Abstract

Studies of the interaction between a pulsed CO2 laser and micrometer-sized aqueous and organic particles by use of light-scattering methods and step-scan Fourier-transform infrared (FTIR) spectroscopy are reported. Visible two-color extinction experiments indicate primary particle shattering, accompanied by a high fraction of vaporization, followed by secondary particle evaporation. The extent of the latter depends on the pulse intensity and particle composition. Angle-resolved light-scattering investigations provide insight into the aerosol size distribution and temperature following the pulsed heating event. The time dependence of the vapor plume, monitored with step-scan FTIR spectroscopy, confirms that a large fraction of the initial particle is quickly evaporated during the shattering event, followed by secondary fragment evaporation and thermal expansion.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. L. Armstrong, “Laser-induced droplet heating,” in Optical Effects Associated with Small Particles, P. W. Barber, R. K. Chang, eds. (World Scientific, Teaneck, N.J., 1988), pp. 201–275.
    [CrossRef]
  2. S. C. Davies, J. R. Brock, “Laser beam propagation in an evaporating polydispersed aerosol,” Appl. Opt. 26, 1806–1813 (1987).
    [CrossRef] [PubMed]
  3. H. S. Kwok, T. M. Rossi, W. S. Lau, D. T. Shaw, “Enhanced transmission in CO2-laser-aerosol interactions,” Opt. Lett. 13, 192–194 (1988).
    [CrossRef] [PubMed]
  4. J. E. Lowder, H. Kleiman, R. W. O’Neil, “High-energy CO2 laser pulse transmission through fog,” J. Appl. Phys. 45, 221–223 (1973).
    [CrossRef]
  5. S. M. Chitanvis, S. A. W. Gerstl, “Aerosol clearing model for a high-energy laser beam propagating through vaporizing media,” J. Appl. Phys. 62, 3091–3096 (1987).
    [CrossRef]
  6. E. Woods, G. D. Smith, Y. Dessiaterik, T. Baer, R. E. Miller, “Quantitative detection of aromatic compounds in single aerosol particle mass spectrometry,” Anal. Chem. 73, 2317–2322 (2001).
    [CrossRef] [PubMed]
  7. C. A. Noble, K. A. Prather, “Real-time measurement of correlated size and composition profiles of individual atmospheric aerosol particles,” Envon. Sci. Technol. 30, 2667–2680 (1996).
    [CrossRef]
  8. T. A. Schoolcraft, G. S. Constable, L. V. Zhigilei, B. J. Garrison, “Molecular dynamics simulation of the laser disintegration of aerosol particles,” Anal. Chem. 72, 5143–5150 (2000).
    [CrossRef] [PubMed]
  9. A. Zardecki, R. L. Armstrong, “Energy balance in laser-irradiated vaporizing droplets,” Appl. Opt. 27, 3690–3695 (1988).
    [CrossRef] [PubMed]
  10. R. L. Armstrong, P. J. O’Rourke, A. Zardecki, “Vaporization of irradiated droplets,” Phys. Fluids 29, 3573–3581 (1986).
    [CrossRef]
  11. G. Sageev, J. H. Seinfeld, “Laser heating of an aqueous aerosol particle,” Appl. Opt. 23, 4368–4374 (1984).
    [CrossRef] [PubMed]
  12. S. C. Davies, J. R. Brock, “Laser evaporation of droplets,” Appl. Opt. 26, 786–793 (1987).
    [CrossRef] [PubMed]
  13. R. L. Armstrong, A. Zardecki, “Diffusive and convective vaporization of irradiated droplets,” J. Appl. Phys. 62, 4571–4578 (1987).
    [CrossRef]
  14. A. Zardecki, J. D. Pendleton, “Hydrodynamics of water droplets irradiated by a pulsed CO2 laser,” Appl. Opt. 28, 638–640 (1989).
    [CrossRef] [PubMed]
  15. S. M. Chitanvis, “High energy laser interactions with water droplets,” Appl. Opt. 24, 3552–3556 (1985).
    [CrossRef] [PubMed]
  16. S. M. Chitanvis, “Explosive vaporization of small droplets by a high-energy laser beam,” J. Appl. Phys. 62, 4387–4393 (1987).
    [CrossRef]
  17. Yu. E. Geints, A. A. Zemlyanov, R. L. Armstrong, “Explosive boiling of water droplets irradiated with intense CO2-laser radiation: numerical experiments,” Appl. Opt. 33, 5805–5810 (1994).
    [CrossRef] [PubMed]
  18. V. E. Zuev, A. A. Zemlyanov, Yu. D. Kopytin, A. V. Kuzikovskii, “Laser beam propagation through an explosively evaporating water-droplet aerosol,” in High-Power Laser Radiation in Atmospheric Aerosols: Nonlinear Optics of Aerodispersed Media (Reidel, Dordrecht, The Netherlands, 1985), pp. 128–164.
    [CrossRef]
  19. J. C. Carls, Y. Seo, J. R. Brock, “Laser-induced breakdown and detonation waves in droplets. II. Model,” J. Opt. Soc. Am. B 8, 329–336 (1991).
    [CrossRef]
  20. P. Kafalas, J. Herrmann, “Dynamics and energetics of the explosive vaporization of fog droplets by a 10.6-µm laser pulse,” Appl. Opt. 12, 772–775 (1973).
    [CrossRef] [PubMed]
  21. M. Autric, P. Vigliano, D. Dufresne, J. P. Caressa, Ph. Bournot, “Pulsed CO2 laser-induced effects on water droplets,” AIAA J. 26, 65–71 (1988).
    [CrossRef]
  22. C. F. Wood, D. H. Leach, J.-Z. Zhang, R. K. Chang, P. W. Barber, “Time-resolved shadowgraphs of large individual water and ethanol droplets vaporized by a pulsed CO2 laser,” Appl. Opt. 27, 2279–2286 (1988).
    [CrossRef] [PubMed]
  23. R. G. Pinnick, A. Biswas, R. L. Armstrong, S. G. Jennings, J. D. Pendleton, G. Fernandez, “Micron-sized droplets irradiated with a pulsed CO2 laser: measurement of explosion and breakdown thresholds,” Appl. Opt. 29, 918–925 (1990).
    [CrossRef] [PubMed]
  24. B.-S. Park, A. Biswas, R. L. Armstrong, R. G. Pinnick, “Delay of explosive vaporization in pulsed laser-heated droplets,” Opt. Lett. 15, 206–208 (1990).
    [CrossRef] [PubMed]
  25. A. A. Zemlyanov, Y. E. Geints, A. M. Kabanov, R. L. Armstrong, “Investigation of laser-induced destruction of droplets by acoustic methods,” Appl. Opt. 35, 6062–6068 (1996).
    [CrossRef] [PubMed]
  26. M. C. Fowler, “Effect of a CO2 laser pulse on transmission through fog at visible and IR wavelengths,” Appl. Opt. 22, 2960–2964 (1983).
    [CrossRef]
  27. A. A. Zemlyanov, A. M. Kabanov, “Signal of light scattering from a model water droplet aerosol exposed to the pulses of intense radiation of a CO2 laser,” Atmos. Oceanic Opt. 4, 501–503 (1991).
  28. T. P. Marcy, J. P. Reid, C. X. W. Qian, S. R. Leone, “Addition-insertion-elimination reactions of O(3P) with halogenated iodoalkanes producing HF(v) and HCl (v),” J. Chem. Phys. 114, 2251–2258 (2001).
    [CrossRef]
  29. D. K. Liu, L. T. Letendre, H.-L. Dai, “193 nm photolysis of vinyl bromide: nascent product distribution of the C2H3Br-C2H2 (vinylidene) + HBr channel,” J. Chem. Phys. 115, 1734–1741 (2001).
    [CrossRef]
  30. W. Uhmann, A. Becker, Ch. Taran, F. Siebert, “Time-resolved FT-IR absorption spectroscopy using a step-scan interferometer,” Appl. Spectrosc. 45, 390–397 (1991).
    [CrossRef]
  31. W. Hage, M. Kim, H. Frei, R. A. Mathies, “Protein dynamics in the bacteriorhodopsin photocycle: a nanosecond step-scan FTIR investigation of the KL to L transition,” J. Phys. Chem. 100, 16026–16033 (1996).
    [CrossRef]
  32. P. Chen, R. A. Palmer, “Ten-nanosecond step-scan FT-IR absorption difference time-resolved spectroscopy: applications to excited states of transition metal complexes,” Appl. Spectrosc. 51, 580–583 (1997).
    [CrossRef]
  33. H. Wang, D. K. Graff, J. R. Schoonover, R. A. Palmer, “Static and dynamic infrared linear dichroic study of a polyester/polyurethane copolymer using step-scan FT-IR and a photoelastic modulator,” Appl. Spectrosc. 53, 687–696 (1999).
    [CrossRef]
  34. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  35. W. Brown, Light Scattering: Principles and Development (Clarendon, Oxford, UK, 1996).
  36. K. Blum, H. J. Fissan, “Investigations of scattered light intensity distributions for determination of particle size distribution parameters,” J. Aerosol Sci. 17, 406–409 (1986).
    [CrossRef]
  37. A. C. Holland, J. S. Draper, “Analytical and experimental investigation of light scattering from polydispersions of Mie particles,” Appl. Opt. 6, 511–518 (1967).
    [CrossRef] [PubMed]
  38. J. H. Moore, C. C. Davis, M. A. Coplan, Building Scientific Apparatus: A Practical Guide to Design and Construction, 2nd ed. (Addison-Wesley, Redwood City, Calif., 1989).
  39. P. I. Singh, C. J. Knight, “Pulsed laser-induced shattering of water drops,” AIAA J. 18, 96–100 (1980).
    [CrossRef]
  40. A. H. Harvey, J. S. Gallagher, J. M. H. L. Sengers, “Revised formulation for the refractive index of water and steam as a function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 27, 761–774 (1998).
    [CrossRef]
  41. C. Rodig, F. Siebert, “Errors and artifacts in time-resolved step-scan FT-IR spectroscopy,” Appl. Spectrosc. 53, 893–901 (1999).
    [CrossRef]
  42. T. Yuzawa, C. Kato, M. W. George, H. Hamaguchi, “Nanosecond time-resolved infrared spectroscopy with a dispersive scanning spectrometer,” Appl. Spectrosc. 48, 684–690 (1994).
    [CrossRef]

2001 (3)

E. Woods, G. D. Smith, Y. Dessiaterik, T. Baer, R. E. Miller, “Quantitative detection of aromatic compounds in single aerosol particle mass spectrometry,” Anal. Chem. 73, 2317–2322 (2001).
[CrossRef] [PubMed]

T. P. Marcy, J. P. Reid, C. X. W. Qian, S. R. Leone, “Addition-insertion-elimination reactions of O(3P) with halogenated iodoalkanes producing HF(v) and HCl (v),” J. Chem. Phys. 114, 2251–2258 (2001).
[CrossRef]

D. K. Liu, L. T. Letendre, H.-L. Dai, “193 nm photolysis of vinyl bromide: nascent product distribution of the C2H3Br-C2H2 (vinylidene) + HBr channel,” J. Chem. Phys. 115, 1734–1741 (2001).
[CrossRef]

2000 (1)

T. A. Schoolcraft, G. S. Constable, L. V. Zhigilei, B. J. Garrison, “Molecular dynamics simulation of the laser disintegration of aerosol particles,” Anal. Chem. 72, 5143–5150 (2000).
[CrossRef] [PubMed]

1999 (2)

1998 (1)

A. H. Harvey, J. S. Gallagher, J. M. H. L. Sengers, “Revised formulation for the refractive index of water and steam as a function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 27, 761–774 (1998).
[CrossRef]

1997 (1)

1996 (3)

A. A. Zemlyanov, Y. E. Geints, A. M. Kabanov, R. L. Armstrong, “Investigation of laser-induced destruction of droplets by acoustic methods,” Appl. Opt. 35, 6062–6068 (1996).
[CrossRef] [PubMed]

W. Hage, M. Kim, H. Frei, R. A. Mathies, “Protein dynamics in the bacteriorhodopsin photocycle: a nanosecond step-scan FTIR investigation of the KL to L transition,” J. Phys. Chem. 100, 16026–16033 (1996).
[CrossRef]

C. A. Noble, K. A. Prather, “Real-time measurement of correlated size and composition profiles of individual atmospheric aerosol particles,” Envon. Sci. Technol. 30, 2667–2680 (1996).
[CrossRef]

1994 (2)

1991 (3)

1990 (2)

1989 (1)

1988 (4)

1987 (5)

S. M. Chitanvis, S. A. W. Gerstl, “Aerosol clearing model for a high-energy laser beam propagating through vaporizing media,” J. Appl. Phys. 62, 3091–3096 (1987).
[CrossRef]

R. L. Armstrong, A. Zardecki, “Diffusive and convective vaporization of irradiated droplets,” J. Appl. Phys. 62, 4571–4578 (1987).
[CrossRef]

S. M. Chitanvis, “Explosive vaporization of small droplets by a high-energy laser beam,” J. Appl. Phys. 62, 4387–4393 (1987).
[CrossRef]

S. C. Davies, J. R. Brock, “Laser evaporation of droplets,” Appl. Opt. 26, 786–793 (1987).
[CrossRef] [PubMed]

S. C. Davies, J. R. Brock, “Laser beam propagation in an evaporating polydispersed aerosol,” Appl. Opt. 26, 1806–1813 (1987).
[CrossRef] [PubMed]

1986 (2)

R. L. Armstrong, P. J. O’Rourke, A. Zardecki, “Vaporization of irradiated droplets,” Phys. Fluids 29, 3573–3581 (1986).
[CrossRef]

K. Blum, H. J. Fissan, “Investigations of scattered light intensity distributions for determination of particle size distribution parameters,” J. Aerosol Sci. 17, 406–409 (1986).
[CrossRef]

1985 (1)

1984 (1)

1983 (1)

1980 (1)

P. I. Singh, C. J. Knight, “Pulsed laser-induced shattering of water drops,” AIAA J. 18, 96–100 (1980).
[CrossRef]

1973 (2)

J. E. Lowder, H. Kleiman, R. W. O’Neil, “High-energy CO2 laser pulse transmission through fog,” J. Appl. Phys. 45, 221–223 (1973).
[CrossRef]

P. Kafalas, J. Herrmann, “Dynamics and energetics of the explosive vaporization of fog droplets by a 10.6-µm laser pulse,” Appl. Opt. 12, 772–775 (1973).
[CrossRef] [PubMed]

1967 (1)

Armstrong, R. L.

Autric, M.

M. Autric, P. Vigliano, D. Dufresne, J. P. Caressa, Ph. Bournot, “Pulsed CO2 laser-induced effects on water droplets,” AIAA J. 26, 65–71 (1988).
[CrossRef]

Baer, T.

E. Woods, G. D. Smith, Y. Dessiaterik, T. Baer, R. E. Miller, “Quantitative detection of aromatic compounds in single aerosol particle mass spectrometry,” Anal. Chem. 73, 2317–2322 (2001).
[CrossRef] [PubMed]

Barber, P. W.

Becker, A.

Biswas, A.

Blum, K.

K. Blum, H. J. Fissan, “Investigations of scattered light intensity distributions for determination of particle size distribution parameters,” J. Aerosol Sci. 17, 406–409 (1986).
[CrossRef]

Bohren, C. F.

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

Bournot, Ph.

M. Autric, P. Vigliano, D. Dufresne, J. P. Caressa, Ph. Bournot, “Pulsed CO2 laser-induced effects on water droplets,” AIAA J. 26, 65–71 (1988).
[CrossRef]

Brock, J. R.

Brown, W.

W. Brown, Light Scattering: Principles and Development (Clarendon, Oxford, UK, 1996).

Caressa, J. P.

M. Autric, P. Vigliano, D. Dufresne, J. P. Caressa, Ph. Bournot, “Pulsed CO2 laser-induced effects on water droplets,” AIAA J. 26, 65–71 (1988).
[CrossRef]

Carls, J. C.

Chang, R. K.

Chen, P.

Chitanvis, S. M.

S. M. Chitanvis, S. A. W. Gerstl, “Aerosol clearing model for a high-energy laser beam propagating through vaporizing media,” J. Appl. Phys. 62, 3091–3096 (1987).
[CrossRef]

S. M. Chitanvis, “Explosive vaporization of small droplets by a high-energy laser beam,” J. Appl. Phys. 62, 4387–4393 (1987).
[CrossRef]

S. M. Chitanvis, “High energy laser interactions with water droplets,” Appl. Opt. 24, 3552–3556 (1985).
[CrossRef] [PubMed]

Constable, G. S.

T. A. Schoolcraft, G. S. Constable, L. V. Zhigilei, B. J. Garrison, “Molecular dynamics simulation of the laser disintegration of aerosol particles,” Anal. Chem. 72, 5143–5150 (2000).
[CrossRef] [PubMed]

Coplan, M. A.

J. H. Moore, C. C. Davis, M. A. Coplan, Building Scientific Apparatus: A Practical Guide to Design and Construction, 2nd ed. (Addison-Wesley, Redwood City, Calif., 1989).

Dai, H.-L.

D. K. Liu, L. T. Letendre, H.-L. Dai, “193 nm photolysis of vinyl bromide: nascent product distribution of the C2H3Br-C2H2 (vinylidene) + HBr channel,” J. Chem. Phys. 115, 1734–1741 (2001).
[CrossRef]

Davies, S. C.

Davis, C. C.

J. H. Moore, C. C. Davis, M. A. Coplan, Building Scientific Apparatus: A Practical Guide to Design and Construction, 2nd ed. (Addison-Wesley, Redwood City, Calif., 1989).

Dessiaterik, Y.

E. Woods, G. D. Smith, Y. Dessiaterik, T. Baer, R. E. Miller, “Quantitative detection of aromatic compounds in single aerosol particle mass spectrometry,” Anal. Chem. 73, 2317–2322 (2001).
[CrossRef] [PubMed]

Draper, J. S.

Dufresne, D.

M. Autric, P. Vigliano, D. Dufresne, J. P. Caressa, Ph. Bournot, “Pulsed CO2 laser-induced effects on water droplets,” AIAA J. 26, 65–71 (1988).
[CrossRef]

Fernandez, G.

Fissan, H. J.

K. Blum, H. J. Fissan, “Investigations of scattered light intensity distributions for determination of particle size distribution parameters,” J. Aerosol Sci. 17, 406–409 (1986).
[CrossRef]

Fowler, M. C.

Frei, H.

W. Hage, M. Kim, H. Frei, R. A. Mathies, “Protein dynamics in the bacteriorhodopsin photocycle: a nanosecond step-scan FTIR investigation of the KL to L transition,” J. Phys. Chem. 100, 16026–16033 (1996).
[CrossRef]

Gallagher, J. S.

A. H. Harvey, J. S. Gallagher, J. M. H. L. Sengers, “Revised formulation for the refractive index of water and steam as a function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 27, 761–774 (1998).
[CrossRef]

Garrison, B. J.

T. A. Schoolcraft, G. S. Constable, L. V. Zhigilei, B. J. Garrison, “Molecular dynamics simulation of the laser disintegration of aerosol particles,” Anal. Chem. 72, 5143–5150 (2000).
[CrossRef] [PubMed]

Geints, Y. E.

Geints, Yu. E.

George, M. W.

Gerstl, S. A. W.

S. M. Chitanvis, S. A. W. Gerstl, “Aerosol clearing model for a high-energy laser beam propagating through vaporizing media,” J. Appl. Phys. 62, 3091–3096 (1987).
[CrossRef]

Graff, D. K.

Hage, W.

W. Hage, M. Kim, H. Frei, R. A. Mathies, “Protein dynamics in the bacteriorhodopsin photocycle: a nanosecond step-scan FTIR investigation of the KL to L transition,” J. Phys. Chem. 100, 16026–16033 (1996).
[CrossRef]

Hamaguchi, H.

Harvey, A. H.

A. H. Harvey, J. S. Gallagher, J. M. H. L. Sengers, “Revised formulation for the refractive index of water and steam as a function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 27, 761–774 (1998).
[CrossRef]

Herrmann, J.

Holland, A. C.

Huffman, D. R.

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

Jennings, S. G.

Kabanov, A. M.

A. A. Zemlyanov, Y. E. Geints, A. M. Kabanov, R. L. Armstrong, “Investigation of laser-induced destruction of droplets by acoustic methods,” Appl. Opt. 35, 6062–6068 (1996).
[CrossRef] [PubMed]

A. A. Zemlyanov, A. M. Kabanov, “Signal of light scattering from a model water droplet aerosol exposed to the pulses of intense radiation of a CO2 laser,” Atmos. Oceanic Opt. 4, 501–503 (1991).

Kafalas, P.

Kato, C.

Kim, M.

W. Hage, M. Kim, H. Frei, R. A. Mathies, “Protein dynamics in the bacteriorhodopsin photocycle: a nanosecond step-scan FTIR investigation of the KL to L transition,” J. Phys. Chem. 100, 16026–16033 (1996).
[CrossRef]

Kleiman, H.

J. E. Lowder, H. Kleiman, R. W. O’Neil, “High-energy CO2 laser pulse transmission through fog,” J. Appl. Phys. 45, 221–223 (1973).
[CrossRef]

Knight, C. J.

P. I. Singh, C. J. Knight, “Pulsed laser-induced shattering of water drops,” AIAA J. 18, 96–100 (1980).
[CrossRef]

Kopytin, Yu. D.

V. E. Zuev, A. A. Zemlyanov, Yu. D. Kopytin, A. V. Kuzikovskii, “Laser beam propagation through an explosively evaporating water-droplet aerosol,” in High-Power Laser Radiation in Atmospheric Aerosols: Nonlinear Optics of Aerodispersed Media (Reidel, Dordrecht, The Netherlands, 1985), pp. 128–164.
[CrossRef]

Kuzikovskii, A. V.

V. E. Zuev, A. A. Zemlyanov, Yu. D. Kopytin, A. V. Kuzikovskii, “Laser beam propagation through an explosively evaporating water-droplet aerosol,” in High-Power Laser Radiation in Atmospheric Aerosols: Nonlinear Optics of Aerodispersed Media (Reidel, Dordrecht, The Netherlands, 1985), pp. 128–164.
[CrossRef]

Kwok, H. S.

Lau, W. S.

Leach, D. H.

Leone, S. R.

T. P. Marcy, J. P. Reid, C. X. W. Qian, S. R. Leone, “Addition-insertion-elimination reactions of O(3P) with halogenated iodoalkanes producing HF(v) and HCl (v),” J. Chem. Phys. 114, 2251–2258 (2001).
[CrossRef]

Letendre, L. T.

D. K. Liu, L. T. Letendre, H.-L. Dai, “193 nm photolysis of vinyl bromide: nascent product distribution of the C2H3Br-C2H2 (vinylidene) + HBr channel,” J. Chem. Phys. 115, 1734–1741 (2001).
[CrossRef]

Liu, D. K.

D. K. Liu, L. T. Letendre, H.-L. Dai, “193 nm photolysis of vinyl bromide: nascent product distribution of the C2H3Br-C2H2 (vinylidene) + HBr channel,” J. Chem. Phys. 115, 1734–1741 (2001).
[CrossRef]

Lowder, J. E.

J. E. Lowder, H. Kleiman, R. W. O’Neil, “High-energy CO2 laser pulse transmission through fog,” J. Appl. Phys. 45, 221–223 (1973).
[CrossRef]

Marcy, T. P.

T. P. Marcy, J. P. Reid, C. X. W. Qian, S. R. Leone, “Addition-insertion-elimination reactions of O(3P) with halogenated iodoalkanes producing HF(v) and HCl (v),” J. Chem. Phys. 114, 2251–2258 (2001).
[CrossRef]

Mathies, R. A.

W. Hage, M. Kim, H. Frei, R. A. Mathies, “Protein dynamics in the bacteriorhodopsin photocycle: a nanosecond step-scan FTIR investigation of the KL to L transition,” J. Phys. Chem. 100, 16026–16033 (1996).
[CrossRef]

Miller, R. E.

E. Woods, G. D. Smith, Y. Dessiaterik, T. Baer, R. E. Miller, “Quantitative detection of aromatic compounds in single aerosol particle mass spectrometry,” Anal. Chem. 73, 2317–2322 (2001).
[CrossRef] [PubMed]

Moore, J. H.

J. H. Moore, C. C. Davis, M. A. Coplan, Building Scientific Apparatus: A Practical Guide to Design and Construction, 2nd ed. (Addison-Wesley, Redwood City, Calif., 1989).

Noble, C. A.

C. A. Noble, K. A. Prather, “Real-time measurement of correlated size and composition profiles of individual atmospheric aerosol particles,” Envon. Sci. Technol. 30, 2667–2680 (1996).
[CrossRef]

O’Neil, R. W.

J. E. Lowder, H. Kleiman, R. W. O’Neil, “High-energy CO2 laser pulse transmission through fog,” J. Appl. Phys. 45, 221–223 (1973).
[CrossRef]

O’Rourke, P. J.

R. L. Armstrong, P. J. O’Rourke, A. Zardecki, “Vaporization of irradiated droplets,” Phys. Fluids 29, 3573–3581 (1986).
[CrossRef]

Palmer, R. A.

Park, B.-S.

Pendleton, J. D.

Pinnick, R. G.

Prather, K. A.

C. A. Noble, K. A. Prather, “Real-time measurement of correlated size and composition profiles of individual atmospheric aerosol particles,” Envon. Sci. Technol. 30, 2667–2680 (1996).
[CrossRef]

Qian, C. X. W.

T. P. Marcy, J. P. Reid, C. X. W. Qian, S. R. Leone, “Addition-insertion-elimination reactions of O(3P) with halogenated iodoalkanes producing HF(v) and HCl (v),” J. Chem. Phys. 114, 2251–2258 (2001).
[CrossRef]

Reid, J. P.

T. P. Marcy, J. P. Reid, C. X. W. Qian, S. R. Leone, “Addition-insertion-elimination reactions of O(3P) with halogenated iodoalkanes producing HF(v) and HCl (v),” J. Chem. Phys. 114, 2251–2258 (2001).
[CrossRef]

Rodig, C.

Rossi, T. M.

Sageev, G.

Schoolcraft, T. A.

T. A. Schoolcraft, G. S. Constable, L. V. Zhigilei, B. J. Garrison, “Molecular dynamics simulation of the laser disintegration of aerosol particles,” Anal. Chem. 72, 5143–5150 (2000).
[CrossRef] [PubMed]

Schoonover, J. R.

Seinfeld, J. H.

Sengers, J. M. H. L.

A. H. Harvey, J. S. Gallagher, J. M. H. L. Sengers, “Revised formulation for the refractive index of water and steam as a function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 27, 761–774 (1998).
[CrossRef]

Seo, Y.

Shaw, D. T.

Siebert, F.

Singh, P. I.

P. I. Singh, C. J. Knight, “Pulsed laser-induced shattering of water drops,” AIAA J. 18, 96–100 (1980).
[CrossRef]

Smith, G. D.

E. Woods, G. D. Smith, Y. Dessiaterik, T. Baer, R. E. Miller, “Quantitative detection of aromatic compounds in single aerosol particle mass spectrometry,” Anal. Chem. 73, 2317–2322 (2001).
[CrossRef] [PubMed]

Taran, Ch.

Uhmann, W.

Vigliano, P.

M. Autric, P. Vigliano, D. Dufresne, J. P. Caressa, Ph. Bournot, “Pulsed CO2 laser-induced effects on water droplets,” AIAA J. 26, 65–71 (1988).
[CrossRef]

Wang, H.

Wood, C. F.

Woods, E.

E. Woods, G. D. Smith, Y. Dessiaterik, T. Baer, R. E. Miller, “Quantitative detection of aromatic compounds in single aerosol particle mass spectrometry,” Anal. Chem. 73, 2317–2322 (2001).
[CrossRef] [PubMed]

Yuzawa, T.

Zardecki, A.

A. Zardecki, J. D. Pendleton, “Hydrodynamics of water droplets irradiated by a pulsed CO2 laser,” Appl. Opt. 28, 638–640 (1989).
[CrossRef] [PubMed]

A. Zardecki, R. L. Armstrong, “Energy balance in laser-irradiated vaporizing droplets,” Appl. Opt. 27, 3690–3695 (1988).
[CrossRef] [PubMed]

R. L. Armstrong, A. Zardecki, “Diffusive and convective vaporization of irradiated droplets,” J. Appl. Phys. 62, 4571–4578 (1987).
[CrossRef]

R. L. Armstrong, P. J. O’Rourke, A. Zardecki, “Vaporization of irradiated droplets,” Phys. Fluids 29, 3573–3581 (1986).
[CrossRef]

Zemlyanov, A. A.

A. A. Zemlyanov, Y. E. Geints, A. M. Kabanov, R. L. Armstrong, “Investigation of laser-induced destruction of droplets by acoustic methods,” Appl. Opt. 35, 6062–6068 (1996).
[CrossRef] [PubMed]

Yu. E. Geints, A. A. Zemlyanov, R. L. Armstrong, “Explosive boiling of water droplets irradiated with intense CO2-laser radiation: numerical experiments,” Appl. Opt. 33, 5805–5810 (1994).
[CrossRef] [PubMed]

A. A. Zemlyanov, A. M. Kabanov, “Signal of light scattering from a model water droplet aerosol exposed to the pulses of intense radiation of a CO2 laser,” Atmos. Oceanic Opt. 4, 501–503 (1991).

V. E. Zuev, A. A. Zemlyanov, Yu. D. Kopytin, A. V. Kuzikovskii, “Laser beam propagation through an explosively evaporating water-droplet aerosol,” in High-Power Laser Radiation in Atmospheric Aerosols: Nonlinear Optics of Aerodispersed Media (Reidel, Dordrecht, The Netherlands, 1985), pp. 128–164.
[CrossRef]

Zhang, J.-Z.

Zhigilei, L. V.

T. A. Schoolcraft, G. S. Constable, L. V. Zhigilei, B. J. Garrison, “Molecular dynamics simulation of the laser disintegration of aerosol particles,” Anal. Chem. 72, 5143–5150 (2000).
[CrossRef] [PubMed]

Zuev, V. E.

V. E. Zuev, A. A. Zemlyanov, Yu. D. Kopytin, A. V. Kuzikovskii, “Laser beam propagation through an explosively evaporating water-droplet aerosol,” in High-Power Laser Radiation in Atmospheric Aerosols: Nonlinear Optics of Aerodispersed Media (Reidel, Dordrecht, The Netherlands, 1985), pp. 128–164.
[CrossRef]

AIAA J. (2)

M. Autric, P. Vigliano, D. Dufresne, J. P. Caressa, Ph. Bournot, “Pulsed CO2 laser-induced effects on water droplets,” AIAA J. 26, 65–71 (1988).
[CrossRef]

P. I. Singh, C. J. Knight, “Pulsed laser-induced shattering of water drops,” AIAA J. 18, 96–100 (1980).
[CrossRef]

Anal. Chem. (2)

E. Woods, G. D. Smith, Y. Dessiaterik, T. Baer, R. E. Miller, “Quantitative detection of aromatic compounds in single aerosol particle mass spectrometry,” Anal. Chem. 73, 2317–2322 (2001).
[CrossRef] [PubMed]

T. A. Schoolcraft, G. S. Constable, L. V. Zhigilei, B. J. Garrison, “Molecular dynamics simulation of the laser disintegration of aerosol particles,” Anal. Chem. 72, 5143–5150 (2000).
[CrossRef] [PubMed]

Appl. Opt. (13)

A. C. Holland, J. S. Draper, “Analytical and experimental investigation of light scattering from polydispersions of Mie particles,” Appl. Opt. 6, 511–518 (1967).
[CrossRef] [PubMed]

P. Kafalas, J. Herrmann, “Dynamics and energetics of the explosive vaporization of fog droplets by a 10.6-µm laser pulse,” Appl. Opt. 12, 772–775 (1973).
[CrossRef] [PubMed]

M. C. Fowler, “Effect of a CO2 laser pulse on transmission through fog at visible and IR wavelengths,” Appl. Opt. 22, 2960–2964 (1983).
[CrossRef]

G. Sageev, J. H. Seinfeld, “Laser heating of an aqueous aerosol particle,” Appl. Opt. 23, 4368–4374 (1984).
[CrossRef] [PubMed]

S. M. Chitanvis, “High energy laser interactions with water droplets,” Appl. Opt. 24, 3552–3556 (1985).
[CrossRef] [PubMed]

S. C. Davies, J. R. Brock, “Laser evaporation of droplets,” Appl. Opt. 26, 786–793 (1987).
[CrossRef] [PubMed]

S. C. Davies, J. R. Brock, “Laser beam propagation in an evaporating polydispersed aerosol,” Appl. Opt. 26, 1806–1813 (1987).
[CrossRef] [PubMed]

C. F. Wood, D. H. Leach, J.-Z. Zhang, R. K. Chang, P. W. Barber, “Time-resolved shadowgraphs of large individual water and ethanol droplets vaporized by a pulsed CO2 laser,” Appl. Opt. 27, 2279–2286 (1988).
[CrossRef] [PubMed]

A. Zardecki, R. L. Armstrong, “Energy balance in laser-irradiated vaporizing droplets,” Appl. Opt. 27, 3690–3695 (1988).
[CrossRef] [PubMed]

A. Zardecki, J. D. Pendleton, “Hydrodynamics of water droplets irradiated by a pulsed CO2 laser,” Appl. Opt. 28, 638–640 (1989).
[CrossRef] [PubMed]

Yu. E. Geints, A. A. Zemlyanov, R. L. Armstrong, “Explosive boiling of water droplets irradiated with intense CO2-laser radiation: numerical experiments,” Appl. Opt. 33, 5805–5810 (1994).
[CrossRef] [PubMed]

A. A. Zemlyanov, Y. E. Geints, A. M. Kabanov, R. L. Armstrong, “Investigation of laser-induced destruction of droplets by acoustic methods,” Appl. Opt. 35, 6062–6068 (1996).
[CrossRef] [PubMed]

R. G. Pinnick, A. Biswas, R. L. Armstrong, S. G. Jennings, J. D. Pendleton, G. Fernandez, “Micron-sized droplets irradiated with a pulsed CO2 laser: measurement of explosion and breakdown thresholds,” Appl. Opt. 29, 918–925 (1990).
[CrossRef] [PubMed]

Appl. Spectrosc. (5)

Atmos. Oceanic Opt. (1)

A. A. Zemlyanov, A. M. Kabanov, “Signal of light scattering from a model water droplet aerosol exposed to the pulses of intense radiation of a CO2 laser,” Atmos. Oceanic Opt. 4, 501–503 (1991).

Envon. Sci. Technol. (1)

C. A. Noble, K. A. Prather, “Real-time measurement of correlated size and composition profiles of individual atmospheric aerosol particles,” Envon. Sci. Technol. 30, 2667–2680 (1996).
[CrossRef]

J. Aerosol Sci. (1)

K. Blum, H. J. Fissan, “Investigations of scattered light intensity distributions for determination of particle size distribution parameters,” J. Aerosol Sci. 17, 406–409 (1986).
[CrossRef]

J. Appl. Phys. (4)

J. E. Lowder, H. Kleiman, R. W. O’Neil, “High-energy CO2 laser pulse transmission through fog,” J. Appl. Phys. 45, 221–223 (1973).
[CrossRef]

S. M. Chitanvis, S. A. W. Gerstl, “Aerosol clearing model for a high-energy laser beam propagating through vaporizing media,” J. Appl. Phys. 62, 3091–3096 (1987).
[CrossRef]

R. L. Armstrong, A. Zardecki, “Diffusive and convective vaporization of irradiated droplets,” J. Appl. Phys. 62, 4571–4578 (1987).
[CrossRef]

S. M. Chitanvis, “Explosive vaporization of small droplets by a high-energy laser beam,” J. Appl. Phys. 62, 4387–4393 (1987).
[CrossRef]

J. Chem. Phys. (2)

T. P. Marcy, J. P. Reid, C. X. W. Qian, S. R. Leone, “Addition-insertion-elimination reactions of O(3P) with halogenated iodoalkanes producing HF(v) and HCl (v),” J. Chem. Phys. 114, 2251–2258 (2001).
[CrossRef]

D. K. Liu, L. T. Letendre, H.-L. Dai, “193 nm photolysis of vinyl bromide: nascent product distribution of the C2H3Br-C2H2 (vinylidene) + HBr channel,” J. Chem. Phys. 115, 1734–1741 (2001).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. (1)

W. Hage, M. Kim, H. Frei, R. A. Mathies, “Protein dynamics in the bacteriorhodopsin photocycle: a nanosecond step-scan FTIR investigation of the KL to L transition,” J. Phys. Chem. 100, 16026–16033 (1996).
[CrossRef]

J. Phys. Chem. Ref. Data (1)

A. H. Harvey, J. S. Gallagher, J. M. H. L. Sengers, “Revised formulation for the refractive index of water and steam as a function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 27, 761–774 (1998).
[CrossRef]

Opt. Lett. (2)

Phys. Fluids (1)

R. L. Armstrong, P. J. O’Rourke, A. Zardecki, “Vaporization of irradiated droplets,” Phys. Fluids 29, 3573–3581 (1986).
[CrossRef]

Other (5)

J. H. Moore, C. C. Davis, M. A. Coplan, Building Scientific Apparatus: A Practical Guide to Design and Construction, 2nd ed. (Addison-Wesley, Redwood City, Calif., 1989).

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

W. Brown, Light Scattering: Principles and Development (Clarendon, Oxford, UK, 1996).

V. E. Zuev, A. A. Zemlyanov, Yu. D. Kopytin, A. V. Kuzikovskii, “Laser beam propagation through an explosively evaporating water-droplet aerosol,” in High-Power Laser Radiation in Atmospheric Aerosols: Nonlinear Optics of Aerodispersed Media (Reidel, Dordrecht, The Netherlands, 1985), pp. 128–164.
[CrossRef]

R. L. Armstrong, “Laser-induced droplet heating,” in Optical Effects Associated with Small Particles, P. W. Barber, R. K. Chang, eds. (World Scientific, Teaneck, N.J., 1988), pp. 201–275.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Apparatus used to measure the angular-resolved scattering profiles of aerosols heated by a pulsed laser beam.

Fig. 2
Fig. 2

Time-resolved extinction of (a) 532-nm and (b) 633-nm light by water aerosols undergoing pulsed heating. Extinction increases for both wavelengths at short times for all fluences. These increases cannot simply be explained by evaporation of aerosols of a constant number density and are indicative of aerosol particle shattering.

Fig. 3
Fig. 3

Plot of Q ext1)/Q ext2) as a function of radius for λ1 = 532 nm and λ2 = 633 nm for monodispersed room-temperature water aerosols and aerosols with log-normal distributions, as calculated by Mie theory. As the width of the size distribution increases, the fine structure disappears, decreasing the sensitivity of the ratio to size for larger particles and distribution width for smaller particles.

Fig. 4
Fig. 4

Experimental, time-dependent Q ext(532-nm)/Q ext(633-nm) ratio for water aerosols irradiated by a pulsed CO2 laser. The ratio shows a rapid jump (shattering), followed by a relatively smooth increase (evaporation).

Fig. 5
Fig. 5

Evolution of droplet size with time for water aerosols at different laser fluences. As the droplets shatter, the observed size decreases sharply at all laser fluences, where r 0 is the initial droplet size and r f is the fragment size. Further evaporation of the fragments is a function of incident intensity.

Fig. 6
Fig. 6

Evolution of number density with time for different laser fluences of water aerosols. After the initial shattering, the number density continues to increase for all fluences because of the flow of particles into the observation that is due to the presence of the acoustic wave.

Fig. 7
Fig. 7

(a) Effect of a change in the particle size, (b) width of the log-normal distribution, (c) refractive index on the angular-resolved scattering profile calculated by Mie theory. As the particle size changes, the number of lobes in the profile changes. Increasing the width of the size distribution results in only subtle effects on the profile. Decreasing the refractive index reduces the relative intensity of backscattering to forward scattering.

Fig. 8
Fig. 8

Experimental angle-resolved scattering profiles (upper) measured at times before and after pulsed heating. Calculated angle-resolved scattering profiles (lower) for water-vapor spheres from 2 to 4 µm in diameter with refractive indices at vapor-liquid saturation. The peaked scattering intensity at small angles is similar to that observed in the experimental profiles at longer times.

Fig. 9
Fig. 9

Experimental and best-fit calculated profiles for aerosols at (a) t = 0, (b) 20, and (c) 200 µs corrected for the vapor scattering contribution. The width of the aerosol size distribution increases as the particle size decreases. At short times, the refractive index decreases because of particle heating, before rebounding at longer times as a result of evaporative cooling.

Fig. 10
Fig. 10

Experimental design used in step-scan FTIR measurements.

Fig. 11
Fig. 11

(a) FTIR spectra of water vapor and (b) room-temperature water aerosols. Equilibrium vapor features are clearly present, superimposed on the condensed phase aerosol features. Elevation of the baseline at higher wave numbers results from scattering by the particles. (c) Transient absorption difference spectra of water aerosols before (baseline) and (d) after heating by the CO2 laser. At times after the CO2 pulse, vapor absorption features are present, and a decrease in the scattering results from the smaller particle size. The vertical lines indicate the region of the spectrum integrated to obtain the transient vapor pressure.

Fig. 12
Fig. 12

Transient vapor pressure resulting from the evaporation of water aerosols (solid curve). Calculated vapor pressure decay is due to thermal expansion (dashed curve). The difference transient indicates evaporation of primary particle fragments (dotted curve).

Fig. 13
Fig. 13

Evolution of droplet size with time for formamide aerosols at different laser fluences, determined from light extinction measurements. Similar to water aerosols, the droplets shatter and the observed size decreases sharply at all laser fluences, where r 0 and r f are the initial and fragment droplet sizes, respectively.

Fig. 14
Fig. 14

Three-dimensional plot of the formamide vapor feature as a function of time. Similar to water, a sudden increase in vapor absorption is observed. Unlike water, however, the vapor pressure immediately decreases as a result of less mass vapor loading by fragment evaporation.

Fig. 15
Fig. 15

Transient vapor pressure of formamide aerosols evaporated with the CO2 laser at different fluences. The initial extent of vaporization displays fluence dependence, as does the rate of decay.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I=I0expV/V0-1,
η=αL=Nπr2QextL,
ΔA=-ln1+ΔS/S,

Metrics