Abstract

A simple experimental setup is described that facilitates accurate measurements of the temperature-dependent water absorption coefficient in the mid-infrared spectral region. With this setup, the absorption of holmium and thulium laser radiation in water was quantified to a precision of 0.5%. In the 20–100 °C temperature range, a linear decrease of the absorption coefficient with temperature is observed. The slope coefficients amount to -0.104 ± 0.001 and -0.259 ± 0.003 1/(K cm) for 2090-nm holmium and 2014-nm thulium radiation, respectively. At both wavelengths, this bleaching reduces the absorption coefficients of water at 100 °C by one third when compared with room temperature. A numerical simulation shows that the variable absorption has a noticeable influence on peak temperatures in laser heating of water.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Hüttmann, R. Birngruber, “On the possibility of high-precision photothermal microeffects and the measurement of fast thermal denaturation of proteins,” IEEE J. Sel. Top. Quantum Electron. 5, 954–962 (1999).
    [CrossRef]
  2. J. R. Collins, “Change in the infrared absorption spectrum of water with temperature,” Phys. Rev. 26, 771–779 (1925).
    [CrossRef]
  3. J. Curcio, C. Petty, “The near infrared absorption spectrum of liquid water,” J. Opt. Soc. Am. 41, 302–304 (1951).
    [CrossRef]
  4. W. Luck, “Zur Assoziation des Wassers III,” Ber. Bunsenges. Phys. Chem. 69, 626–637 (1965).
  5. G. M. Hale, M. R. Querry, A. N. Rusk, D. Williams, “Influence of temperature on the spectrum of water,” J. Opt. Soc. Am. 62, 1103–1108 (1972).
    [CrossRef]
  6. L. W. Pinkley, P. P. Sethna, D. Williams, “Optical constants of water in the infrared: influence of temperature,” J. Opt. Soc. Am. 67, 494–499 (1977).
    [CrossRef]
  7. V. S. Langford, A. J. McKinley, T. I. Quickenden, “Temperature dependence of the visible-near-infrared absorption spectrum of liquid water,” J. Phys. Chem. A 105, 8916–8921 (2001).
    [CrossRef]
  8. R. A. J. Litjens, T. I. Quickenden, C. G. Freeman, “Visible and near-ultraviolet absorption spectrum of liquid water,” Appl. Opt. 38, 1216–1223 (1999).
    [CrossRef]
  9. E. S. Fry, “Visible and near-ultraviolet absorption spectrum of liquid water: comment,” Appl. Opt. 39, 2743–2744 (2000).
    [CrossRef]
  10. T. Iwata, J. Koshoubu, C. Jin, Y. Okubo, “Temperature dependency of the mid-infrared OH spectral band in liquid water,” Appl. Spectrosc. 51, 1269–1275 (1997).
    [CrossRef]
  11. J. Lin, C. W. Brown, “Near-IR fiber-optic temperature sensor,” Appl. Spectrosc. 47, 62–68 (1993).
    [CrossRef]
  12. E. D. Jansen, T. G. van Leeuwen, M. Motamedi, C. Borst, A. J. Welch, “Temperature dependence of the absorption coefficient of water for midinfrared laser radiation,” Lasers Surg. Med. 14, 258–268 (1994).
    [CrossRef] [PubMed]
  13. K. L. Vodopyanov, “Saturation studies of H2O and HDO near 3400 cm-1 using intense picosecond laser pulses,” J. Chem. Phys. 94, 5389–5393 (1991).
    [CrossRef]
  14. J. T. Walsh, J. P. Cummings, “Effect of the dynamic optical properties of water on midinfrared laser ablation,” Lasers Surg. Med. 15, 295–305 (1994).
    [CrossRef] [PubMed]
  15. I. Thormaelen, J. Straub, U. Grigull, “Refractive index of water and its dependence on wavelength, temperature and density,” J. Phys. Chem. Ref. Data 14, 933–945 (1985).
    [CrossRef]
  16. P. Schiebener, J. Straub, J. Sengers, J. S. Gallagher, “Refractive index of water and steam as function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 19, 677–717 (1990).
    [CrossRef]
  17. W. Wagner, A. Kruse, Properties of Water and Steam: the Industrial Standard IAPWS-IF97 for the Thermodynamic Properties and Supplementary Equations for Other Properties (Springer-Verlag, Berlin, 1998).
  18. E. F. Maher, “Transmission and absorption coefficients for ocular media of the rhesus monkey,” Report SAM-TR-78-32 (U.S. Air Force School of Aerospace Medicine, BrooksAir Force Base, Tex., 1978), pp. 29–90.
  19. S. R. Bowman, M. J. Winings, R. C. Y. Auyeung, J. E. Tucker, S. K. Searles, B. J. Feldman, “Laser and spectral properties of Cr,Tm,Ho:YAG at 2.1 µm,” IEEE J. Quantum Electron. 27, 2142–2149 (1991).
    [CrossRef]
  20. Y. E. Gorbaty, G. V. Bondarenko, “Experimental technique for quantitative IR studies of highly absorbing substances at high temperatures and pressures,” Appl. Spectrosc. 53, 908–913 (1999).
    [CrossRef]
  21. K. Yamamoto, Y. Mizutani, T. Kitagawa, “Construction of novel nanosecond temperature jump apparatuses applicable to Raman measurements and direct observation of transient temperature,” Appl. Spectrosc. 54, 1591–1604 (2000).
    [CrossRef]
  22. W. L. Wolfe, G. J. Zissis, eds., The Infrared Handbook (Environmental Research Institute of Michigan, Ann Arbor, Mich., 1989).

2001 (1)

V. S. Langford, A. J. McKinley, T. I. Quickenden, “Temperature dependence of the visible-near-infrared absorption spectrum of liquid water,” J. Phys. Chem. A 105, 8916–8921 (2001).
[CrossRef]

2000 (2)

1999 (3)

1997 (1)

1994 (2)

E. D. Jansen, T. G. van Leeuwen, M. Motamedi, C. Borst, A. J. Welch, “Temperature dependence of the absorption coefficient of water for midinfrared laser radiation,” Lasers Surg. Med. 14, 258–268 (1994).
[CrossRef] [PubMed]

J. T. Walsh, J. P. Cummings, “Effect of the dynamic optical properties of water on midinfrared laser ablation,” Lasers Surg. Med. 15, 295–305 (1994).
[CrossRef] [PubMed]

1993 (1)

1991 (2)

S. R. Bowman, M. J. Winings, R. C. Y. Auyeung, J. E. Tucker, S. K. Searles, B. J. Feldman, “Laser and spectral properties of Cr,Tm,Ho:YAG at 2.1 µm,” IEEE J. Quantum Electron. 27, 2142–2149 (1991).
[CrossRef]

K. L. Vodopyanov, “Saturation studies of H2O and HDO near 3400 cm-1 using intense picosecond laser pulses,” J. Chem. Phys. 94, 5389–5393 (1991).
[CrossRef]

1990 (1)

P. Schiebener, J. Straub, J. Sengers, J. S. Gallagher, “Refractive index of water and steam as function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 19, 677–717 (1990).
[CrossRef]

1985 (1)

I. Thormaelen, J. Straub, U. Grigull, “Refractive index of water and its dependence on wavelength, temperature and density,” J. Phys. Chem. Ref. Data 14, 933–945 (1985).
[CrossRef]

1977 (1)

1972 (1)

1965 (1)

W. Luck, “Zur Assoziation des Wassers III,” Ber. Bunsenges. Phys. Chem. 69, 626–637 (1965).

1951 (1)

1925 (1)

J. R. Collins, “Change in the infrared absorption spectrum of water with temperature,” Phys. Rev. 26, 771–779 (1925).
[CrossRef]

Auyeung, R. C. Y.

S. R. Bowman, M. J. Winings, R. C. Y. Auyeung, J. E. Tucker, S. K. Searles, B. J. Feldman, “Laser and spectral properties of Cr,Tm,Ho:YAG at 2.1 µm,” IEEE J. Quantum Electron. 27, 2142–2149 (1991).
[CrossRef]

Birngruber, R.

G. Hüttmann, R. Birngruber, “On the possibility of high-precision photothermal microeffects and the measurement of fast thermal denaturation of proteins,” IEEE J. Sel. Top. Quantum Electron. 5, 954–962 (1999).
[CrossRef]

Bondarenko, G. V.

Borst, C.

E. D. Jansen, T. G. van Leeuwen, M. Motamedi, C. Borst, A. J. Welch, “Temperature dependence of the absorption coefficient of water for midinfrared laser radiation,” Lasers Surg. Med. 14, 258–268 (1994).
[CrossRef] [PubMed]

Bowman, S. R.

S. R. Bowman, M. J. Winings, R. C. Y. Auyeung, J. E. Tucker, S. K. Searles, B. J. Feldman, “Laser and spectral properties of Cr,Tm,Ho:YAG at 2.1 µm,” IEEE J. Quantum Electron. 27, 2142–2149 (1991).
[CrossRef]

Brown, C. W.

Collins, J. R.

J. R. Collins, “Change in the infrared absorption spectrum of water with temperature,” Phys. Rev. 26, 771–779 (1925).
[CrossRef]

Cummings, J. P.

J. T. Walsh, J. P. Cummings, “Effect of the dynamic optical properties of water on midinfrared laser ablation,” Lasers Surg. Med. 15, 295–305 (1994).
[CrossRef] [PubMed]

Curcio, J.

Feldman, B. J.

S. R. Bowman, M. J. Winings, R. C. Y. Auyeung, J. E. Tucker, S. K. Searles, B. J. Feldman, “Laser and spectral properties of Cr,Tm,Ho:YAG at 2.1 µm,” IEEE J. Quantum Electron. 27, 2142–2149 (1991).
[CrossRef]

Freeman, C. G.

Fry, E. S.

Gallagher, J. S.

P. Schiebener, J. Straub, J. Sengers, J. S. Gallagher, “Refractive index of water and steam as function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 19, 677–717 (1990).
[CrossRef]

Gorbaty, Y. E.

Grigull, U.

I. Thormaelen, J. Straub, U. Grigull, “Refractive index of water and its dependence on wavelength, temperature and density,” J. Phys. Chem. Ref. Data 14, 933–945 (1985).
[CrossRef]

Hale, G. M.

Hüttmann, G.

G. Hüttmann, R. Birngruber, “On the possibility of high-precision photothermal microeffects and the measurement of fast thermal denaturation of proteins,” IEEE J. Sel. Top. Quantum Electron. 5, 954–962 (1999).
[CrossRef]

Iwata, T.

Jansen, E. D.

E. D. Jansen, T. G. van Leeuwen, M. Motamedi, C. Borst, A. J. Welch, “Temperature dependence of the absorption coefficient of water for midinfrared laser radiation,” Lasers Surg. Med. 14, 258–268 (1994).
[CrossRef] [PubMed]

Jin, C.

Kitagawa, T.

Koshoubu, J.

Kruse, A.

W. Wagner, A. Kruse, Properties of Water and Steam: the Industrial Standard IAPWS-IF97 for the Thermodynamic Properties and Supplementary Equations for Other Properties (Springer-Verlag, Berlin, 1998).

Langford, V. S.

V. S. Langford, A. J. McKinley, T. I. Quickenden, “Temperature dependence of the visible-near-infrared absorption spectrum of liquid water,” J. Phys. Chem. A 105, 8916–8921 (2001).
[CrossRef]

Lin, J.

Litjens, R. A. J.

Luck, W.

W. Luck, “Zur Assoziation des Wassers III,” Ber. Bunsenges. Phys. Chem. 69, 626–637 (1965).

Maher, E. F.

E. F. Maher, “Transmission and absorption coefficients for ocular media of the rhesus monkey,” Report SAM-TR-78-32 (U.S. Air Force School of Aerospace Medicine, BrooksAir Force Base, Tex., 1978), pp. 29–90.

McKinley, A. J.

V. S. Langford, A. J. McKinley, T. I. Quickenden, “Temperature dependence of the visible-near-infrared absorption spectrum of liquid water,” J. Phys. Chem. A 105, 8916–8921 (2001).
[CrossRef]

Mizutani, Y.

Motamedi, M.

E. D. Jansen, T. G. van Leeuwen, M. Motamedi, C. Borst, A. J. Welch, “Temperature dependence of the absorption coefficient of water for midinfrared laser radiation,” Lasers Surg. Med. 14, 258–268 (1994).
[CrossRef] [PubMed]

Okubo, Y.

Petty, C.

Pinkley, L. W.

Querry, M. R.

Quickenden, T. I.

V. S. Langford, A. J. McKinley, T. I. Quickenden, “Temperature dependence of the visible-near-infrared absorption spectrum of liquid water,” J. Phys. Chem. A 105, 8916–8921 (2001).
[CrossRef]

R. A. J. Litjens, T. I. Quickenden, C. G. Freeman, “Visible and near-ultraviolet absorption spectrum of liquid water,” Appl. Opt. 38, 1216–1223 (1999).
[CrossRef]

Rusk, A. N.

Schiebener, P.

P. Schiebener, J. Straub, J. Sengers, J. S. Gallagher, “Refractive index of water and steam as function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 19, 677–717 (1990).
[CrossRef]

Searles, S. K.

S. R. Bowman, M. J. Winings, R. C. Y. Auyeung, J. E. Tucker, S. K. Searles, B. J. Feldman, “Laser and spectral properties of Cr,Tm,Ho:YAG at 2.1 µm,” IEEE J. Quantum Electron. 27, 2142–2149 (1991).
[CrossRef]

Sengers, J.

P. Schiebener, J. Straub, J. Sengers, J. S. Gallagher, “Refractive index of water and steam as function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 19, 677–717 (1990).
[CrossRef]

Sethna, P. P.

Straub, J.

P. Schiebener, J. Straub, J. Sengers, J. S. Gallagher, “Refractive index of water and steam as function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 19, 677–717 (1990).
[CrossRef]

I. Thormaelen, J. Straub, U. Grigull, “Refractive index of water and its dependence on wavelength, temperature and density,” J. Phys. Chem. Ref. Data 14, 933–945 (1985).
[CrossRef]

Thormaelen, I.

I. Thormaelen, J. Straub, U. Grigull, “Refractive index of water and its dependence on wavelength, temperature and density,” J. Phys. Chem. Ref. Data 14, 933–945 (1985).
[CrossRef]

Tucker, J. E.

S. R. Bowman, M. J. Winings, R. C. Y. Auyeung, J. E. Tucker, S. K. Searles, B. J. Feldman, “Laser and spectral properties of Cr,Tm,Ho:YAG at 2.1 µm,” IEEE J. Quantum Electron. 27, 2142–2149 (1991).
[CrossRef]

van Leeuwen, T. G.

E. D. Jansen, T. G. van Leeuwen, M. Motamedi, C. Borst, A. J. Welch, “Temperature dependence of the absorption coefficient of water for midinfrared laser radiation,” Lasers Surg. Med. 14, 258–268 (1994).
[CrossRef] [PubMed]

Vodopyanov, K. L.

K. L. Vodopyanov, “Saturation studies of H2O and HDO near 3400 cm-1 using intense picosecond laser pulses,” J. Chem. Phys. 94, 5389–5393 (1991).
[CrossRef]

Wagner, W.

W. Wagner, A. Kruse, Properties of Water and Steam: the Industrial Standard IAPWS-IF97 for the Thermodynamic Properties and Supplementary Equations for Other Properties (Springer-Verlag, Berlin, 1998).

Walsh, J. T.

J. T. Walsh, J. P. Cummings, “Effect of the dynamic optical properties of water on midinfrared laser ablation,” Lasers Surg. Med. 15, 295–305 (1994).
[CrossRef] [PubMed]

Welch, A. J.

E. D. Jansen, T. G. van Leeuwen, M. Motamedi, C. Borst, A. J. Welch, “Temperature dependence of the absorption coefficient of water for midinfrared laser radiation,” Lasers Surg. Med. 14, 258–268 (1994).
[CrossRef] [PubMed]

Williams, D.

Winings, M. J.

S. R. Bowman, M. J. Winings, R. C. Y. Auyeung, J. E. Tucker, S. K. Searles, B. J. Feldman, “Laser and spectral properties of Cr,Tm,Ho:YAG at 2.1 µm,” IEEE J. Quantum Electron. 27, 2142–2149 (1991).
[CrossRef]

Yamamoto, K.

Appl. Opt. (2)

Appl. Spectrosc. (4)

Ber. Bunsenges. Phys. Chem. (1)

W. Luck, “Zur Assoziation des Wassers III,” Ber. Bunsenges. Phys. Chem. 69, 626–637 (1965).

IEEE J. Quantum Electron. (1)

S. R. Bowman, M. J. Winings, R. C. Y. Auyeung, J. E. Tucker, S. K. Searles, B. J. Feldman, “Laser and spectral properties of Cr,Tm,Ho:YAG at 2.1 µm,” IEEE J. Quantum Electron. 27, 2142–2149 (1991).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

G. Hüttmann, R. Birngruber, “On the possibility of high-precision photothermal microeffects and the measurement of fast thermal denaturation of proteins,” IEEE J. Sel. Top. Quantum Electron. 5, 954–962 (1999).
[CrossRef]

J. Chem. Phys. (1)

K. L. Vodopyanov, “Saturation studies of H2O and HDO near 3400 cm-1 using intense picosecond laser pulses,” J. Chem. Phys. 94, 5389–5393 (1991).
[CrossRef]

J. Opt. Soc. Am. (3)

J. Phys. Chem. A (1)

V. S. Langford, A. J. McKinley, T. I. Quickenden, “Temperature dependence of the visible-near-infrared absorption spectrum of liquid water,” J. Phys. Chem. A 105, 8916–8921 (2001).
[CrossRef]

J. Phys. Chem. Ref. Data (2)

I. Thormaelen, J. Straub, U. Grigull, “Refractive index of water and its dependence on wavelength, temperature and density,” J. Phys. Chem. Ref. Data 14, 933–945 (1985).
[CrossRef]

P. Schiebener, J. Straub, J. Sengers, J. S. Gallagher, “Refractive index of water and steam as function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 19, 677–717 (1990).
[CrossRef]

Lasers Surg. Med. (2)

E. D. Jansen, T. G. van Leeuwen, M. Motamedi, C. Borst, A. J. Welch, “Temperature dependence of the absorption coefficient of water for midinfrared laser radiation,” Lasers Surg. Med. 14, 258–268 (1994).
[CrossRef] [PubMed]

J. T. Walsh, J. P. Cummings, “Effect of the dynamic optical properties of water on midinfrared laser ablation,” Lasers Surg. Med. 15, 295–305 (1994).
[CrossRef] [PubMed]

Phys. Rev. (1)

J. R. Collins, “Change in the infrared absorption spectrum of water with temperature,” Phys. Rev. 26, 771–779 (1925).
[CrossRef]

Other (3)

W. Wagner, A. Kruse, Properties of Water and Steam: the Industrial Standard IAPWS-IF97 for the Thermodynamic Properties and Supplementary Equations for Other Properties (Springer-Verlag, Berlin, 1998).

E. F. Maher, “Transmission and absorption coefficients for ocular media of the rhesus monkey,” Report SAM-TR-78-32 (U.S. Air Force School of Aerospace Medicine, BrooksAir Force Base, Tex., 1978), pp. 29–90.

W. L. Wolfe, G. J. Zissis, eds., The Infrared Handbook (Environmental Research Institute of Michigan, Ann Arbor, Mich., 1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Sketch of the experimental setup. The laser radiation traverses a water layer of variable thickness that is bounded by the polished bottoms of two quartz cuvettes. The absorption coefficient can be calculated from the dependence of the energy transmission on the position of the movable, smaller cuvette. See text for more details.

Fig. 2
Fig. 2

Transmitted fraction of pulse energy as a function of translation stage position for holmium radiation (2090 nm) and a water temperature of 20 °C. The data are well approximated by an exponential curve as could be expected from Eq. (2).

Fig. 3
Fig. 3

Temperature dependence of the absorption coefficient of water for holmium and thulium radiation. The absorption coefficients decrease linearily to only approximately two-thirds of their 20 °C value as the temperature increases to 100 °C.

Fig. 4
Fig. 4

Influence of the variable absorption coefficient on temperature profiles in laser heating. A water sample is heated from room temperature to 100 °C by a holmium laser. Two counterpropagating beams are applied to obtain a homogeneous temperature distribution (approximately 10% deviation at 300-µm path length). The profile that results when we consider the observed bleaching of water is flatter when compared to calculations with constant absorption but differences do not exceed 3%.

Tables (1)

Tables Icon

Table 1 Temperature Coefficient a and Absorption b at 20 °Ca

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

μaw=- 2ω2πc01-n2ωω2-ω2dω,
E  exp-μaz,
μaT=aT-293 K+b
dT=μaTρcpdH.
TH=ba+T0expaHρcp- ba.
H±x, tx=μaTx, tH±x, t,
Tx, tt=μaTx, tH+x, t+H-x, tρcp,
H+0, tH-d, tH0,Tx, 0T0,
Ez=E0-lmaxlmaxexp-μaz+ΔpΔdΔ.
Ez=2lmaxE0pξexp-μaz+ξ.
lnEz=-μaz+const.
A=n=1 An,
A1=A0t2 expikzexp-μaz/2,An=An-1r2 expik2zexp-μaz n=2=A0t2 expikz-μaz/2r2n-1×expik2n-1z-μan-1z,n=1,
A=A0t2 expikz-μaz/2×n=0r2 expik2z-μazn= A0t2 expikz-μaz/21-r2 expik2z-μaz.
I=AA*=I0 exp-μaz× t41+r4 exp-2μaz-2r2 exp-μazcos2kz=: I0 exp-μazm,
μa=lnEzmin-lnEzmaxzmax-zmin.
μ˜a=lnEzminmzmin-lnEzmaxmzmaxzmax-zmin.
μ˜a μazmax+lnt41+r22+lnt41+r2exp-μazmax2zmax=μa1-lnt81+r221-r2a2lna,

Metrics