Abstract

A new principle of lidar-radar is theoretically and experimentally investigated. The proposed architecture is based on the use of an rf modulation of the emitted light beam and a direct detection of the backscattered intensity. Use of a radar-processing chain allows one to obtain range and Doppler measurements with the advantages of lidar spatial resolution. We calculate the maximum range of this device, taking into account different possible improvements. In particular, we show that use of a pulsed two-frequency laser and a spatially multimode optical preamplification of the backscattered light leads to calculated ranges larger than 20 km, including the possibility of both range and Doppler measurements. The building blocks of this lidar-radar are tested experimentally: The radar processing of an rf-modulated backscattered cw laser beam is demonstrated at 532 nm, illustrating the Doppler and identification capabilities of the system. In addition, signal-to-noise ratio improvement by optical preamplification is demonstrated at 1.06 µm. Finally, a two-frequency passively Q-switched Nd:YAG laser is developed. This laser then permits two-frequency pulses with tunable pulse duration (from 18 to 240 ns) and beat frequency (from 0 to 2.65 GHz) to be obtained.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. V. Jelalian, Laser Radar Systems (Artech House, Boston, Mass., 1992).
  2. J. Brandt, T. Steiner, N. Krasutsy, “Ten-kilometer imaging solid-state ladar demonstration,” in Conference on Lasers and Electro-Optics, Vol. 8 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), p. 264.
  3. M. Skolnik, Radar Handbook, 2nd ed. (MacGraw-Hill, New York, 1990).
  4. C. J. Karlsson, F. Å. A. Olsson, D. Letalick, M. Harris, “All-fiber multifunction continuous-wave coherent laser radar at 1.55 µm for range, speed, vibration, and wind measurements,” Appl. Opt. 39, 3716–3726 (2000).
    [CrossRef]
  5. W. L. Eberhard, R. M. Schotland, “Dual-frequency Doppler-lidar method of wind measurement,” Appl. Opt. 19, 2967–2976 (1980).
    [CrossRef] [PubMed]
  6. B. L. Stann, W. C. Ruff, Z. G. Sztankay, “Intensity-modulated diode laser radar using frequency-modulation/continuous-wave ranging,” Opt. Eng. 35, 3270–3278 (1996).
    [CrossRef]
  7. L. Mullen, A. Vieira, P. R. Herczfeld, V. M. Contarino, “Microwave-modulated transmitter design for hybrid lidar-radar,” in Proceedings of the 1995 IEEE MTT-S International Microwave Symposium (Institute of Electrical and Electronics Engineers, New York, 1995), pp. 1495–1498.
    [CrossRef]
  8. L. J. Mullen, A. J. C. Vieira, P. R. Herczfeld, V. M. Contarino, “Application of radar technology to aerial lidar systems for enhancement of shallow underwater target detection,” IEEE Trans. Microwave Theory Tech. 43, 2370–2377 (1995).
    [CrossRef]
  9. L. J. Mullen, P. R. Herczfeld, V. M. Contarino, “Hybrid lidar-radar ocean experiment,” IEEE Trans. Microwave Theory Tech. 44, 2703–2710 (1996).
  10. M. S. Salisbury, P. F. McManamon, B. D. Duncan, “Optical-fiber preamplifiers for ladar detection and associated measurements for improving the signal-to-noise ratio,” Opt. Eng. 33, 4023–4032 (1994).
    [CrossRef]
  11. J. A. Overbeck, M. S. Salisbury, M. B. Mark, E. A. Watson, “Required energy for a laser radar system incorporating a fiber amplifier or an avalanche photodiode,” Appl. Opt. 34, 7724–7730 (1995).
    [CrossRef] [PubMed]
  12. M. Brunel, O. Emile, M. Vallet, F. Bretenaker, A. Le Floch, L. Fulbert, J. Marty, B. Ferrand, E. Molva, “Experimental and theoretical study of monomode vectorial lasers passively Q-switched by a Cr4+:yttrium aluminum garnet absorber,” Phys. Rev. A 60, 4052–4058 (1999).
    [CrossRef]
  13. A. Yariv, Optical Electronics in Modern Communications, 5th ed. (Oxford University, New York, 1997).
  14. A. Ollson, “Lightwave systems with optical amplifiers,” J. Lightwave Technol. 7, 1071–1082 (1989).
    [CrossRef]
  15. R. M. Gagliardi, S. Karp, Optical Communications (Wiley, New York, 1976).
  16. O. Steinvall, “Effects of target shape and reflection on laser radar cross sections,” Appl. Opt. 39, 4381–4391 (2000).
    [CrossRef]
  17. A. Brignon, G. Feugnet, J.-P. Huignard, J.-P. Pocholle, “Large field of view, high-gain, compact diode pumped Nd:YAG amplifier,” Opt. Lett. 22, 1421–1423 (1997).
    [CrossRef]
  18. M. Brunel, O. Emile, F. Bretenaker, A. Le Floch, B. Ferrand, E. Molva, “Tunable two-frequency lasers for lifetime measurements,” Opt. Rev. 4, 550–552 (1997).
    [CrossRef]
  19. X. Zhang, S. Zhao, Q. Wang, “Modeling of passively Q-switched lasers,” J. Opt. Soc. Am. B 17, 1166–1175 (2000) and references therein.
    [CrossRef]
  20. N. D. Lai, M. Brunel, F. Bretenaker, A. Le Floch, “Stabilization of the repetition rate of passively Q-switched diode-pumped solid-state lasers,” Appl. Phys. Lett. 79, 1073–1075 (2001).
    [CrossRef]
  21. T. Y. Fan, “Effect of finite lower level lifetime on Q-switched lasers,” IEEE J. Quantum Electron. 24, 2345–2349 (1988).
    [CrossRef]
  22. J. J. Degnan, D. B. Coyle, R. B. Kay, “Effect of thermalization on Q-switched lasers properties,” IEEE J. Quantum Electron. 34, 887–899 (1998).
    [CrossRef]
  23. M. Hercher, “An analysis of saturable absorbers,” Appl. Opt. 6, 947–954 (1967).
    [CrossRef] [PubMed]
  24. G. Xiao, J. H. Lim, S. Yang, E. Van Stryland, M. Bass, L. Weichman, “Z-Scan measurement of the ground and excited state absorption cross sections of Cr4+ in yttrium aluminum garnet,” IEEE J. Quantum Electron. 35, 1086–1091 (1999).
    [CrossRef]
  25. A. Suda, A. Kadoi, K. Nagasaka, H. Tashiro, K. Midorikawa, “Absorption and oscillation characteristics of a pulsed Cr4+:YAG laser investigated by a double-pulse pumping technique,” IEEE J. Quantum Electron. 35, 1548–1553 (1999).
    [CrossRef]
  26. W. H. Press, S. A. Teukolsky, W. T. Wetterling, B. P. Flannery, Numerical Recipes in Fortran 90 (Cambridge University, Cambridge, UK, 1996).
  27. N. D. Lai, M. Brunel, F. Bretenaker, O. Emile, “Control of the pulse duration in one- and two-axis passively Q-switched solid-state lasers,” Eur. Phys. J. D 19, 403–410 (2002).
    [CrossRef]
  28. M. Alouini, B. Benazet, M. Vallet, M. Brunel, P. Di Bin, F. Bretenaker, A. Le Floch, P. Thony, “Offset phase-locking of Er:Yb:Glass laser eigenstates for rf photonics applications,” IEEE Photon. Technol. Lett. 13, 367–369 (2001).
    [CrossRef]

2002 (1)

N. D. Lai, M. Brunel, F. Bretenaker, O. Emile, “Control of the pulse duration in one- and two-axis passively Q-switched solid-state lasers,” Eur. Phys. J. D 19, 403–410 (2002).
[CrossRef]

2001 (2)

M. Alouini, B. Benazet, M. Vallet, M. Brunel, P. Di Bin, F. Bretenaker, A. Le Floch, P. Thony, “Offset phase-locking of Er:Yb:Glass laser eigenstates for rf photonics applications,” IEEE Photon. Technol. Lett. 13, 367–369 (2001).
[CrossRef]

N. D. Lai, M. Brunel, F. Bretenaker, A. Le Floch, “Stabilization of the repetition rate of passively Q-switched diode-pumped solid-state lasers,” Appl. Phys. Lett. 79, 1073–1075 (2001).
[CrossRef]

2000 (3)

1999 (3)

M. Brunel, O. Emile, M. Vallet, F. Bretenaker, A. Le Floch, L. Fulbert, J. Marty, B. Ferrand, E. Molva, “Experimental and theoretical study of monomode vectorial lasers passively Q-switched by a Cr4+:yttrium aluminum garnet absorber,” Phys. Rev. A 60, 4052–4058 (1999).
[CrossRef]

G. Xiao, J. H. Lim, S. Yang, E. Van Stryland, M. Bass, L. Weichman, “Z-Scan measurement of the ground and excited state absorption cross sections of Cr4+ in yttrium aluminum garnet,” IEEE J. Quantum Electron. 35, 1086–1091 (1999).
[CrossRef]

A. Suda, A. Kadoi, K. Nagasaka, H. Tashiro, K. Midorikawa, “Absorption and oscillation characteristics of a pulsed Cr4+:YAG laser investigated by a double-pulse pumping technique,” IEEE J. Quantum Electron. 35, 1548–1553 (1999).
[CrossRef]

1998 (1)

J. J. Degnan, D. B. Coyle, R. B. Kay, “Effect of thermalization on Q-switched lasers properties,” IEEE J. Quantum Electron. 34, 887–899 (1998).
[CrossRef]

1997 (2)

M. Brunel, O. Emile, F. Bretenaker, A. Le Floch, B. Ferrand, E. Molva, “Tunable two-frequency lasers for lifetime measurements,” Opt. Rev. 4, 550–552 (1997).
[CrossRef]

A. Brignon, G. Feugnet, J.-P. Huignard, J.-P. Pocholle, “Large field of view, high-gain, compact diode pumped Nd:YAG amplifier,” Opt. Lett. 22, 1421–1423 (1997).
[CrossRef]

1996 (2)

B. L. Stann, W. C. Ruff, Z. G. Sztankay, “Intensity-modulated diode laser radar using frequency-modulation/continuous-wave ranging,” Opt. Eng. 35, 3270–3278 (1996).
[CrossRef]

L. J. Mullen, P. R. Herczfeld, V. M. Contarino, “Hybrid lidar-radar ocean experiment,” IEEE Trans. Microwave Theory Tech. 44, 2703–2710 (1996).

1995 (2)

L. J. Mullen, A. J. C. Vieira, P. R. Herczfeld, V. M. Contarino, “Application of radar technology to aerial lidar systems for enhancement of shallow underwater target detection,” IEEE Trans. Microwave Theory Tech. 43, 2370–2377 (1995).
[CrossRef]

J. A. Overbeck, M. S. Salisbury, M. B. Mark, E. A. Watson, “Required energy for a laser radar system incorporating a fiber amplifier or an avalanche photodiode,” Appl. Opt. 34, 7724–7730 (1995).
[CrossRef] [PubMed]

1994 (1)

M. S. Salisbury, P. F. McManamon, B. D. Duncan, “Optical-fiber preamplifiers for ladar detection and associated measurements for improving the signal-to-noise ratio,” Opt. Eng. 33, 4023–4032 (1994).
[CrossRef]

1989 (1)

A. Ollson, “Lightwave systems with optical amplifiers,” J. Lightwave Technol. 7, 1071–1082 (1989).
[CrossRef]

1988 (1)

T. Y. Fan, “Effect of finite lower level lifetime on Q-switched lasers,” IEEE J. Quantum Electron. 24, 2345–2349 (1988).
[CrossRef]

1980 (1)

1967 (1)

Alouini, M.

M. Alouini, B. Benazet, M. Vallet, M. Brunel, P. Di Bin, F. Bretenaker, A. Le Floch, P. Thony, “Offset phase-locking of Er:Yb:Glass laser eigenstates for rf photonics applications,” IEEE Photon. Technol. Lett. 13, 367–369 (2001).
[CrossRef]

Bass, M.

G. Xiao, J. H. Lim, S. Yang, E. Van Stryland, M. Bass, L. Weichman, “Z-Scan measurement of the ground and excited state absorption cross sections of Cr4+ in yttrium aluminum garnet,” IEEE J. Quantum Electron. 35, 1086–1091 (1999).
[CrossRef]

Benazet, B.

M. Alouini, B. Benazet, M. Vallet, M. Brunel, P. Di Bin, F. Bretenaker, A. Le Floch, P. Thony, “Offset phase-locking of Er:Yb:Glass laser eigenstates for rf photonics applications,” IEEE Photon. Technol. Lett. 13, 367–369 (2001).
[CrossRef]

Brandt, J.

J. Brandt, T. Steiner, N. Krasutsy, “Ten-kilometer imaging solid-state ladar demonstration,” in Conference on Lasers and Electro-Optics, Vol. 8 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), p. 264.

Bretenaker, F.

N. D. Lai, M. Brunel, F. Bretenaker, O. Emile, “Control of the pulse duration in one- and two-axis passively Q-switched solid-state lasers,” Eur. Phys. J. D 19, 403–410 (2002).
[CrossRef]

M. Alouini, B. Benazet, M. Vallet, M. Brunel, P. Di Bin, F. Bretenaker, A. Le Floch, P. Thony, “Offset phase-locking of Er:Yb:Glass laser eigenstates for rf photonics applications,” IEEE Photon. Technol. Lett. 13, 367–369 (2001).
[CrossRef]

N. D. Lai, M. Brunel, F. Bretenaker, A. Le Floch, “Stabilization of the repetition rate of passively Q-switched diode-pumped solid-state lasers,” Appl. Phys. Lett. 79, 1073–1075 (2001).
[CrossRef]

M. Brunel, O. Emile, M. Vallet, F. Bretenaker, A. Le Floch, L. Fulbert, J. Marty, B. Ferrand, E. Molva, “Experimental and theoretical study of monomode vectorial lasers passively Q-switched by a Cr4+:yttrium aluminum garnet absorber,” Phys. Rev. A 60, 4052–4058 (1999).
[CrossRef]

M. Brunel, O. Emile, F. Bretenaker, A. Le Floch, B. Ferrand, E. Molva, “Tunable two-frequency lasers for lifetime measurements,” Opt. Rev. 4, 550–552 (1997).
[CrossRef]

Brignon, A.

Brunel, M.

N. D. Lai, M. Brunel, F. Bretenaker, O. Emile, “Control of the pulse duration in one- and two-axis passively Q-switched solid-state lasers,” Eur. Phys. J. D 19, 403–410 (2002).
[CrossRef]

M. Alouini, B. Benazet, M. Vallet, M. Brunel, P. Di Bin, F. Bretenaker, A. Le Floch, P. Thony, “Offset phase-locking of Er:Yb:Glass laser eigenstates for rf photonics applications,” IEEE Photon. Technol. Lett. 13, 367–369 (2001).
[CrossRef]

N. D. Lai, M. Brunel, F. Bretenaker, A. Le Floch, “Stabilization of the repetition rate of passively Q-switched diode-pumped solid-state lasers,” Appl. Phys. Lett. 79, 1073–1075 (2001).
[CrossRef]

M. Brunel, O. Emile, M. Vallet, F. Bretenaker, A. Le Floch, L. Fulbert, J. Marty, B. Ferrand, E. Molva, “Experimental and theoretical study of monomode vectorial lasers passively Q-switched by a Cr4+:yttrium aluminum garnet absorber,” Phys. Rev. A 60, 4052–4058 (1999).
[CrossRef]

M. Brunel, O. Emile, F. Bretenaker, A. Le Floch, B. Ferrand, E. Molva, “Tunable two-frequency lasers for lifetime measurements,” Opt. Rev. 4, 550–552 (1997).
[CrossRef]

Contarino, V. M.

L. J. Mullen, P. R. Herczfeld, V. M. Contarino, “Hybrid lidar-radar ocean experiment,” IEEE Trans. Microwave Theory Tech. 44, 2703–2710 (1996).

L. J. Mullen, A. J. C. Vieira, P. R. Herczfeld, V. M. Contarino, “Application of radar technology to aerial lidar systems for enhancement of shallow underwater target detection,” IEEE Trans. Microwave Theory Tech. 43, 2370–2377 (1995).
[CrossRef]

L. Mullen, A. Vieira, P. R. Herczfeld, V. M. Contarino, “Microwave-modulated transmitter design for hybrid lidar-radar,” in Proceedings of the 1995 IEEE MTT-S International Microwave Symposium (Institute of Electrical and Electronics Engineers, New York, 1995), pp. 1495–1498.
[CrossRef]

Coyle, D. B.

J. J. Degnan, D. B. Coyle, R. B. Kay, “Effect of thermalization on Q-switched lasers properties,” IEEE J. Quantum Electron. 34, 887–899 (1998).
[CrossRef]

Degnan, J. J.

J. J. Degnan, D. B. Coyle, R. B. Kay, “Effect of thermalization on Q-switched lasers properties,” IEEE J. Quantum Electron. 34, 887–899 (1998).
[CrossRef]

Di Bin, P.

M. Alouini, B. Benazet, M. Vallet, M. Brunel, P. Di Bin, F. Bretenaker, A. Le Floch, P. Thony, “Offset phase-locking of Er:Yb:Glass laser eigenstates for rf photonics applications,” IEEE Photon. Technol. Lett. 13, 367–369 (2001).
[CrossRef]

Duncan, B. D.

M. S. Salisbury, P. F. McManamon, B. D. Duncan, “Optical-fiber preamplifiers for ladar detection and associated measurements for improving the signal-to-noise ratio,” Opt. Eng. 33, 4023–4032 (1994).
[CrossRef]

Eberhard, W. L.

Emile, O.

N. D. Lai, M. Brunel, F. Bretenaker, O. Emile, “Control of the pulse duration in one- and two-axis passively Q-switched solid-state lasers,” Eur. Phys. J. D 19, 403–410 (2002).
[CrossRef]

M. Brunel, O. Emile, M. Vallet, F. Bretenaker, A. Le Floch, L. Fulbert, J. Marty, B. Ferrand, E. Molva, “Experimental and theoretical study of monomode vectorial lasers passively Q-switched by a Cr4+:yttrium aluminum garnet absorber,” Phys. Rev. A 60, 4052–4058 (1999).
[CrossRef]

M. Brunel, O. Emile, F. Bretenaker, A. Le Floch, B. Ferrand, E. Molva, “Tunable two-frequency lasers for lifetime measurements,” Opt. Rev. 4, 550–552 (1997).
[CrossRef]

Fan, T. Y.

T. Y. Fan, “Effect of finite lower level lifetime on Q-switched lasers,” IEEE J. Quantum Electron. 24, 2345–2349 (1988).
[CrossRef]

Ferrand, B.

M. Brunel, O. Emile, M. Vallet, F. Bretenaker, A. Le Floch, L. Fulbert, J. Marty, B. Ferrand, E. Molva, “Experimental and theoretical study of monomode vectorial lasers passively Q-switched by a Cr4+:yttrium aluminum garnet absorber,” Phys. Rev. A 60, 4052–4058 (1999).
[CrossRef]

M. Brunel, O. Emile, F. Bretenaker, A. Le Floch, B. Ferrand, E. Molva, “Tunable two-frequency lasers for lifetime measurements,” Opt. Rev. 4, 550–552 (1997).
[CrossRef]

Feugnet, G.

Flannery, B. P.

W. H. Press, S. A. Teukolsky, W. T. Wetterling, B. P. Flannery, Numerical Recipes in Fortran 90 (Cambridge University, Cambridge, UK, 1996).

Fulbert, L.

M. Brunel, O. Emile, M. Vallet, F. Bretenaker, A. Le Floch, L. Fulbert, J. Marty, B. Ferrand, E. Molva, “Experimental and theoretical study of monomode vectorial lasers passively Q-switched by a Cr4+:yttrium aluminum garnet absorber,” Phys. Rev. A 60, 4052–4058 (1999).
[CrossRef]

Gagliardi, R. M.

R. M. Gagliardi, S. Karp, Optical Communications (Wiley, New York, 1976).

Harris, M.

Hercher, M.

Herczfeld, P. R.

L. J. Mullen, P. R. Herczfeld, V. M. Contarino, “Hybrid lidar-radar ocean experiment,” IEEE Trans. Microwave Theory Tech. 44, 2703–2710 (1996).

L. J. Mullen, A. J. C. Vieira, P. R. Herczfeld, V. M. Contarino, “Application of radar technology to aerial lidar systems for enhancement of shallow underwater target detection,” IEEE Trans. Microwave Theory Tech. 43, 2370–2377 (1995).
[CrossRef]

L. Mullen, A. Vieira, P. R. Herczfeld, V. M. Contarino, “Microwave-modulated transmitter design for hybrid lidar-radar,” in Proceedings of the 1995 IEEE MTT-S International Microwave Symposium (Institute of Electrical and Electronics Engineers, New York, 1995), pp. 1495–1498.
[CrossRef]

Huignard, J.-P.

Jelalian, A. V.

A. V. Jelalian, Laser Radar Systems (Artech House, Boston, Mass., 1992).

Kadoi, A.

A. Suda, A. Kadoi, K. Nagasaka, H. Tashiro, K. Midorikawa, “Absorption and oscillation characteristics of a pulsed Cr4+:YAG laser investigated by a double-pulse pumping technique,” IEEE J. Quantum Electron. 35, 1548–1553 (1999).
[CrossRef]

Karlsson, C. J.

Karp, S.

R. M. Gagliardi, S. Karp, Optical Communications (Wiley, New York, 1976).

Kay, R. B.

J. J. Degnan, D. B. Coyle, R. B. Kay, “Effect of thermalization on Q-switched lasers properties,” IEEE J. Quantum Electron. 34, 887–899 (1998).
[CrossRef]

Krasutsy, N.

J. Brandt, T. Steiner, N. Krasutsy, “Ten-kilometer imaging solid-state ladar demonstration,” in Conference on Lasers and Electro-Optics, Vol. 8 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), p. 264.

Lai, N. D.

N. D. Lai, M. Brunel, F. Bretenaker, O. Emile, “Control of the pulse duration in one- and two-axis passively Q-switched solid-state lasers,” Eur. Phys. J. D 19, 403–410 (2002).
[CrossRef]

N. D. Lai, M. Brunel, F. Bretenaker, A. Le Floch, “Stabilization of the repetition rate of passively Q-switched diode-pumped solid-state lasers,” Appl. Phys. Lett. 79, 1073–1075 (2001).
[CrossRef]

Le Floch, A.

N. D. Lai, M. Brunel, F. Bretenaker, A. Le Floch, “Stabilization of the repetition rate of passively Q-switched diode-pumped solid-state lasers,” Appl. Phys. Lett. 79, 1073–1075 (2001).
[CrossRef]

M. Alouini, B. Benazet, M. Vallet, M. Brunel, P. Di Bin, F. Bretenaker, A. Le Floch, P. Thony, “Offset phase-locking of Er:Yb:Glass laser eigenstates for rf photonics applications,” IEEE Photon. Technol. Lett. 13, 367–369 (2001).
[CrossRef]

M. Brunel, O. Emile, M. Vallet, F. Bretenaker, A. Le Floch, L. Fulbert, J. Marty, B. Ferrand, E. Molva, “Experimental and theoretical study of monomode vectorial lasers passively Q-switched by a Cr4+:yttrium aluminum garnet absorber,” Phys. Rev. A 60, 4052–4058 (1999).
[CrossRef]

M. Brunel, O. Emile, F. Bretenaker, A. Le Floch, B. Ferrand, E. Molva, “Tunable two-frequency lasers for lifetime measurements,” Opt. Rev. 4, 550–552 (1997).
[CrossRef]

Letalick, D.

Lim, J. H.

G. Xiao, J. H. Lim, S. Yang, E. Van Stryland, M. Bass, L. Weichman, “Z-Scan measurement of the ground and excited state absorption cross sections of Cr4+ in yttrium aluminum garnet,” IEEE J. Quantum Electron. 35, 1086–1091 (1999).
[CrossRef]

Mark, M. B.

Marty, J.

M. Brunel, O. Emile, M. Vallet, F. Bretenaker, A. Le Floch, L. Fulbert, J. Marty, B. Ferrand, E. Molva, “Experimental and theoretical study of monomode vectorial lasers passively Q-switched by a Cr4+:yttrium aluminum garnet absorber,” Phys. Rev. A 60, 4052–4058 (1999).
[CrossRef]

McManamon, P. F.

M. S. Salisbury, P. F. McManamon, B. D. Duncan, “Optical-fiber preamplifiers for ladar detection and associated measurements for improving the signal-to-noise ratio,” Opt. Eng. 33, 4023–4032 (1994).
[CrossRef]

Midorikawa, K.

A. Suda, A. Kadoi, K. Nagasaka, H. Tashiro, K. Midorikawa, “Absorption and oscillation characteristics of a pulsed Cr4+:YAG laser investigated by a double-pulse pumping technique,” IEEE J. Quantum Electron. 35, 1548–1553 (1999).
[CrossRef]

Molva, E.

M. Brunel, O. Emile, M. Vallet, F. Bretenaker, A. Le Floch, L. Fulbert, J. Marty, B. Ferrand, E. Molva, “Experimental and theoretical study of monomode vectorial lasers passively Q-switched by a Cr4+:yttrium aluminum garnet absorber,” Phys. Rev. A 60, 4052–4058 (1999).
[CrossRef]

M. Brunel, O. Emile, F. Bretenaker, A. Le Floch, B. Ferrand, E. Molva, “Tunable two-frequency lasers for lifetime measurements,” Opt. Rev. 4, 550–552 (1997).
[CrossRef]

Mullen, L.

L. Mullen, A. Vieira, P. R. Herczfeld, V. M. Contarino, “Microwave-modulated transmitter design for hybrid lidar-radar,” in Proceedings of the 1995 IEEE MTT-S International Microwave Symposium (Institute of Electrical and Electronics Engineers, New York, 1995), pp. 1495–1498.
[CrossRef]

Mullen, L. J.

L. J. Mullen, P. R. Herczfeld, V. M. Contarino, “Hybrid lidar-radar ocean experiment,” IEEE Trans. Microwave Theory Tech. 44, 2703–2710 (1996).

L. J. Mullen, A. J. C. Vieira, P. R. Herczfeld, V. M. Contarino, “Application of radar technology to aerial lidar systems for enhancement of shallow underwater target detection,” IEEE Trans. Microwave Theory Tech. 43, 2370–2377 (1995).
[CrossRef]

Nagasaka, K.

A. Suda, A. Kadoi, K. Nagasaka, H. Tashiro, K. Midorikawa, “Absorption and oscillation characteristics of a pulsed Cr4+:YAG laser investigated by a double-pulse pumping technique,” IEEE J. Quantum Electron. 35, 1548–1553 (1999).
[CrossRef]

Ollson, A.

A. Ollson, “Lightwave systems with optical amplifiers,” J. Lightwave Technol. 7, 1071–1082 (1989).
[CrossRef]

Olsson, F. Å. A.

Overbeck, J. A.

Pocholle, J.-P.

Press, W. H.

W. H. Press, S. A. Teukolsky, W. T. Wetterling, B. P. Flannery, Numerical Recipes in Fortran 90 (Cambridge University, Cambridge, UK, 1996).

Ruff, W. C.

B. L. Stann, W. C. Ruff, Z. G. Sztankay, “Intensity-modulated diode laser radar using frequency-modulation/continuous-wave ranging,” Opt. Eng. 35, 3270–3278 (1996).
[CrossRef]

Salisbury, M. S.

J. A. Overbeck, M. S. Salisbury, M. B. Mark, E. A. Watson, “Required energy for a laser radar system incorporating a fiber amplifier or an avalanche photodiode,” Appl. Opt. 34, 7724–7730 (1995).
[CrossRef] [PubMed]

M. S. Salisbury, P. F. McManamon, B. D. Duncan, “Optical-fiber preamplifiers for ladar detection and associated measurements for improving the signal-to-noise ratio,” Opt. Eng. 33, 4023–4032 (1994).
[CrossRef]

Schotland, R. M.

Skolnik, M.

M. Skolnik, Radar Handbook, 2nd ed. (MacGraw-Hill, New York, 1990).

Stann, B. L.

B. L. Stann, W. C. Ruff, Z. G. Sztankay, “Intensity-modulated diode laser radar using frequency-modulation/continuous-wave ranging,” Opt. Eng. 35, 3270–3278 (1996).
[CrossRef]

Steiner, T.

J. Brandt, T. Steiner, N. Krasutsy, “Ten-kilometer imaging solid-state ladar demonstration,” in Conference on Lasers and Electro-Optics, Vol. 8 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), p. 264.

Steinvall, O.

Suda, A.

A. Suda, A. Kadoi, K. Nagasaka, H. Tashiro, K. Midorikawa, “Absorption and oscillation characteristics of a pulsed Cr4+:YAG laser investigated by a double-pulse pumping technique,” IEEE J. Quantum Electron. 35, 1548–1553 (1999).
[CrossRef]

Sztankay, Z. G.

B. L. Stann, W. C. Ruff, Z. G. Sztankay, “Intensity-modulated diode laser radar using frequency-modulation/continuous-wave ranging,” Opt. Eng. 35, 3270–3278 (1996).
[CrossRef]

Tashiro, H.

A. Suda, A. Kadoi, K. Nagasaka, H. Tashiro, K. Midorikawa, “Absorption and oscillation characteristics of a pulsed Cr4+:YAG laser investigated by a double-pulse pumping technique,” IEEE J. Quantum Electron. 35, 1548–1553 (1999).
[CrossRef]

Teukolsky, S. A.

W. H. Press, S. A. Teukolsky, W. T. Wetterling, B. P. Flannery, Numerical Recipes in Fortran 90 (Cambridge University, Cambridge, UK, 1996).

Thony, P.

M. Alouini, B. Benazet, M. Vallet, M. Brunel, P. Di Bin, F. Bretenaker, A. Le Floch, P. Thony, “Offset phase-locking of Er:Yb:Glass laser eigenstates for rf photonics applications,” IEEE Photon. Technol. Lett. 13, 367–369 (2001).
[CrossRef]

Vallet, M.

M. Alouini, B. Benazet, M. Vallet, M. Brunel, P. Di Bin, F. Bretenaker, A. Le Floch, P. Thony, “Offset phase-locking of Er:Yb:Glass laser eigenstates for rf photonics applications,” IEEE Photon. Technol. Lett. 13, 367–369 (2001).
[CrossRef]

M. Brunel, O. Emile, M. Vallet, F. Bretenaker, A. Le Floch, L. Fulbert, J. Marty, B. Ferrand, E. Molva, “Experimental and theoretical study of monomode vectorial lasers passively Q-switched by a Cr4+:yttrium aluminum garnet absorber,” Phys. Rev. A 60, 4052–4058 (1999).
[CrossRef]

Van Stryland, E.

G. Xiao, J. H. Lim, S. Yang, E. Van Stryland, M. Bass, L. Weichman, “Z-Scan measurement of the ground and excited state absorption cross sections of Cr4+ in yttrium aluminum garnet,” IEEE J. Quantum Electron. 35, 1086–1091 (1999).
[CrossRef]

Vieira, A.

L. Mullen, A. Vieira, P. R. Herczfeld, V. M. Contarino, “Microwave-modulated transmitter design for hybrid lidar-radar,” in Proceedings of the 1995 IEEE MTT-S International Microwave Symposium (Institute of Electrical and Electronics Engineers, New York, 1995), pp. 1495–1498.
[CrossRef]

Vieira, A. J. C.

L. J. Mullen, A. J. C. Vieira, P. R. Herczfeld, V. M. Contarino, “Application of radar technology to aerial lidar systems for enhancement of shallow underwater target detection,” IEEE Trans. Microwave Theory Tech. 43, 2370–2377 (1995).
[CrossRef]

Wang, Q.

Watson, E. A.

Weichman, L.

G. Xiao, J. H. Lim, S. Yang, E. Van Stryland, M. Bass, L. Weichman, “Z-Scan measurement of the ground and excited state absorption cross sections of Cr4+ in yttrium aluminum garnet,” IEEE J. Quantum Electron. 35, 1086–1091 (1999).
[CrossRef]

Wetterling, W. T.

W. H. Press, S. A. Teukolsky, W. T. Wetterling, B. P. Flannery, Numerical Recipes in Fortran 90 (Cambridge University, Cambridge, UK, 1996).

Xiao, G.

G. Xiao, J. H. Lim, S. Yang, E. Van Stryland, M. Bass, L. Weichman, “Z-Scan measurement of the ground and excited state absorption cross sections of Cr4+ in yttrium aluminum garnet,” IEEE J. Quantum Electron. 35, 1086–1091 (1999).
[CrossRef]

Yang, S.

G. Xiao, J. H. Lim, S. Yang, E. Van Stryland, M. Bass, L. Weichman, “Z-Scan measurement of the ground and excited state absorption cross sections of Cr4+ in yttrium aluminum garnet,” IEEE J. Quantum Electron. 35, 1086–1091 (1999).
[CrossRef]

Yariv, A.

A. Yariv, Optical Electronics in Modern Communications, 5th ed. (Oxford University, New York, 1997).

Zhang, X.

Zhao, S.

Appl. Opt. (5)

Appl. Phys. Lett. (1)

N. D. Lai, M. Brunel, F. Bretenaker, A. Le Floch, “Stabilization of the repetition rate of passively Q-switched diode-pumped solid-state lasers,” Appl. Phys. Lett. 79, 1073–1075 (2001).
[CrossRef]

Eur. Phys. J. D (1)

N. D. Lai, M. Brunel, F. Bretenaker, O. Emile, “Control of the pulse duration in one- and two-axis passively Q-switched solid-state lasers,” Eur. Phys. J. D 19, 403–410 (2002).
[CrossRef]

IEEE J. Quantum Electron. (4)

T. Y. Fan, “Effect of finite lower level lifetime on Q-switched lasers,” IEEE J. Quantum Electron. 24, 2345–2349 (1988).
[CrossRef]

J. J. Degnan, D. B. Coyle, R. B. Kay, “Effect of thermalization on Q-switched lasers properties,” IEEE J. Quantum Electron. 34, 887–899 (1998).
[CrossRef]

G. Xiao, J. H. Lim, S. Yang, E. Van Stryland, M. Bass, L. Weichman, “Z-Scan measurement of the ground and excited state absorption cross sections of Cr4+ in yttrium aluminum garnet,” IEEE J. Quantum Electron. 35, 1086–1091 (1999).
[CrossRef]

A. Suda, A. Kadoi, K. Nagasaka, H. Tashiro, K. Midorikawa, “Absorption and oscillation characteristics of a pulsed Cr4+:YAG laser investigated by a double-pulse pumping technique,” IEEE J. Quantum Electron. 35, 1548–1553 (1999).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

M. Alouini, B. Benazet, M. Vallet, M. Brunel, P. Di Bin, F. Bretenaker, A. Le Floch, P. Thony, “Offset phase-locking of Er:Yb:Glass laser eigenstates for rf photonics applications,” IEEE Photon. Technol. Lett. 13, 367–369 (2001).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (2)

L. J. Mullen, A. J. C. Vieira, P. R. Herczfeld, V. M. Contarino, “Application of radar technology to aerial lidar systems for enhancement of shallow underwater target detection,” IEEE Trans. Microwave Theory Tech. 43, 2370–2377 (1995).
[CrossRef]

L. J. Mullen, P. R. Herczfeld, V. M. Contarino, “Hybrid lidar-radar ocean experiment,” IEEE Trans. Microwave Theory Tech. 44, 2703–2710 (1996).

J. Lightwave Technol. (1)

A. Ollson, “Lightwave systems with optical amplifiers,” J. Lightwave Technol. 7, 1071–1082 (1989).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Eng. (2)

M. S. Salisbury, P. F. McManamon, B. D. Duncan, “Optical-fiber preamplifiers for ladar detection and associated measurements for improving the signal-to-noise ratio,” Opt. Eng. 33, 4023–4032 (1994).
[CrossRef]

B. L. Stann, W. C. Ruff, Z. G. Sztankay, “Intensity-modulated diode laser radar using frequency-modulation/continuous-wave ranging,” Opt. Eng. 35, 3270–3278 (1996).
[CrossRef]

Opt. Lett. (1)

Opt. Rev. (1)

M. Brunel, O. Emile, F. Bretenaker, A. Le Floch, B. Ferrand, E. Molva, “Tunable two-frequency lasers for lifetime measurements,” Opt. Rev. 4, 550–552 (1997).
[CrossRef]

Phys. Rev. A (1)

M. Brunel, O. Emile, M. Vallet, F. Bretenaker, A. Le Floch, L. Fulbert, J. Marty, B. Ferrand, E. Molva, “Experimental and theoretical study of monomode vectorial lasers passively Q-switched by a Cr4+:yttrium aluminum garnet absorber,” Phys. Rev. A 60, 4052–4058 (1999).
[CrossRef]

Other (7)

A. Yariv, Optical Electronics in Modern Communications, 5th ed. (Oxford University, New York, 1997).

L. Mullen, A. Vieira, P. R. Herczfeld, V. M. Contarino, “Microwave-modulated transmitter design for hybrid lidar-radar,” in Proceedings of the 1995 IEEE MTT-S International Microwave Symposium (Institute of Electrical and Electronics Engineers, New York, 1995), pp. 1495–1498.
[CrossRef]

A. V. Jelalian, Laser Radar Systems (Artech House, Boston, Mass., 1992).

J. Brandt, T. Steiner, N. Krasutsy, “Ten-kilometer imaging solid-state ladar demonstration,” in Conference on Lasers and Electro-Optics, Vol. 8 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), p. 264.

M. Skolnik, Radar Handbook, 2nd ed. (MacGraw-Hill, New York, 1990).

R. M. Gagliardi, S. Karp, Optical Communications (Wiley, New York, 1976).

W. H. Press, S. A. Teukolsky, W. T. Wetterling, B. P. Flannery, Numerical Recipes in Fortran 90 (Cambridge University, Cambridge, UK, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Lidar-radar concept. A dual-frequency laser pulse is directed onto the target. The frequency difference f rf = ν 1 - ν 2 is in the radar domain.

Fig. 2
Fig. 2

Evolution of the calculated SNR versus target range R for different situations: (a) quasi-cw laser without optical preamplifier, (b) quasi-cw laser with optical preamplifier, (c) pulsed laser with optical preamplifier without coherent integration, (d) pulsed laser with optical preamplifier and coherent integration during 1 ms. Dashed horizontal line, 10-dB limit giving the maximum range.

Fig. 3
Fig. 3

Signal-processing assessment experiment: PBS, polarizing beam splitters; M, mirrors; HWP, half-wave plate; PD1, PD2, high-speed photodiodes; QWP, quarter-wave plate; L1, focusing lens.

Fig. 4
Fig. 4

Time evolutions of the detected signals in the presence of the vibrating test set under square excitation. Lower graph, in-phase I and quadrature Q signals at the output of the lock-in amplifier. Upper graph, measured distance of the target reproduced in the upper part is deduced from I and Q. The relaxation oscillations of the vibrating test set can be clearly seen.

Fig. 5
Fig. 5

Microwave power detected as a function of distance d between the two parts of the target. Inset, description of the experiment: Λ, wavelength of the radar modulation carried by the dual-frequency optical beam.

Fig. 6
Fig. 6

Experimental demonstration of the optical preamplification. The cw two-frequency laser beam at 1.06 µm is strongly attenuated before being amplified and detected.

Fig. 7
Fig. 7

Power spectrum of the signal detected in the experiment of Fig. 6: (a) without optical preamplification, (b) with optical preamplification. The arrows close to the vertical axes of the spectra indicate noise levels.

Fig. 8
Fig. 8

Experimental arrangement for the pulsed two-frequency laser: L1,L2, focusing lenses; M1, plane mirror; M2, concave mirror with radius of curvature 200 mm; QWP1, QWP2, quarter-wave plates.

Fig. 10
Fig. 10

Measured beat frequency versus angle ρ. The frequency difference is continuously tunable to as high as c/4L = 2.65 GHz.

Fig. 11
Fig. 11

Pulse duration versus pump-mode radius. When the pump mode radius is adjusted from 240 to 45 µm, the pulse duration (FWHM) increases from 18 to 240 ns.

Tables (1)

Tables Icon

Table 1 Values of the Parameters Used for the Range Calculations

Equations (26)

Equations on this page are rendered with MathJax. Learn more.

ν1=ν1-2 VLν1c,
ν2=ν2-2 VLν2c.
frf=ν1-ν2=frf-2 VLfrfc.
SNR=PsPshot+Pback+Pamp+Pdark+Pth+Padd,
Ps=12 RL2G2Φin2,
Pshot=2RLqGΦinBe,
Pback=2RLqGΦback,inBe,
ΦASE=NμGhνΔν,
Pamp=PASE-ASE+PSIG-ASE+Pshot,ASE,
PASE-ASE=2RL2NμGhν2Δν-frfBe,
PSIG-ASE=4RL2G2ΦinμhνBe,
Pshot,ASE=2RLqμGhνΔνBe.
Pdark=2RLqIdarkBe.
Pth=4kBTBe,
Padd=4kBTNF-1Be,
Φin=πΦTρtD24R2exp-2αRηoptηamp,
ηamp=1N>NRNNRN<NR.
θR=2 NλD.
Φback,in=SIRRΔλπθR216 ρBD2 exp-αRBηopt,
Ps=K2 RLG2Φin2,
Ist=Is1+Is2+2Is1Is21/2 sin2πfrft+4π RtΛ,
Irt=Ir1+Ir2+2Ir1Ir21/2 sin2πfrft,
dIdt=-Γ+a+a0-aσESAσGSAI+κnu-ndI+κnuε,
dnudt=γuP-nu-ζnu-ndI-ζnuε,
dnddt=γunu-γdnd+ζnu-ndI+ζnuε,
dadt=γaa0-a-μaI,

Metrics