Abstract

A simple experimental setup is described that facilitates accurate measurements of the temperature-dependent water absorption coefficient in the mid-infrared spectral region. With this setup, the absorption of holmium and thulium laser radiation in water was quantified to a precision of 0.5%. In the 20–100 °C temperature range, a linear decrease of the absorption coefficient with temperature is observed. The slope coefficients amount to -0.104 ± 0.001 and -0.259 ± 0.003 1/(K cm) for 2090-nm holmium and 2014-nm thulium radiation, respectively. At both wavelengths, this bleaching reduces the absorption coefficients of water at 100 °C by one third when compared with room temperature. A numerical simulation shows that the variable absorption has a noticeable influence on peak temperatures in laser heating of water.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (18)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription