Taga, “Long distance transmission experiments using the WDM technology,” J. Lightwave Technol. 14, 1287–1298 (1996).
[CrossRef]

J. Minowo, Y. Fuji, “Dielectric multilayer thin-film filters for WDM transmission systems,” J. Lightwave Technol. LT-1, 116–121 (1983).
[CrossRef]

Opt. Commun.

Y. Amitai, “Design of wavelength-division multiplexing/demultiplexing using substrate-mode holographic elements,” Opt. Commun. 98, 24–28 (1993).
[CrossRef]

Opt. Lett.

Optik (Stuttgart)

Y-K. Tsai, Y.-T. Huang, D. C. Su, “A reflection-type substrate-mode grating structure for wavelength-division-multi/demultiplexing,” Optik (Stuttgart) 97, 62–69 (1994).

Other

J. J. Petiote, “Low-cost components give coarse WDM an edge,” in WDM Solutions (January2001), pp. 47–51.

W. K. Smothers, B. M. Monroe, A. M. Weber, D. E. Keys, “Photopolymers for holography,” in Practical Holography IV, S. A. Benton, ed., Proc. SPIE1212, 20–29 (1990).
[CrossRef]

L. Kazovsky, “Multichannel systems,” in Optical Fiber Communication Systems, S. Benedetto, A. Willner, eds. (Artech House, Norwood, Mass., 1996), pp. 513–616.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Planar configuration for a four-channel CWDM and a CWDDM with a single grating for each channel: (a) top view, (b) side view for two channels, (c) side view for the other two orthogonal channels.

Fig. 2
Fig. 2

Calculated diffraction efficiency as a function of wavelength of reflection volume phase gratings: solid curves, for both TE polarizations; dashed curves, for TM polarizations. Grating parameters: (a) Δn = 0.01, d = 20 µm, α = 45°; (b) Δn = 0.02, d = 20 µm, α = 45°; (c) Δn = 0.02, d = 40 µm, α = 45°; (d) Δn = 0.02, d = 40 µm, α = 15°.

Fig. 3
Fig. 3

Calculated channel efficiency as a function of wavelength of a high-performance four-channel CWDDM. Center wavelengths at 775, 800, 825, and 850 nm. Solid curves, TE waves; +, for TM waves. Grating parameters: d = 50 µm, α = 15°, and Δn = 0.022.

Fig. 4
Fig. 4

Calculated channel efficiency as a function of wavelength of a four-channel CWDDM in which the grating parameters are based on available photopolymer recording material. Center wavelengths at 775, 800, 825, and 850 nm. Solid curves, TE waves; dashed curves, for TM waves. Grating parameters: d = 20 µm, α = 45°, Δn 1 = 0.0229, Δn 2 = 0.0235, Δn 3 = 0.0243, and Δn 4 = 0.0250 for each channel.

Fig. 5
Fig. 5

Detected output intensities of the four-channel CWDDM. (a) Input light of a single wavelength: (1) 775 nm, (2) 802 nm, (3) 824 nm, (4) 849 nm. (b) Input light of three wavelengths: (1) 802, 824, and 849 nm; (2) 775, 824, and 849 nm; (3) 775, 802, and 849 nm; (4) 775, 802, and 824 nm. (c) Input light of four wavelengths: 775, 802, 824, and 849 nm. The middle spots depict directly transmitted nondiffracted light.

Fig. 6
Fig. 6

Experimental and calculated channel efficiency as a function of wavelength of a single wavelength channel centered at 775 nm when the input light was TE polarized. Solid curve, results calculated with d = 20 µm, Δn = 0.022, and α = 45°; ×, experimental measurements.

Tables (2)

Tables Icon

Table 1 Calculated Performance of a Single Channel Centered at 800 nm for Four-Channel CWDDMs with Different Grating Parameters

Tables Icon

Table 2 Experimental Performance of a Four-Channel CWDDM Recorded with DuPont HRF-700X314 Photopolymer with d = 20 µm and α = 45°

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

η=1+1-ξ2/ν2sinh2ν2-ξ2-1, η=1+1-ξ2/ν2sinh2ν2-ξ2-1,
ξ=ϑd2Cs, ν=πΔndλCs, ν=-πΔndλCscos α, ϑ=1+cos α0β0β-β0β, Cs=β0β1+cos α0-1, β=2πnλ, β0=2πnλ0,
CE=Pout/Pin,
FOM=λ2-λ1at 0.5dBλ2-λ1at 20dB,

Metrics