Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Temperature dependence of light absorption in water at holmium and thulium laser wavelengths

Not Accessible

Your library or personal account may give you access

Abstract

A simple experimental setup is described that facilitates accurate measurements of the temperature-dependent water absorption coefficient in the mid-infrared spectral region. With this setup, the absorption of holmium and thulium laser radiation in water was quantified to a precision of 0.5%. In the 20–100 °C temperature range, a linear decrease of the absorption coefficient with temperature is observed. The slope coefficients amount to -0.104 ± 0.001 and -0.259 ± 0.003 1/(K cm) for 2090-nm holmium and 2014-nm thulium radiation, respectively. At both wavelengths, this bleaching reduces the absorption coefficients of water at 100 °C by one third when compared with room temperature. A numerical simulation shows that the variable absorption has a noticeable influence on peak temperatures in laser heating of water.

© 2002 Optical Society of America

Full Article  |  PDF Article
More Like This
Temperature and intensity dependence of Yb-fiber laser light absorption in water

Suvradip Mullick, Yuvraj K. Madhukar, Shailesh Kumar, Dinesh K. Shukla, and Ashish K. Nath
Appl. Opt. 50(34) 6319-6326 (2011)

Absorption and attenuation of visible and near-infrared light in water: dependence on temperature and salinity

W. Scott Pegau, Deric Gray, and J. Ronald V. Zaneveld
Appl. Opt. 36(24) 6035-6046 (1997)

Mid-infrared laser-induced superheating of water and its quantification by an optical temperature probe

Tobias Brendel and Ralf Brinkmann
Appl. Opt. 43(9) 1856-1862 (2004)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (18)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.