Abstract

Laser-induced incandescence applied to a heterogeneous, multielement reacting flow is characterized by temporally resolved emission spectra, time-resolved emission at selected detection wavelengths, and fluence dependence. Two-pulse laser measurements are used to further probe the effects of laser-induced changes on the optical signal. Laser fluences above 0.6 J/cm2 at 1064 nm initiate laser-induced vaporization, yielding a lower incandescence intensity, as found through fluence-dependence measurements. Spectrally derived temperatures show that values of excitation laser fluence greater than this value lead to superheated plasmas with temperatures well above the vaporization point of carbon. The temporal evolution of the emission signal at these fluences is consistent with plasma dissipation processes, not incandescence from solidlike structures. Two-pulse laser experiments reveal that other material changes are produced at fluences below the apparent vaporization threshold, leading to nanostructures with different optical and thermal properties.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription