Abstract

The effect of the absorption of the probe laser beam by the sample matrix on the thermal lens signal of a solute was investigated for aqueous solutions of Tb(III), Yb(III), and Nd(III). The measurements were performed with a thermal lens instrument in which the pump and the probe beam were derived from a tunable Ti:sapphire laser. Thermal lens signals were found to be enhanced in the region where the probe beam overlapped with the absorption band of the sample matrix. The observed enhancement was confirmed further with samples of the same solutes (lanthanide ions) but in D2O, which does not absorb in the same spectral region as water. The enhancement may be due to the fact that absorption by the sample matrix led to a change in its refractive index and the production of a temperature gradient. In addition to fundamental importance, the observed enhancement can be used to improve the sensitivity of the thermal lens measurements by judiciously selecting a solvent that absorbs the probe laser beam.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, J. R. Whinnery, “Long-transient effects in lasers with inserted liquid samples,” J. Appl. Phys. 36, 3–8 (1965).
    [CrossRef]
  2. N. J. Dovichi, J. M. Harris, “Laser induced thermal lens effect for calorimetric trace analysis,” Anal. Chem. 51, 728–730 (1979).
    [CrossRef]
  3. J. V. Beitz, J. P. Hessler, “Oxidation state specific detection of transuranic ions in solutions,” Nucl. Technol. 51, 169–177 (1980).
  4. N. J. Dovichi, F. Zarrin, T. G. Nolan, D. J. Bornhop, “Laser detectors for capillary liquid chromatography,” Spectrochim. Acta Part B 43, 639–649 (1988).
    [CrossRef]
  5. M. Tokeshi, M. Uchida, A. Hibara, T. Sawada, T. Kitamori, “Determination of subyoctomole amounts of nonfluorescent molecules using a thermal lens microscope: subsingle-molecule determination,” Anal. Chem. 73, 2112–2116 (2001).
    [CrossRef] [PubMed]
  6. V. I. Grishko, V. P. Grishko, I. G. Yudelevich, Lazernaya Analiticheskay Termolinzovaya Spectroskopiya (Laser Analytical Thermal Lens Spectroscopy), (Institute of Inorganic Chemistry, Russian Academy of Sciences, Siberian Branch, Novosibirsk, Russia, 1992).
  7. M. Franko, C. D. Tran, “Analytical thermal lens instrumentation,” Rev. Sci. Instrum. 67, 1–18 (1996).
    [CrossRef]
  8. G. Ramis-Ramos, “Analytical characteristics, applications and perspectives in thermal lens spectrometry,” Anal. Chim. Acta 283, 623–634 (1993).
    [CrossRef]
  9. Y. Martin-Biosca, M. C. Garcia-Alvarez-Coque, G. Ramis-Ramos, “Determination of inorganic species by thermal lens spectrometry,” Trends Anal. Chem. 16, 342–351 (1997).
    [CrossRef]
  10. R. D. Snook, R. D. Lowe, “Thermal lens spectrometry: a review,” Analyst 120, 2051–2068 (1995).
    [CrossRef]
  11. S. J. Sheldon, L. V. Knight, J. M. Thorne, “Laser-induced thermal lens effect: a new theoretical model,” Appl. Opt. 21, 1663–1669 (1982).
    [CrossRef] [PubMed]
  12. V. I. Grishko, I. G. Yudelevich, V. P. Grishko, “Variations of thermal lens spectrophotometry with helium-cadmium laser excitation for the determination of traces of phosphorus,” Anal. Chim. Acta 176, 51–61 (1985).
    [CrossRef]
  13. Charles M. Vest, Holographic Interferometry (Wiley, New York, 1979).
  14. T. Higashi, T. Imasaka, N. Ishibashi, “Thermal lens spectrophotometry with argon laser excitation source for nitrogen dioxide determination,” Anal. Chem. 55, 1907–1910 (1983).
    [CrossRef]
  15. J. R. Arnaud, Beam and Fiber Optics (Academic, New York, 1976).

2001 (1)

M. Tokeshi, M. Uchida, A. Hibara, T. Sawada, T. Kitamori, “Determination of subyoctomole amounts of nonfluorescent molecules using a thermal lens microscope: subsingle-molecule determination,” Anal. Chem. 73, 2112–2116 (2001).
[CrossRef] [PubMed]

1997 (1)

Y. Martin-Biosca, M. C. Garcia-Alvarez-Coque, G. Ramis-Ramos, “Determination of inorganic species by thermal lens spectrometry,” Trends Anal. Chem. 16, 342–351 (1997).
[CrossRef]

1996 (1)

M. Franko, C. D. Tran, “Analytical thermal lens instrumentation,” Rev. Sci. Instrum. 67, 1–18 (1996).
[CrossRef]

1995 (1)

R. D. Snook, R. D. Lowe, “Thermal lens spectrometry: a review,” Analyst 120, 2051–2068 (1995).
[CrossRef]

1993 (1)

G. Ramis-Ramos, “Analytical characteristics, applications and perspectives in thermal lens spectrometry,” Anal. Chim. Acta 283, 623–634 (1993).
[CrossRef]

1988 (1)

N. J. Dovichi, F. Zarrin, T. G. Nolan, D. J. Bornhop, “Laser detectors for capillary liquid chromatography,” Spectrochim. Acta Part B 43, 639–649 (1988).
[CrossRef]

1985 (1)

V. I. Grishko, I. G. Yudelevich, V. P. Grishko, “Variations of thermal lens spectrophotometry with helium-cadmium laser excitation for the determination of traces of phosphorus,” Anal. Chim. Acta 176, 51–61 (1985).
[CrossRef]

1983 (1)

T. Higashi, T. Imasaka, N. Ishibashi, “Thermal lens spectrophotometry with argon laser excitation source for nitrogen dioxide determination,” Anal. Chem. 55, 1907–1910 (1983).
[CrossRef]

1982 (1)

1980 (1)

J. V. Beitz, J. P. Hessler, “Oxidation state specific detection of transuranic ions in solutions,” Nucl. Technol. 51, 169–177 (1980).

1979 (1)

N. J. Dovichi, J. M. Harris, “Laser induced thermal lens effect for calorimetric trace analysis,” Anal. Chem. 51, 728–730 (1979).
[CrossRef]

1965 (1)

J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, J. R. Whinnery, “Long-transient effects in lasers with inserted liquid samples,” J. Appl. Phys. 36, 3–8 (1965).
[CrossRef]

Arnaud, J. R.

J. R. Arnaud, Beam and Fiber Optics (Academic, New York, 1976).

Beitz, J. V.

J. V. Beitz, J. P. Hessler, “Oxidation state specific detection of transuranic ions in solutions,” Nucl. Technol. 51, 169–177 (1980).

Bornhop, D. J.

N. J. Dovichi, F. Zarrin, T. G. Nolan, D. J. Bornhop, “Laser detectors for capillary liquid chromatography,” Spectrochim. Acta Part B 43, 639–649 (1988).
[CrossRef]

Dovichi, N. J.

N. J. Dovichi, F. Zarrin, T. G. Nolan, D. J. Bornhop, “Laser detectors for capillary liquid chromatography,” Spectrochim. Acta Part B 43, 639–649 (1988).
[CrossRef]

N. J. Dovichi, J. M. Harris, “Laser induced thermal lens effect for calorimetric trace analysis,” Anal. Chem. 51, 728–730 (1979).
[CrossRef]

Franko, M.

M. Franko, C. D. Tran, “Analytical thermal lens instrumentation,” Rev. Sci. Instrum. 67, 1–18 (1996).
[CrossRef]

Garcia-Alvarez-Coque, M. C.

Y. Martin-Biosca, M. C. Garcia-Alvarez-Coque, G. Ramis-Ramos, “Determination of inorganic species by thermal lens spectrometry,” Trends Anal. Chem. 16, 342–351 (1997).
[CrossRef]

Gordon, J. P.

J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, J. R. Whinnery, “Long-transient effects in lasers with inserted liquid samples,” J. Appl. Phys. 36, 3–8 (1965).
[CrossRef]

Grishko, V. I.

V. I. Grishko, I. G. Yudelevich, V. P. Grishko, “Variations of thermal lens spectrophotometry with helium-cadmium laser excitation for the determination of traces of phosphorus,” Anal. Chim. Acta 176, 51–61 (1985).
[CrossRef]

V. I. Grishko, V. P. Grishko, I. G. Yudelevich, Lazernaya Analiticheskay Termolinzovaya Spectroskopiya (Laser Analytical Thermal Lens Spectroscopy), (Institute of Inorganic Chemistry, Russian Academy of Sciences, Siberian Branch, Novosibirsk, Russia, 1992).

Grishko, V. P.

V. I. Grishko, I. G. Yudelevich, V. P. Grishko, “Variations of thermal lens spectrophotometry with helium-cadmium laser excitation for the determination of traces of phosphorus,” Anal. Chim. Acta 176, 51–61 (1985).
[CrossRef]

V. I. Grishko, V. P. Grishko, I. G. Yudelevich, Lazernaya Analiticheskay Termolinzovaya Spectroskopiya (Laser Analytical Thermal Lens Spectroscopy), (Institute of Inorganic Chemistry, Russian Academy of Sciences, Siberian Branch, Novosibirsk, Russia, 1992).

Harris, J. M.

N. J. Dovichi, J. M. Harris, “Laser induced thermal lens effect for calorimetric trace analysis,” Anal. Chem. 51, 728–730 (1979).
[CrossRef]

Hessler, J. P.

J. V. Beitz, J. P. Hessler, “Oxidation state specific detection of transuranic ions in solutions,” Nucl. Technol. 51, 169–177 (1980).

Hibara, A.

M. Tokeshi, M. Uchida, A. Hibara, T. Sawada, T. Kitamori, “Determination of subyoctomole amounts of nonfluorescent molecules using a thermal lens microscope: subsingle-molecule determination,” Anal. Chem. 73, 2112–2116 (2001).
[CrossRef] [PubMed]

Higashi, T.

T. Higashi, T. Imasaka, N. Ishibashi, “Thermal lens spectrophotometry with argon laser excitation source for nitrogen dioxide determination,” Anal. Chem. 55, 1907–1910 (1983).
[CrossRef]

Imasaka, T.

T. Higashi, T. Imasaka, N. Ishibashi, “Thermal lens spectrophotometry with argon laser excitation source for nitrogen dioxide determination,” Anal. Chem. 55, 1907–1910 (1983).
[CrossRef]

Ishibashi, N.

T. Higashi, T. Imasaka, N. Ishibashi, “Thermal lens spectrophotometry with argon laser excitation source for nitrogen dioxide determination,” Anal. Chem. 55, 1907–1910 (1983).
[CrossRef]

Kitamori, T.

M. Tokeshi, M. Uchida, A. Hibara, T. Sawada, T. Kitamori, “Determination of subyoctomole amounts of nonfluorescent molecules using a thermal lens microscope: subsingle-molecule determination,” Anal. Chem. 73, 2112–2116 (2001).
[CrossRef] [PubMed]

Knight, L. V.

Leite, R. C. C.

J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, J. R. Whinnery, “Long-transient effects in lasers with inserted liquid samples,” J. Appl. Phys. 36, 3–8 (1965).
[CrossRef]

Lowe, R. D.

R. D. Snook, R. D. Lowe, “Thermal lens spectrometry: a review,” Analyst 120, 2051–2068 (1995).
[CrossRef]

Martin-Biosca, Y.

Y. Martin-Biosca, M. C. Garcia-Alvarez-Coque, G. Ramis-Ramos, “Determination of inorganic species by thermal lens spectrometry,” Trends Anal. Chem. 16, 342–351 (1997).
[CrossRef]

Moore, R. S.

J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, J. R. Whinnery, “Long-transient effects in lasers with inserted liquid samples,” J. Appl. Phys. 36, 3–8 (1965).
[CrossRef]

Nolan, T. G.

N. J. Dovichi, F. Zarrin, T. G. Nolan, D. J. Bornhop, “Laser detectors for capillary liquid chromatography,” Spectrochim. Acta Part B 43, 639–649 (1988).
[CrossRef]

Porto, S. P. S.

J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, J. R. Whinnery, “Long-transient effects in lasers with inserted liquid samples,” J. Appl. Phys. 36, 3–8 (1965).
[CrossRef]

Ramis-Ramos, G.

Y. Martin-Biosca, M. C. Garcia-Alvarez-Coque, G. Ramis-Ramos, “Determination of inorganic species by thermal lens spectrometry,” Trends Anal. Chem. 16, 342–351 (1997).
[CrossRef]

G. Ramis-Ramos, “Analytical characteristics, applications and perspectives in thermal lens spectrometry,” Anal. Chim. Acta 283, 623–634 (1993).
[CrossRef]

Sawada, T.

M. Tokeshi, M. Uchida, A. Hibara, T. Sawada, T. Kitamori, “Determination of subyoctomole amounts of nonfluorescent molecules using a thermal lens microscope: subsingle-molecule determination,” Anal. Chem. 73, 2112–2116 (2001).
[CrossRef] [PubMed]

Sheldon, S. J.

Snook, R. D.

R. D. Snook, R. D. Lowe, “Thermal lens spectrometry: a review,” Analyst 120, 2051–2068 (1995).
[CrossRef]

Thorne, J. M.

Tokeshi, M.

M. Tokeshi, M. Uchida, A. Hibara, T. Sawada, T. Kitamori, “Determination of subyoctomole amounts of nonfluorescent molecules using a thermal lens microscope: subsingle-molecule determination,” Anal. Chem. 73, 2112–2116 (2001).
[CrossRef] [PubMed]

Tran, C. D.

M. Franko, C. D. Tran, “Analytical thermal lens instrumentation,” Rev. Sci. Instrum. 67, 1–18 (1996).
[CrossRef]

Uchida, M.

M. Tokeshi, M. Uchida, A. Hibara, T. Sawada, T. Kitamori, “Determination of subyoctomole amounts of nonfluorescent molecules using a thermal lens microscope: subsingle-molecule determination,” Anal. Chem. 73, 2112–2116 (2001).
[CrossRef] [PubMed]

Vest, Charles M.

Charles M. Vest, Holographic Interferometry (Wiley, New York, 1979).

Whinnery, J. R.

J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, J. R. Whinnery, “Long-transient effects in lasers with inserted liquid samples,” J. Appl. Phys. 36, 3–8 (1965).
[CrossRef]

Yudelevich, I. G.

V. I. Grishko, I. G. Yudelevich, V. P. Grishko, “Variations of thermal lens spectrophotometry with helium-cadmium laser excitation for the determination of traces of phosphorus,” Anal. Chim. Acta 176, 51–61 (1985).
[CrossRef]

V. I. Grishko, V. P. Grishko, I. G. Yudelevich, Lazernaya Analiticheskay Termolinzovaya Spectroskopiya (Laser Analytical Thermal Lens Spectroscopy), (Institute of Inorganic Chemistry, Russian Academy of Sciences, Siberian Branch, Novosibirsk, Russia, 1992).

Zarrin, F.

N. J. Dovichi, F. Zarrin, T. G. Nolan, D. J. Bornhop, “Laser detectors for capillary liquid chromatography,” Spectrochim. Acta Part B 43, 639–649 (1988).
[CrossRef]

Anal. Chem. (3)

N. J. Dovichi, J. M. Harris, “Laser induced thermal lens effect for calorimetric trace analysis,” Anal. Chem. 51, 728–730 (1979).
[CrossRef]

M. Tokeshi, M. Uchida, A. Hibara, T. Sawada, T. Kitamori, “Determination of subyoctomole amounts of nonfluorescent molecules using a thermal lens microscope: subsingle-molecule determination,” Anal. Chem. 73, 2112–2116 (2001).
[CrossRef] [PubMed]

T. Higashi, T. Imasaka, N. Ishibashi, “Thermal lens spectrophotometry with argon laser excitation source for nitrogen dioxide determination,” Anal. Chem. 55, 1907–1910 (1983).
[CrossRef]

Anal. Chim. Acta (2)

V. I. Grishko, I. G. Yudelevich, V. P. Grishko, “Variations of thermal lens spectrophotometry with helium-cadmium laser excitation for the determination of traces of phosphorus,” Anal. Chim. Acta 176, 51–61 (1985).
[CrossRef]

G. Ramis-Ramos, “Analytical characteristics, applications and perspectives in thermal lens spectrometry,” Anal. Chim. Acta 283, 623–634 (1993).
[CrossRef]

Analyst (1)

R. D. Snook, R. D. Lowe, “Thermal lens spectrometry: a review,” Analyst 120, 2051–2068 (1995).
[CrossRef]

Appl. Opt. (1)

J. Appl. Phys. (1)

J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, J. R. Whinnery, “Long-transient effects in lasers with inserted liquid samples,” J. Appl. Phys. 36, 3–8 (1965).
[CrossRef]

Nucl. Technol. (1)

J. V. Beitz, J. P. Hessler, “Oxidation state specific detection of transuranic ions in solutions,” Nucl. Technol. 51, 169–177 (1980).

Rev. Sci. Instrum. (1)

M. Franko, C. D. Tran, “Analytical thermal lens instrumentation,” Rev. Sci. Instrum. 67, 1–18 (1996).
[CrossRef]

Spectrochim. Acta Part B (1)

N. J. Dovichi, F. Zarrin, T. G. Nolan, D. J. Bornhop, “Laser detectors for capillary liquid chromatography,” Spectrochim. Acta Part B 43, 639–649 (1988).
[CrossRef]

Trends Anal. Chem. (1)

Y. Martin-Biosca, M. C. Garcia-Alvarez-Coque, G. Ramis-Ramos, “Determination of inorganic species by thermal lens spectrometry,” Trends Anal. Chem. 16, 342–351 (1997).
[CrossRef]

Other (3)

V. I. Grishko, V. P. Grishko, I. G. Yudelevich, Lazernaya Analiticheskay Termolinzovaya Spectroskopiya (Laser Analytical Thermal Lens Spectroscopy), (Institute of Inorganic Chemistry, Russian Academy of Sciences, Siberian Branch, Novosibirsk, Russia, 1992).

Charles M. Vest, Holographic Interferometry (Wiley, New York, 1979).

J. R. Arnaud, Beam and Fiber Optics (Academic, New York, 1976).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic diagram of the thermal lens spectrometer. M, mirror; F, optical filter; L, lens; PH, pinhole; Ch, chopper; DM, dichroic filter; PD, photodiode.

Fig. 2
Fig. 2

Absorption spectra of (1) water, (2) D2O, (3) terbium chloride, (4) ytterbium chloride, and (5) neodymium chloride aqueous solutions in (a) the ultraviolet region and (b) the NIR region.

Fig. 3
Fig. 3

Output power of the Ti:sapphire laser as a function of wavelength.

Fig. 4
Fig. 4

Thermal lens spectra of 0.50-M aqueous solution of terbium chloride, obtained through excitation of the solution with (1) both UV (350 nm) and NIR pump beams, (2) only the NIR beam, and (3) only the UV beam. The difference between the spectra in (1) and in (2) and (3) is shown in (4). Differential spectrum (4) corrected with change in focal distance is shown in (5). Spectrum (4a) is spectrum (4) normalized with output power of the probe NIR laser beam.

Fig. 5
Fig. 5

Thermal lens spectra of 0.50-M terbium chloride in D2O, obtained through excitation of the solution with (1) both UV (350 nm) and NIR pump beams, (2) only the NIR beam, and (3) only the UV beam. The difference between the spectra in (1) and in (2) and (3) is shown in (4), and the corrected spectrum with change in focal distance is shown in (5).

Fig. 6
Fig. 6

Thermal lens spectra of the mixture of 0.50-M Tb3+ and 0.10-M Yb3+ in (a) water and (b) D2O. All of the labels are the same as in Fig. 4.

Fig. 7
Fig. 7

Thermal lens spectra of 0.10-M Nd3+ in (a) water and (b) D2O. All of the labels are the same as in Fig. 4.

Fig. 8
Fig. 8

Thermal lens spectra of mixture of 0.10-M Yb3+ and 0.050-M Nd3+ in (a) water and (b) D2O. All of the labels are the same as in Fig. 4.

Fig. 9
Fig. 9

Thermal lens spectra of 0.10-M Nd3+ in (a) water and (b) D2O obtained with the use of the 543.5-nm He-Ne laser as the probe beam. All of the labels are the same as in Fig. 4.

Tables (1)

Tables Icon

Table 1 Limits of Detection for the Determination of Terbium in Pure Water and Water Solution of Ytterbium Chloride

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

ΔIbcIbc=-1.206P Adn/dTλk=0.524 E A,
E=-2.303Pdn/dTλk.
S4=SNIR+UVλ/INIRλ-SNIRλ/INIRλ-SUVλ/INIRλ.
SD=SNIR+UVλ/INIRλ-SUVλ/INIRλ/INIRλ-SNIRλ/INIRλ/INIRλ,
SD=SNIR+UVλ/INIRλ-SNIRλ/INIRλ-SUVλ/INIRλ/INIRλ =S4/INIRλ.
ΔIbc/Ibc=E tan-12Z/Zc/3+Z/Zc2A =E tan-12Zλ/πω02/[3+Zλ/πω022A=EA.

Metrics