Abstract

Laser-induced incandescence applied to a heterogeneous, multielement reacting flow is characterized by temporally resolved emission spectra, time-resolved emission at selected detection wavelengths, and fluence dependence. Two-pulse laser measurements are used to further probe the effects of laser-induced changes on the optical signal. Laser fluences above 0.6 J/cm2 at 1064 nm initiate laser-induced vaporization, yielding a lower incandescence intensity, as found through fluence-dependence measurements. Spectrally derived temperatures show that values of excitation laser fluence greater than this value lead to superheated plasmas with temperatures well above the vaporization point of carbon. The temporal evolution of the emission signal at these fluences is consistent with plasma dissipation processes, not incandescence from solidlike structures. Two-pulse laser experiments reveal that other material changes are produced at fluences below the apparent vaporization threshold, leading to nanostructures with different optical and thermal properties.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. T. Kodas, M. Hampden-Smith, Aerosol Processing of Materials (Wiley-VCH, New York, 1999).
  2. R. Kamalakaran, M. Terrones, T. Seeger, Ph. Koholer-Redlich, M. Ruhle, Y. A. Kim, T. Hayashi, M. Endo, “Synthesis of thick and crystalline nanotube arrays by spray pyrolysis,” Appl. Phys. Lett. 77, 3385–3388 (2000).
    [CrossRef]
  3. R. Andrews, D. Jacques, A. M. Rao, F. Derbyshire, D. Qian, X. Fan, E. C. Dickey, J. Chen, “Continuous production of aligned carbon nanotubes: a step closer to commercial realization,” Chem. Phys. Lett. 303, 467–474 (1999).
    [CrossRef]
  4. P. Nikolaev, M. J. Bronikowski, R. K. Bradley, F. Rohmund, D. T. Colbert, K. A. Smith, R. E. Smalley, “Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide.” Chem. Phys. Lett. 313, 91–97 (1999).
    [CrossRef]
  5. H. M. Cheng, F. Li, G. Su, H. Y. Pan, L. L. He, X. Sun, M. S. Dresselhaus, “Large-scale and low cost synthesis of single-walled carbon nanotubes by the catalytic pyrolysis of hydrocarbons,” Appl. Phys. Lett. 72, 3282–3284 (1998).
    [CrossRef]
  6. B. C. Satishkumar, A. Govindaraj, R. Sen, C. N. R. Rao, “Single-walled nanotubes by the pyrolysis of acetylene-organometallic mixtures,” Chem. Phys. Lett. 293, 47–52 (1998).
    [CrossRef]
  7. R. Sen, A. Govindaraj, C. N. R. Rao, “Carbon nanotubes by the metallocene route,” Chem. Phys. Lett. 267, 276–280 (1997).
    [CrossRef]
  8. G. G. Tibbets, D. W. Gorkiewicz, R. L. Alig, “A new reactor for growing carbon fibers from liquid- and vapor-phase hydrocarbons,” Carbon 31, 809–814 (1993).
    [CrossRef]
  9. S. Arepalli, P. Nikolaev, W. Holmes, C. D. Scott, “Diagnostics of laser-produced plume under carbon nanotube growth conditions,” Appl. Phys. A 70, 125–133 (2000).
    [CrossRef]
  10. A. A. Puretzky, D. B. Geohegan, X. Fan, S. J. Pennycook, “Dynamics of single-wall carbon nanotube synthesis by laser vaporization,” Appl. Phys. A 70, 153–160 (2000).
    [CrossRef]
  11. A. A. Puretzky, D. B. Geohegan, X. Fan, S. J. Pennycook, “In situ imaging and spectroscopy of single-wall carbon nanotube synthesis by laser vaporization,” Appl. Phys. Lett. 76, 182–184 (2000).
    [CrossRef]
  12. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, 2nd ed. (Gordon & Breach, New York, 1996).
  13. R. L. Vander Wal, T. M. Ticich, J. R. West, “Laser-induced incandescence applied to metal nanostructures,” Appl. Opt. 38, 5867–5879 (1999).
    [CrossRef]
  14. P. Roth, A. V. Filipov, “In situ ultrafine particle sized by a combination of pulsed laser heatup and particle thermal emission,” J. Aerosol Sci. 27, 95–104 (1996).
    [CrossRef]
  15. D. A. Greenhalgh, “Planar measurements of fuel vapour, liquid fuel, liquid droplet size and soot,” in Planar Optical Measurement Methods for Gas Turbine Components, NATO Lecture Series 217 (Cranfield University, Cranfield, Bedfordshire, UK, 1999), paper RTO-EN-6, pp. 7/1–7/18.
  16. R. T. Wainner, J. M. Seitzman, “Soot diagnostics using laser-induced incandescence in flames and exhaust flows,” paper AIAA-99-0640, presented at the Thirty-Seventh Aerospace Sciences Meeting and Exhibit, Reno, Nev., 11–14 January 1999 (American Institute of Aeronautics and Astronautics, Reston, Va., 1999).
  17. R. T. Wainner, J. M. Seitzman, S. R. Martin, “Soot measurements in a simulated engine exhaust using laser-induced incandescence,” AIAA J. 37, 738–743 (1999).
    [CrossRef]
  18. D. J. Bryce, “Development and application of planar laser techniques for isothermal flow and soot diagnostics,” Ph.D. dissertation (Cranfield University, Cranfield, Bedfordshire, UK, 1996).
  19. R. L. Vander Wal, Z. Zhou, M. Y. Choi, “Laser-induced incandescence calibration via gravimetric sampling,” Combust. Flame 105, 462–470 (1996).
    [CrossRef]
  20. H. Kosaka, T. Nishigaki, T. Kamimoto, S. Harada, “A study on soot formation and oxidation in an unsteady spray flame via laser induced incandescence and scattering techniques,” SAE tech. paper 952451 (Society of Automotive Engineers, Warrendale, Pa., 1995).
  21. N. P. Tait, D. A. Greenhalgh, “2-D soot field measurements by laser induced incandescence,” in Proceedings of the Optical Methods and Data Processing in Heat Transfer and Fluid Flow (Institution of Mechanical Engineering, London, 1992), pp. 185–194.
  22. Y.-H. Won, T. Kamimoto, H. Kobayashi, H. Kosaka, “2-D soot visualization in unsteady spray flame by means of laser sheet scattering technique,” SAE paper 910223 (Society of Automotive Engineers, Warrendale, Pa., 1991).
  23. P. O. Witze, S. Hochgreb, D. Kayes, H. A. Michelsen, C. R. Shaddix, “Time-resolved laser-induced incandescence and laser inelastic-scattering measurements in a propane diffusion flame,” Appl. Opt. 40, 2443–2452 (2001).
    [CrossRef]
  24. S. Schraml, S. Dankers, K. Bader, S. Will, A. Leipertz, “Soot temperature measurements and implications for time-resolved laser-induced incandescence (TIRE-LII),” Combust. Flame 120, 439–450 (2000).
    [CrossRef]
  25. K. T. Walsh, J. Fielding, M. D. Smooke, M. B. Long, “Experimental and computation study of temperature, species and soot in buoyant and non-buoyant coflow laminar diffusion flames,” in The Twenty-Eighth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 2000), pp. 1973–1984.
  26. M. R. DeCroix, W. L. Roberts, “Extinction measurements for an unsteady propane-air counterflow diffusion flame,” in The Twenty-Sixth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1996), poster 038.
  27. A. V. Filippov, M. W. Markus, P. Roth, “In-situ characterization of ultrafine particles by laser-induced incandescence: sizing and particle structure determination,” J. Aerosol Sci. 30, 71–87 (1999).
    [CrossRef]
  28. R. L. Vander Wal, T. M. Ticich, A. B. Stephens, “Can soot primary particle size be determined using laser-induced incandescence?” Combust. Flame 116, 291–296 (1999).
    [CrossRef]
  29. R. T. Wainner, J. M. Seitzman, “Soot diagnostics using laser-induced incandescence in flames and exhaust flows,” in AIAA-99-0640, presented at the Thirty-Fourth Aerospace Sciences Meeting and Exhibit, Reno, Nev., 11–14 January 1999 (American Institute of Aeronautics and Astronautics, Reston, Va., 1999).
  30. H. Geitlinger, Th. Streibel, R. Suntz, H. Bockhorn, “Two-dimensional imaging of soot volume fractions, particle number densities, and particle radii in laminar and turbulent diffusion flames,” in The Twenty-Seventh (International) Symposium on Combustion (Combustion Institute, Pittsburgh, Pa., 1998), pp. 1613–1622.
    [CrossRef]
  31. K. R. McManus, J. H. Frank, M. G. Allen, W. T. Rawlins, “Characterization of laser-heated soot particles using optical pyrometry,” paper AIAA-98-0159, presented at the Thirty-Sixth Aerospace Sciences Meeting and Exhibit, Reno, Nev., 12–15 January 1998 (American Institute of Aeronautics and Astronautics, Reston, Va., 1998).
  32. R. L. Vander Wal, K. A. Jensen, “Laser-induced incandescence: excitation intensity,” Appl. Opt. 37, 1607–1616 (1998).
    [CrossRef]
  33. R. L. Vander Wal, T. M. Ticich, A. B. Stephens, “Optical microscopy investigation of soot structure alterations by laser-induced incandescence,” Appl. Phy. B 67, 115–123 (1998).
    [CrossRef]
  34. S. Will, S. Schraml, K. Bader, A. Leipertz, “Performance characteristics of soot primary particle size measurements by time-resolved laser-induced incandescence,” Appl. Opt. 37, 5647–5658 (1998).
    [CrossRef]
  35. B. Mewes, J. M. Seitzman, “Soot volume fraction and particle size measurements with laser-induced incandescence,” Appl. Opt. 36, 709–717 (1997).
    [CrossRef] [PubMed]
  36. J. Appel, B. Jungfleisch, M. Marquardt, R. Suntz, H. Bockhorn, “Assessment of soot volume fraction from laser-induced incandescence by comparision with extinction measurements in laminar, premixed, flat flames,” in The Twenty-Seventh Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1996), pp. 2387–2395.
    [CrossRef]
  37. C. S. McEnally, A. M. Schaffer, M. B. Long, L. D. Pfefferle, M. D. Smooke, M. B. Colket, R. J. Hall, “Computational and experimental study of soot formation in a coflow, laminar ethylene diffusion flame,” in The Twenty-Seventh Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 1497–1505.
  38. C. R. Shaddix, K. C. Smyth, “Laser-induced incandescence measurements of soot production in steady and flickering methane, propane and ethylene diffusion flames,” Combust. Flame 107, 418–452 (1996).
    [CrossRef]
  39. R. L. Vander Wal, “Laser-induced incandescence: detection issues,” Appl. Opt. 35, 6548–6559 (1996).
    [CrossRef] [PubMed]
  40. P. E. Bengtsson, M. Alden, “Soot visualization strategies using laser-techniques,” Appl. Phys. B 60, 51–59 (1995).
    [CrossRef]
  41. T. Ni, J. A. Pinson, S. Gupta, R. J. Santoro, “Two-dimensional imaging of soot volume fraction by the use of laser-induced incandescence,” Appl. Opt. 34, 7083–7091 (1995).
    [CrossRef] [PubMed]
  42. R. L. Vander Wal, D. L. Dietrich, “Laser-induced incandescence applied to droplet combustion,” Appl. Opt. 34, 1103–1107 (1995).
    [CrossRef]
  43. B. Quay, T.-W. Lee, T. Ni, R. J. Santoro, “Spatially resolved measurements of soot volume fraction using laser induced incandescence,” Combust. Flame 97, 384–392 (1994).
    [CrossRef]
  44. C. R. Shaddix, J. E. Harrington, K. C. Smyth, “Quantitative measurements of enhanced soot production in a flickering methane/air diffusion flame,” Combust. Flame 99, 723–732 (1994).
    [CrossRef]
  45. R. L. Vander Wal, K. J. Weiland, “Laser-induced incandescence: development and characterization towards a measurement of soot-volume fraction,” Appl. Phys. B 59, 445–451 (1994).
    [CrossRef]
  46. C. J. Dasch, “New soot diagnostics in flames based on laser vaporization of soot,” in The Twentieth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1984), pp. 1231–1237.
  47. C. J. Dasch, “Continuous-wave probe laser investigation of laser vaporization of small soot particles in a flame,” Appl. Opt. 23, 2209–2215 (1984).
    [CrossRef] [PubMed]
  48. K. Inagaki, S. Takasu, K. Nakakita, “In-cylinder quantitative soot concentration measurement by laser-induced incandescence,” SAE tech. paper 199-01-0508 (Society of Automotive Engineers, Warrendale, Pa., 1999).
  49. H. Zhao, N. Ladommatos, “Optical diagnostics for soot and temperature measurement in Diesel engines,” Prog. Energy Combust. Sci. 24, 221–255 (1998).
    [CrossRef]
  50. G. Wiltafsky, W. Stolz, J. Kohler, C. Espey, “The quantification of laser-induced incandescence (LII) for planar time-resolved measurements of the soot volume fraction in a combusting Diesel jet,” SAE tech. paper 961200 (Society of Automotive Engineers, Warrendale, Pa., 1996).
  51. J. A. Pinson, D. L. Mitchell, R. J. Santoro, T. A. Litzinger, “Quantitative, planar soot measurements in a D.I. Diesel engine using laser-induced incandescence and light scattering,” SAE tech. paper 932650 (Society of Automotive Engineers, Warrendale, Pa., 1993).
  52. N. P. Tait, D. A. Greenhalgh, “PLIF imaging of fuel fraction in practical devices and LII imaging of soot,” in Symposium: Laser Diagnostics for Industrial Processes (Deutsche Bunsengesellschaft für Physikalische Chemie, Heidelberg, 1993), pp. 1619–1625.
  53. J. E. Dec, “Soot distribution in a D. I. Diesel engine using 2-D laser-induced incandescence, elastic scattering and flame luminosity,” SAE tech. paper 920115 (Society of Automotive Engineers, Warrendale, Pa., 1992).
  54. J. E. Dec, A. O. Zur Loye, D. L. Siebers, “Soot distribution in a D. I. Diesel engine using 2-D laser-induced incandescence imaging,” SAE tech. paper 910224 (Society of Automotive Engineers, Warrendale, Pa., 1991).
  55. D. J. Bryce, N. Ladommatos, Z. Xiao, H. Zhao, “Investigating the effect of oxygenated and aromatic compounds in fuel by comparing laser soot measurements in laminar diffusion flames with Diesel engine emissions.” J. Inst. Energy 72, 150–156 (1999).
  56. D. R. Snelling, G. J. Smallwood, R. A. Sawchuk, W. S. Neill, D. Gareau, W. L. Chippior, F. Liu, O. L. Gülder, “Particulate matter measurements in a Diesel engine exhaust by laser-induced incandescence and the standard gravimetric procedure,” SAE paper 1999-01-3653 (Society of Automotive Engineers, Warrendale, Pa., 1999).
  57. M. E. Case, D. L. Hofeldt, “Soot mass concentration measurements in Diesel engine exhaust using laser induced incandescence,” Aerosol Sci. Technol. 25, 46–60 (1996).
    [CrossRef]
  58. D. L. Hofeldt, “Real-time soot concentration measurement technique for engine exhaust streams,” SAE tech. paper 390079 (Society of Automotive Engineers, Warrendale, Pa., 1993).
  59. J. D. Black, “Laser-induced incandescence measurements of particles in aeroengine exhausts,” in Environmental Sensing and Applications, M. Carleer, M. Hilton, T. Lamp, R. Reuter, G. M. Russwurm, K. Schaefer, K. Weber, K. Weitkamp, J.-P. Wolf, eds., Proc. SPIE3821, 209–215 (1999).
    [CrossRef]
  60. R. L. Vander Wal, “Using laser-induced incandescence to measure soot/smoke concentrations,” Contractor rep. CR-237-98 (NASA Glenn Research Center, Cleveland, Ohio, 1997).
  61. G. J. Smallwood, D. R. Snelling, F. Liu, O. L. Gülder, “Clouds over soot evaporation: errors in modeling laser-induced incandescence of soot,” J. Heat Transfer 123, 814–818 (2000).
    [CrossRef]
  62. A. V. Filippov, D. E. Rosner, M. Kumar, “When and how can LII be used to determine soot aggregate size distributions,” presented at the First Joint Meeting of the U.S. Sections of the Combustion Institute, Washington D.C., 14–17 March 1999 (Combustion Institute, Pittsburgh, Pa., 1999).
  63. R. L. Vander Wal, M. Y. Choi, “Pulsed laser heating of soot: morphological changes,” Carbon 37, 231–239 (1999).
    [CrossRef]
  64. R. L. Vander Wal, M. Y. Choi, K.-O. Lee, “The effects of rapid heating of soot: implications when using laser-induced incandescence for soot diagnostics,” Combust. Flame 102, 200–204 (1995).
    [CrossRef]
  65. A. C. Eckbreth, “Effect of laser-modulated particulate incandescence on Raman scattering diagnostics,” J. Appl. Phys. 48, 4473–4479 (1977).
    [CrossRef]
  66. D. R. Snelling, F. Liu, G. F. Smallwood, O. L. Gülder, “Evaluation of the nanoscale heat and mass transfer model of LII: prediction of the excitation intensity,” in Proceedings of the 34th National Heat Transfer Conference, (American Society of Mechanical Engineers, New York, 2000), paper NHTC2000–12132.
  67. M. Y. Choi, K. A. Jensen, “Calibration and correction of laser-induced incandescence for soot volume fraction measurements,” Combust. Flame 112, 485–491 (1998).
    [CrossRef]
  68. B. Mewes, J. M. Seitzman, “Analysis of laser-induced incandescence and novel soot measurement approaches,” paper AIAA-96-0538, presented at the Thirty-Fourth Aerospace Sciences Meeting, Reno, Nev., 15–18 January 1996 (American Institute of Aeronautics and Astronautics, Reston, Va., 1996).
  69. L. A. Melton, “Soot diagnostics based on laser heating,” Appl. Opt. 23, 2201–2208 (1984).
    [CrossRef] [PubMed]
  70. R. L. Vander Wal, L. J. Hall, “Flame synthesis of Fe catalyzed single walled carbon nanotubes and Ni catalyzed nanofibers: growth mechanisms and consequences,” Chem. Phys. Lett. 349, 178–184 (2001).
    [CrossRef]
  71. H. Dai, A. G. Rinzler, P. Nikolaev, A. Thess, D. T. Colbert, R. E. Smalley, “Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide,” Chem. Phys. Lett. 260, 471–476 (1996).
    [CrossRef]
  72. N. M. Rodriguez, “A review of catalytically grown carbon nanofibers,” J. Mater. Res. 8, 3233–3250 (1993).
    [CrossRef]
  73. H. R. Leider, O. H. Krikorian, D. A. Young, “Thermodynamics properties of carbon up to the critical point,” Carbon 11, 555–563 (1973).
    [CrossRef]
  74. L. J. Radziemski, D. A. Cremers, Laser Induced Plasmas and Applications (Marcel Dekker, New York, 1989).
  75. Statement based on analytical analysis of the radiative emission decay rate based on an energy balance formalism by P. D. Patel.
  76. A. Bougrine, N. Dupont-Pavlovsky, A. Naji, J. Ghanbaja, J. F. Mareche, D. Billaud, “Influence of high temperature treatments on single-walled carbon nanotubes structure, morphology and surface properties,” Carbon 39, 685–695 (2001).
    [CrossRef]

2001 (3)

P. O. Witze, S. Hochgreb, D. Kayes, H. A. Michelsen, C. R. Shaddix, “Time-resolved laser-induced incandescence and laser inelastic-scattering measurements in a propane diffusion flame,” Appl. Opt. 40, 2443–2452 (2001).
[CrossRef]

R. L. Vander Wal, L. J. Hall, “Flame synthesis of Fe catalyzed single walled carbon nanotubes and Ni catalyzed nanofibers: growth mechanisms and consequences,” Chem. Phys. Lett. 349, 178–184 (2001).
[CrossRef]

A. Bougrine, N. Dupont-Pavlovsky, A. Naji, J. Ghanbaja, J. F. Mareche, D. Billaud, “Influence of high temperature treatments on single-walled carbon nanotubes structure, morphology and surface properties,” Carbon 39, 685–695 (2001).
[CrossRef]

2000 (6)

S. Schraml, S. Dankers, K. Bader, S. Will, A. Leipertz, “Soot temperature measurements and implications for time-resolved laser-induced incandescence (TIRE-LII),” Combust. Flame 120, 439–450 (2000).
[CrossRef]

R. Kamalakaran, M. Terrones, T. Seeger, Ph. Koholer-Redlich, M. Ruhle, Y. A. Kim, T. Hayashi, M. Endo, “Synthesis of thick and crystalline nanotube arrays by spray pyrolysis,” Appl. Phys. Lett. 77, 3385–3388 (2000).
[CrossRef]

S. Arepalli, P. Nikolaev, W. Holmes, C. D. Scott, “Diagnostics of laser-produced plume under carbon nanotube growth conditions,” Appl. Phys. A 70, 125–133 (2000).
[CrossRef]

A. A. Puretzky, D. B. Geohegan, X. Fan, S. J. Pennycook, “Dynamics of single-wall carbon nanotube synthesis by laser vaporization,” Appl. Phys. A 70, 153–160 (2000).
[CrossRef]

A. A. Puretzky, D. B. Geohegan, X. Fan, S. J. Pennycook, “In situ imaging and spectroscopy of single-wall carbon nanotube synthesis by laser vaporization,” Appl. Phys. Lett. 76, 182–184 (2000).
[CrossRef]

G. J. Smallwood, D. R. Snelling, F. Liu, O. L. Gülder, “Clouds over soot evaporation: errors in modeling laser-induced incandescence of soot,” J. Heat Transfer 123, 814–818 (2000).
[CrossRef]

1999 (8)

R. L. Vander Wal, M. Y. Choi, “Pulsed laser heating of soot: morphological changes,” Carbon 37, 231–239 (1999).
[CrossRef]

R. T. Wainner, J. M. Seitzman, S. R. Martin, “Soot measurements in a simulated engine exhaust using laser-induced incandescence,” AIAA J. 37, 738–743 (1999).
[CrossRef]

D. J. Bryce, N. Ladommatos, Z. Xiao, H. Zhao, “Investigating the effect of oxygenated and aromatic compounds in fuel by comparing laser soot measurements in laminar diffusion flames with Diesel engine emissions.” J. Inst. Energy 72, 150–156 (1999).

R. L. Vander Wal, T. M. Ticich, J. R. West, “Laser-induced incandescence applied to metal nanostructures,” Appl. Opt. 38, 5867–5879 (1999).
[CrossRef]

R. Andrews, D. Jacques, A. M. Rao, F. Derbyshire, D. Qian, X. Fan, E. C. Dickey, J. Chen, “Continuous production of aligned carbon nanotubes: a step closer to commercial realization,” Chem. Phys. Lett. 303, 467–474 (1999).
[CrossRef]

P. Nikolaev, M. J. Bronikowski, R. K. Bradley, F. Rohmund, D. T. Colbert, K. A. Smith, R. E. Smalley, “Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide.” Chem. Phys. Lett. 313, 91–97 (1999).
[CrossRef]

A. V. Filippov, M. W. Markus, P. Roth, “In-situ characterization of ultrafine particles by laser-induced incandescence: sizing and particle structure determination,” J. Aerosol Sci. 30, 71–87 (1999).
[CrossRef]

R. L. Vander Wal, T. M. Ticich, A. B. Stephens, “Can soot primary particle size be determined using laser-induced incandescence?” Combust. Flame 116, 291–296 (1999).
[CrossRef]

1998 (7)

R. L. Vander Wal, K. A. Jensen, “Laser-induced incandescence: excitation intensity,” Appl. Opt. 37, 1607–1616 (1998).
[CrossRef]

R. L. Vander Wal, T. M. Ticich, A. B. Stephens, “Optical microscopy investigation of soot structure alterations by laser-induced incandescence,” Appl. Phy. B 67, 115–123 (1998).
[CrossRef]

S. Will, S. Schraml, K. Bader, A. Leipertz, “Performance characteristics of soot primary particle size measurements by time-resolved laser-induced incandescence,” Appl. Opt. 37, 5647–5658 (1998).
[CrossRef]

H. M. Cheng, F. Li, G. Su, H. Y. Pan, L. L. He, X. Sun, M. S. Dresselhaus, “Large-scale and low cost synthesis of single-walled carbon nanotubes by the catalytic pyrolysis of hydrocarbons,” Appl. Phys. Lett. 72, 3282–3284 (1998).
[CrossRef]

B. C. Satishkumar, A. Govindaraj, R. Sen, C. N. R. Rao, “Single-walled nanotubes by the pyrolysis of acetylene-organometallic mixtures,” Chem. Phys. Lett. 293, 47–52 (1998).
[CrossRef]

H. Zhao, N. Ladommatos, “Optical diagnostics for soot and temperature measurement in Diesel engines,” Prog. Energy Combust. Sci. 24, 221–255 (1998).
[CrossRef]

M. Y. Choi, K. A. Jensen, “Calibration and correction of laser-induced incandescence for soot volume fraction measurements,” Combust. Flame 112, 485–491 (1998).
[CrossRef]

1997 (2)

R. Sen, A. Govindaraj, C. N. R. Rao, “Carbon nanotubes by the metallocene route,” Chem. Phys. Lett. 267, 276–280 (1997).
[CrossRef]

B. Mewes, J. M. Seitzman, “Soot volume fraction and particle size measurements with laser-induced incandescence,” Appl. Opt. 36, 709–717 (1997).
[CrossRef] [PubMed]

1996 (6)

C. R. Shaddix, K. C. Smyth, “Laser-induced incandescence measurements of soot production in steady and flickering methane, propane and ethylene diffusion flames,” Combust. Flame 107, 418–452 (1996).
[CrossRef]

R. L. Vander Wal, “Laser-induced incandescence: detection issues,” Appl. Opt. 35, 6548–6559 (1996).
[CrossRef] [PubMed]

P. Roth, A. V. Filipov, “In situ ultrafine particle sized by a combination of pulsed laser heatup and particle thermal emission,” J. Aerosol Sci. 27, 95–104 (1996).
[CrossRef]

M. E. Case, D. L. Hofeldt, “Soot mass concentration measurements in Diesel engine exhaust using laser induced incandescence,” Aerosol Sci. Technol. 25, 46–60 (1996).
[CrossRef]

R. L. Vander Wal, Z. Zhou, M. Y. Choi, “Laser-induced incandescence calibration via gravimetric sampling,” Combust. Flame 105, 462–470 (1996).
[CrossRef]

H. Dai, A. G. Rinzler, P. Nikolaev, A. Thess, D. T. Colbert, R. E. Smalley, “Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide,” Chem. Phys. Lett. 260, 471–476 (1996).
[CrossRef]

1995 (4)

R. L. Vander Wal, M. Y. Choi, K.-O. Lee, “The effects of rapid heating of soot: implications when using laser-induced incandescence for soot diagnostics,” Combust. Flame 102, 200–204 (1995).
[CrossRef]

P. E. Bengtsson, M. Alden, “Soot visualization strategies using laser-techniques,” Appl. Phys. B 60, 51–59 (1995).
[CrossRef]

T. Ni, J. A. Pinson, S. Gupta, R. J. Santoro, “Two-dimensional imaging of soot volume fraction by the use of laser-induced incandescence,” Appl. Opt. 34, 7083–7091 (1995).
[CrossRef] [PubMed]

R. L. Vander Wal, D. L. Dietrich, “Laser-induced incandescence applied to droplet combustion,” Appl. Opt. 34, 1103–1107 (1995).
[CrossRef]

1994 (3)

B. Quay, T.-W. Lee, T. Ni, R. J. Santoro, “Spatially resolved measurements of soot volume fraction using laser induced incandescence,” Combust. Flame 97, 384–392 (1994).
[CrossRef]

C. R. Shaddix, J. E. Harrington, K. C. Smyth, “Quantitative measurements of enhanced soot production in a flickering methane/air diffusion flame,” Combust. Flame 99, 723–732 (1994).
[CrossRef]

R. L. Vander Wal, K. J. Weiland, “Laser-induced incandescence: development and characterization towards a measurement of soot-volume fraction,” Appl. Phys. B 59, 445–451 (1994).
[CrossRef]

1993 (2)

G. G. Tibbets, D. W. Gorkiewicz, R. L. Alig, “A new reactor for growing carbon fibers from liquid- and vapor-phase hydrocarbons,” Carbon 31, 809–814 (1993).
[CrossRef]

N. M. Rodriguez, “A review of catalytically grown carbon nanofibers,” J. Mater. Res. 8, 3233–3250 (1993).
[CrossRef]

1984 (2)

1977 (1)

A. C. Eckbreth, “Effect of laser-modulated particulate incandescence on Raman scattering diagnostics,” J. Appl. Phys. 48, 4473–4479 (1977).
[CrossRef]

1973 (1)

H. R. Leider, O. H. Krikorian, D. A. Young, “Thermodynamics properties of carbon up to the critical point,” Carbon 11, 555–563 (1973).
[CrossRef]

Alden, M.

P. E. Bengtsson, M. Alden, “Soot visualization strategies using laser-techniques,” Appl. Phys. B 60, 51–59 (1995).
[CrossRef]

Alig, R. L.

G. G. Tibbets, D. W. Gorkiewicz, R. L. Alig, “A new reactor for growing carbon fibers from liquid- and vapor-phase hydrocarbons,” Carbon 31, 809–814 (1993).
[CrossRef]

Allen, M. G.

K. R. McManus, J. H. Frank, M. G. Allen, W. T. Rawlins, “Characterization of laser-heated soot particles using optical pyrometry,” paper AIAA-98-0159, presented at the Thirty-Sixth Aerospace Sciences Meeting and Exhibit, Reno, Nev., 12–15 January 1998 (American Institute of Aeronautics and Astronautics, Reston, Va., 1998).

Andrews, R.

R. Andrews, D. Jacques, A. M. Rao, F. Derbyshire, D. Qian, X. Fan, E. C. Dickey, J. Chen, “Continuous production of aligned carbon nanotubes: a step closer to commercial realization,” Chem. Phys. Lett. 303, 467–474 (1999).
[CrossRef]

Appel, J.

J. Appel, B. Jungfleisch, M. Marquardt, R. Suntz, H. Bockhorn, “Assessment of soot volume fraction from laser-induced incandescence by comparision with extinction measurements in laminar, premixed, flat flames,” in The Twenty-Seventh Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1996), pp. 2387–2395.
[CrossRef]

Arepalli, S.

S. Arepalli, P. Nikolaev, W. Holmes, C. D. Scott, “Diagnostics of laser-produced plume under carbon nanotube growth conditions,” Appl. Phys. A 70, 125–133 (2000).
[CrossRef]

Bader, K.

S. Schraml, S. Dankers, K. Bader, S. Will, A. Leipertz, “Soot temperature measurements and implications for time-resolved laser-induced incandescence (TIRE-LII),” Combust. Flame 120, 439–450 (2000).
[CrossRef]

S. Will, S. Schraml, K. Bader, A. Leipertz, “Performance characteristics of soot primary particle size measurements by time-resolved laser-induced incandescence,” Appl. Opt. 37, 5647–5658 (1998).
[CrossRef]

Bengtsson, P. E.

P. E. Bengtsson, M. Alden, “Soot visualization strategies using laser-techniques,” Appl. Phys. B 60, 51–59 (1995).
[CrossRef]

Billaud, D.

A. Bougrine, N. Dupont-Pavlovsky, A. Naji, J. Ghanbaja, J. F. Mareche, D. Billaud, “Influence of high temperature treatments on single-walled carbon nanotubes structure, morphology and surface properties,” Carbon 39, 685–695 (2001).
[CrossRef]

Black, J. D.

J. D. Black, “Laser-induced incandescence measurements of particles in aeroengine exhausts,” in Environmental Sensing and Applications, M. Carleer, M. Hilton, T. Lamp, R. Reuter, G. M. Russwurm, K. Schaefer, K. Weber, K. Weitkamp, J.-P. Wolf, eds., Proc. SPIE3821, 209–215 (1999).
[CrossRef]

Bockhorn, H.

H. Geitlinger, Th. Streibel, R. Suntz, H. Bockhorn, “Two-dimensional imaging of soot volume fractions, particle number densities, and particle radii in laminar and turbulent diffusion flames,” in The Twenty-Seventh (International) Symposium on Combustion (Combustion Institute, Pittsburgh, Pa., 1998), pp. 1613–1622.
[CrossRef]

J. Appel, B. Jungfleisch, M. Marquardt, R. Suntz, H. Bockhorn, “Assessment of soot volume fraction from laser-induced incandescence by comparision with extinction measurements in laminar, premixed, flat flames,” in The Twenty-Seventh Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1996), pp. 2387–2395.
[CrossRef]

Bougrine, A.

A. Bougrine, N. Dupont-Pavlovsky, A. Naji, J. Ghanbaja, J. F. Mareche, D. Billaud, “Influence of high temperature treatments on single-walled carbon nanotubes structure, morphology and surface properties,” Carbon 39, 685–695 (2001).
[CrossRef]

Bradley, R. K.

P. Nikolaev, M. J. Bronikowski, R. K. Bradley, F. Rohmund, D. T. Colbert, K. A. Smith, R. E. Smalley, “Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide.” Chem. Phys. Lett. 313, 91–97 (1999).
[CrossRef]

Bronikowski, M. J.

P. Nikolaev, M. J. Bronikowski, R. K. Bradley, F. Rohmund, D. T. Colbert, K. A. Smith, R. E. Smalley, “Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide.” Chem. Phys. Lett. 313, 91–97 (1999).
[CrossRef]

Bryce, D. J.

D. J. Bryce, N. Ladommatos, Z. Xiao, H. Zhao, “Investigating the effect of oxygenated and aromatic compounds in fuel by comparing laser soot measurements in laminar diffusion flames with Diesel engine emissions.” J. Inst. Energy 72, 150–156 (1999).

D. J. Bryce, “Development and application of planar laser techniques for isothermal flow and soot diagnostics,” Ph.D. dissertation (Cranfield University, Cranfield, Bedfordshire, UK, 1996).

Case, M. E.

M. E. Case, D. L. Hofeldt, “Soot mass concentration measurements in Diesel engine exhaust using laser induced incandescence,” Aerosol Sci. Technol. 25, 46–60 (1996).
[CrossRef]

Chen, J.

R. Andrews, D. Jacques, A. M. Rao, F. Derbyshire, D. Qian, X. Fan, E. C. Dickey, J. Chen, “Continuous production of aligned carbon nanotubes: a step closer to commercial realization,” Chem. Phys. Lett. 303, 467–474 (1999).
[CrossRef]

Cheng, H. M.

H. M. Cheng, F. Li, G. Su, H. Y. Pan, L. L. He, X. Sun, M. S. Dresselhaus, “Large-scale and low cost synthesis of single-walled carbon nanotubes by the catalytic pyrolysis of hydrocarbons,” Appl. Phys. Lett. 72, 3282–3284 (1998).
[CrossRef]

Chippior, W. L.

D. R. Snelling, G. J. Smallwood, R. A. Sawchuk, W. S. Neill, D. Gareau, W. L. Chippior, F. Liu, O. L. Gülder, “Particulate matter measurements in a Diesel engine exhaust by laser-induced incandescence and the standard gravimetric procedure,” SAE paper 1999-01-3653 (Society of Automotive Engineers, Warrendale, Pa., 1999).

Choi, M. Y.

R. L. Vander Wal, M. Y. Choi, “Pulsed laser heating of soot: morphological changes,” Carbon 37, 231–239 (1999).
[CrossRef]

M. Y. Choi, K. A. Jensen, “Calibration and correction of laser-induced incandescence for soot volume fraction measurements,” Combust. Flame 112, 485–491 (1998).
[CrossRef]

R. L. Vander Wal, Z. Zhou, M. Y. Choi, “Laser-induced incandescence calibration via gravimetric sampling,” Combust. Flame 105, 462–470 (1996).
[CrossRef]

R. L. Vander Wal, M. Y. Choi, K.-O. Lee, “The effects of rapid heating of soot: implications when using laser-induced incandescence for soot diagnostics,” Combust. Flame 102, 200–204 (1995).
[CrossRef]

Colbert, D. T.

P. Nikolaev, M. J. Bronikowski, R. K. Bradley, F. Rohmund, D. T. Colbert, K. A. Smith, R. E. Smalley, “Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide.” Chem. Phys. Lett. 313, 91–97 (1999).
[CrossRef]

H. Dai, A. G. Rinzler, P. Nikolaev, A. Thess, D. T. Colbert, R. E. Smalley, “Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide,” Chem. Phys. Lett. 260, 471–476 (1996).
[CrossRef]

Colket, M. B.

C. S. McEnally, A. M. Schaffer, M. B. Long, L. D. Pfefferle, M. D. Smooke, M. B. Colket, R. J. Hall, “Computational and experimental study of soot formation in a coflow, laminar ethylene diffusion flame,” in The Twenty-Seventh Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 1497–1505.

Cremers, D. A.

L. J. Radziemski, D. A. Cremers, Laser Induced Plasmas and Applications (Marcel Dekker, New York, 1989).

Dai, H.

H. Dai, A. G. Rinzler, P. Nikolaev, A. Thess, D. T. Colbert, R. E. Smalley, “Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide,” Chem. Phys. Lett. 260, 471–476 (1996).
[CrossRef]

Dankers, S.

S. Schraml, S. Dankers, K. Bader, S. Will, A. Leipertz, “Soot temperature measurements and implications for time-resolved laser-induced incandescence (TIRE-LII),” Combust. Flame 120, 439–450 (2000).
[CrossRef]

Dasch, C. J.

C. J. Dasch, “Continuous-wave probe laser investigation of laser vaporization of small soot particles in a flame,” Appl. Opt. 23, 2209–2215 (1984).
[CrossRef] [PubMed]

C. J. Dasch, “New soot diagnostics in flames based on laser vaporization of soot,” in The Twentieth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1984), pp. 1231–1237.

Dec, J. E.

J. E. Dec, “Soot distribution in a D. I. Diesel engine using 2-D laser-induced incandescence, elastic scattering and flame luminosity,” SAE tech. paper 920115 (Society of Automotive Engineers, Warrendale, Pa., 1992).

J. E. Dec, A. O. Zur Loye, D. L. Siebers, “Soot distribution in a D. I. Diesel engine using 2-D laser-induced incandescence imaging,” SAE tech. paper 910224 (Society of Automotive Engineers, Warrendale, Pa., 1991).

DeCroix, M. R.

M. R. DeCroix, W. L. Roberts, “Extinction measurements for an unsteady propane-air counterflow diffusion flame,” in The Twenty-Sixth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1996), poster 038.

Derbyshire, F.

R. Andrews, D. Jacques, A. M. Rao, F. Derbyshire, D. Qian, X. Fan, E. C. Dickey, J. Chen, “Continuous production of aligned carbon nanotubes: a step closer to commercial realization,” Chem. Phys. Lett. 303, 467–474 (1999).
[CrossRef]

Dickey, E. C.

R. Andrews, D. Jacques, A. M. Rao, F. Derbyshire, D. Qian, X. Fan, E. C. Dickey, J. Chen, “Continuous production of aligned carbon nanotubes: a step closer to commercial realization,” Chem. Phys. Lett. 303, 467–474 (1999).
[CrossRef]

Dietrich, D. L.

Dresselhaus, M. S.

H. M. Cheng, F. Li, G. Su, H. Y. Pan, L. L. He, X. Sun, M. S. Dresselhaus, “Large-scale and low cost synthesis of single-walled carbon nanotubes by the catalytic pyrolysis of hydrocarbons,” Appl. Phys. Lett. 72, 3282–3284 (1998).
[CrossRef]

Dupont-Pavlovsky, N.

A. Bougrine, N. Dupont-Pavlovsky, A. Naji, J. Ghanbaja, J. F. Mareche, D. Billaud, “Influence of high temperature treatments on single-walled carbon nanotubes structure, morphology and surface properties,” Carbon 39, 685–695 (2001).
[CrossRef]

Eckbreth, A. C.

A. C. Eckbreth, “Effect of laser-modulated particulate incandescence on Raman scattering diagnostics,” J. Appl. Phys. 48, 4473–4479 (1977).
[CrossRef]

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, 2nd ed. (Gordon & Breach, New York, 1996).

Endo, M.

R. Kamalakaran, M. Terrones, T. Seeger, Ph. Koholer-Redlich, M. Ruhle, Y. A. Kim, T. Hayashi, M. Endo, “Synthesis of thick and crystalline nanotube arrays by spray pyrolysis,” Appl. Phys. Lett. 77, 3385–3388 (2000).
[CrossRef]

Espey, C.

G. Wiltafsky, W. Stolz, J. Kohler, C. Espey, “The quantification of laser-induced incandescence (LII) for planar time-resolved measurements of the soot volume fraction in a combusting Diesel jet,” SAE tech. paper 961200 (Society of Automotive Engineers, Warrendale, Pa., 1996).

Fan, X.

A. A. Puretzky, D. B. Geohegan, X. Fan, S. J. Pennycook, “Dynamics of single-wall carbon nanotube synthesis by laser vaporization,” Appl. Phys. A 70, 153–160 (2000).
[CrossRef]

A. A. Puretzky, D. B. Geohegan, X. Fan, S. J. Pennycook, “In situ imaging and spectroscopy of single-wall carbon nanotube synthesis by laser vaporization,” Appl. Phys. Lett. 76, 182–184 (2000).
[CrossRef]

R. Andrews, D. Jacques, A. M. Rao, F. Derbyshire, D. Qian, X. Fan, E. C. Dickey, J. Chen, “Continuous production of aligned carbon nanotubes: a step closer to commercial realization,” Chem. Phys. Lett. 303, 467–474 (1999).
[CrossRef]

Fielding, J.

K. T. Walsh, J. Fielding, M. D. Smooke, M. B. Long, “Experimental and computation study of temperature, species and soot in buoyant and non-buoyant coflow laminar diffusion flames,” in The Twenty-Eighth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 2000), pp. 1973–1984.

Filipov, A. V.

P. Roth, A. V. Filipov, “In situ ultrafine particle sized by a combination of pulsed laser heatup and particle thermal emission,” J. Aerosol Sci. 27, 95–104 (1996).
[CrossRef]

Filippov, A. V.

A. V. Filippov, M. W. Markus, P. Roth, “In-situ characterization of ultrafine particles by laser-induced incandescence: sizing and particle structure determination,” J. Aerosol Sci. 30, 71–87 (1999).
[CrossRef]

A. V. Filippov, D. E. Rosner, M. Kumar, “When and how can LII be used to determine soot aggregate size distributions,” presented at the First Joint Meeting of the U.S. Sections of the Combustion Institute, Washington D.C., 14–17 March 1999 (Combustion Institute, Pittsburgh, Pa., 1999).

Frank, J. H.

K. R. McManus, J. H. Frank, M. G. Allen, W. T. Rawlins, “Characterization of laser-heated soot particles using optical pyrometry,” paper AIAA-98-0159, presented at the Thirty-Sixth Aerospace Sciences Meeting and Exhibit, Reno, Nev., 12–15 January 1998 (American Institute of Aeronautics and Astronautics, Reston, Va., 1998).

Gareau, D.

D. R. Snelling, G. J. Smallwood, R. A. Sawchuk, W. S. Neill, D. Gareau, W. L. Chippior, F. Liu, O. L. Gülder, “Particulate matter measurements in a Diesel engine exhaust by laser-induced incandescence and the standard gravimetric procedure,” SAE paper 1999-01-3653 (Society of Automotive Engineers, Warrendale, Pa., 1999).

Geitlinger, H.

H. Geitlinger, Th. Streibel, R. Suntz, H. Bockhorn, “Two-dimensional imaging of soot volume fractions, particle number densities, and particle radii in laminar and turbulent diffusion flames,” in The Twenty-Seventh (International) Symposium on Combustion (Combustion Institute, Pittsburgh, Pa., 1998), pp. 1613–1622.
[CrossRef]

Geohegan, D. B.

A. A. Puretzky, D. B. Geohegan, X. Fan, S. J. Pennycook, “Dynamics of single-wall carbon nanotube synthesis by laser vaporization,” Appl. Phys. A 70, 153–160 (2000).
[CrossRef]

A. A. Puretzky, D. B. Geohegan, X. Fan, S. J. Pennycook, “In situ imaging and spectroscopy of single-wall carbon nanotube synthesis by laser vaporization,” Appl. Phys. Lett. 76, 182–184 (2000).
[CrossRef]

Ghanbaja, J.

A. Bougrine, N. Dupont-Pavlovsky, A. Naji, J. Ghanbaja, J. F. Mareche, D. Billaud, “Influence of high temperature treatments on single-walled carbon nanotubes structure, morphology and surface properties,” Carbon 39, 685–695 (2001).
[CrossRef]

Gorkiewicz, D. W.

G. G. Tibbets, D. W. Gorkiewicz, R. L. Alig, “A new reactor for growing carbon fibers from liquid- and vapor-phase hydrocarbons,” Carbon 31, 809–814 (1993).
[CrossRef]

Govindaraj, A.

B. C. Satishkumar, A. Govindaraj, R. Sen, C. N. R. Rao, “Single-walled nanotubes by the pyrolysis of acetylene-organometallic mixtures,” Chem. Phys. Lett. 293, 47–52 (1998).
[CrossRef]

R. Sen, A. Govindaraj, C. N. R. Rao, “Carbon nanotubes by the metallocene route,” Chem. Phys. Lett. 267, 276–280 (1997).
[CrossRef]

Greenhalgh, D. A.

D. A. Greenhalgh, “Planar measurements of fuel vapour, liquid fuel, liquid droplet size and soot,” in Planar Optical Measurement Methods for Gas Turbine Components, NATO Lecture Series 217 (Cranfield University, Cranfield, Bedfordshire, UK, 1999), paper RTO-EN-6, pp. 7/1–7/18.

N. P. Tait, D. A. Greenhalgh, “2-D soot field measurements by laser induced incandescence,” in Proceedings of the Optical Methods and Data Processing in Heat Transfer and Fluid Flow (Institution of Mechanical Engineering, London, 1992), pp. 185–194.

N. P. Tait, D. A. Greenhalgh, “PLIF imaging of fuel fraction in practical devices and LII imaging of soot,” in Symposium: Laser Diagnostics for Industrial Processes (Deutsche Bunsengesellschaft für Physikalische Chemie, Heidelberg, 1993), pp. 1619–1625.

Gülder, O. L.

G. J. Smallwood, D. R. Snelling, F. Liu, O. L. Gülder, “Clouds over soot evaporation: errors in modeling laser-induced incandescence of soot,” J. Heat Transfer 123, 814–818 (2000).
[CrossRef]

D. R. Snelling, G. J. Smallwood, R. A. Sawchuk, W. S. Neill, D. Gareau, W. L. Chippior, F. Liu, O. L. Gülder, “Particulate matter measurements in a Diesel engine exhaust by laser-induced incandescence and the standard gravimetric procedure,” SAE paper 1999-01-3653 (Society of Automotive Engineers, Warrendale, Pa., 1999).

D. R. Snelling, F. Liu, G. F. Smallwood, O. L. Gülder, “Evaluation of the nanoscale heat and mass transfer model of LII: prediction of the excitation intensity,” in Proceedings of the 34th National Heat Transfer Conference, (American Society of Mechanical Engineers, New York, 2000), paper NHTC2000–12132.

Gupta, S.

Hall, L. J.

R. L. Vander Wal, L. J. Hall, “Flame synthesis of Fe catalyzed single walled carbon nanotubes and Ni catalyzed nanofibers: growth mechanisms and consequences,” Chem. Phys. Lett. 349, 178–184 (2001).
[CrossRef]

Hall, R. J.

C. S. McEnally, A. M. Schaffer, M. B. Long, L. D. Pfefferle, M. D. Smooke, M. B. Colket, R. J. Hall, “Computational and experimental study of soot formation in a coflow, laminar ethylene diffusion flame,” in The Twenty-Seventh Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 1497–1505.

Hampden-Smith, M.

T. T. Kodas, M. Hampden-Smith, Aerosol Processing of Materials (Wiley-VCH, New York, 1999).

Harada, S.

H. Kosaka, T. Nishigaki, T. Kamimoto, S. Harada, “A study on soot formation and oxidation in an unsteady spray flame via laser induced incandescence and scattering techniques,” SAE tech. paper 952451 (Society of Automotive Engineers, Warrendale, Pa., 1995).

Harrington, J. E.

C. R. Shaddix, J. E. Harrington, K. C. Smyth, “Quantitative measurements of enhanced soot production in a flickering methane/air diffusion flame,” Combust. Flame 99, 723–732 (1994).
[CrossRef]

Hayashi, T.

R. Kamalakaran, M. Terrones, T. Seeger, Ph. Koholer-Redlich, M. Ruhle, Y. A. Kim, T. Hayashi, M. Endo, “Synthesis of thick and crystalline nanotube arrays by spray pyrolysis,” Appl. Phys. Lett. 77, 3385–3388 (2000).
[CrossRef]

He, L. L.

H. M. Cheng, F. Li, G. Su, H. Y. Pan, L. L. He, X. Sun, M. S. Dresselhaus, “Large-scale and low cost synthesis of single-walled carbon nanotubes by the catalytic pyrolysis of hydrocarbons,” Appl. Phys. Lett. 72, 3282–3284 (1998).
[CrossRef]

Hochgreb, S.

Hofeldt, D. L.

M. E. Case, D. L. Hofeldt, “Soot mass concentration measurements in Diesel engine exhaust using laser induced incandescence,” Aerosol Sci. Technol. 25, 46–60 (1996).
[CrossRef]

D. L. Hofeldt, “Real-time soot concentration measurement technique for engine exhaust streams,” SAE tech. paper 390079 (Society of Automotive Engineers, Warrendale, Pa., 1993).

Holmes, W.

S. Arepalli, P. Nikolaev, W. Holmes, C. D. Scott, “Diagnostics of laser-produced plume under carbon nanotube growth conditions,” Appl. Phys. A 70, 125–133 (2000).
[CrossRef]

Inagaki, K.

K. Inagaki, S. Takasu, K. Nakakita, “In-cylinder quantitative soot concentration measurement by laser-induced incandescence,” SAE tech. paper 199-01-0508 (Society of Automotive Engineers, Warrendale, Pa., 1999).

Jacques, D.

R. Andrews, D. Jacques, A. M. Rao, F. Derbyshire, D. Qian, X. Fan, E. C. Dickey, J. Chen, “Continuous production of aligned carbon nanotubes: a step closer to commercial realization,” Chem. Phys. Lett. 303, 467–474 (1999).
[CrossRef]

Jensen, K. A.

R. L. Vander Wal, K. A. Jensen, “Laser-induced incandescence: excitation intensity,” Appl. Opt. 37, 1607–1616 (1998).
[CrossRef]

M. Y. Choi, K. A. Jensen, “Calibration and correction of laser-induced incandescence for soot volume fraction measurements,” Combust. Flame 112, 485–491 (1998).
[CrossRef]

Jungfleisch, B.

J. Appel, B. Jungfleisch, M. Marquardt, R. Suntz, H. Bockhorn, “Assessment of soot volume fraction from laser-induced incandescence by comparision with extinction measurements in laminar, premixed, flat flames,” in The Twenty-Seventh Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1996), pp. 2387–2395.
[CrossRef]

Kamalakaran, R.

R. Kamalakaran, M. Terrones, T. Seeger, Ph. Koholer-Redlich, M. Ruhle, Y. A. Kim, T. Hayashi, M. Endo, “Synthesis of thick and crystalline nanotube arrays by spray pyrolysis,” Appl. Phys. Lett. 77, 3385–3388 (2000).
[CrossRef]

Kamimoto, T.

H. Kosaka, T. Nishigaki, T. Kamimoto, S. Harada, “A study on soot formation and oxidation in an unsteady spray flame via laser induced incandescence and scattering techniques,” SAE tech. paper 952451 (Society of Automotive Engineers, Warrendale, Pa., 1995).

Y.-H. Won, T. Kamimoto, H. Kobayashi, H. Kosaka, “2-D soot visualization in unsteady spray flame by means of laser sheet scattering technique,” SAE paper 910223 (Society of Automotive Engineers, Warrendale, Pa., 1991).

Kayes, D.

Kim, Y. A.

R. Kamalakaran, M. Terrones, T. Seeger, Ph. Koholer-Redlich, M. Ruhle, Y. A. Kim, T. Hayashi, M. Endo, “Synthesis of thick and crystalline nanotube arrays by spray pyrolysis,” Appl. Phys. Lett. 77, 3385–3388 (2000).
[CrossRef]

Kobayashi, H.

Y.-H. Won, T. Kamimoto, H. Kobayashi, H. Kosaka, “2-D soot visualization in unsteady spray flame by means of laser sheet scattering technique,” SAE paper 910223 (Society of Automotive Engineers, Warrendale, Pa., 1991).

Kodas, T. T.

T. T. Kodas, M. Hampden-Smith, Aerosol Processing of Materials (Wiley-VCH, New York, 1999).

Kohler, J.

G. Wiltafsky, W. Stolz, J. Kohler, C. Espey, “The quantification of laser-induced incandescence (LII) for planar time-resolved measurements of the soot volume fraction in a combusting Diesel jet,” SAE tech. paper 961200 (Society of Automotive Engineers, Warrendale, Pa., 1996).

Koholer-Redlich, Ph.

R. Kamalakaran, M. Terrones, T. Seeger, Ph. Koholer-Redlich, M. Ruhle, Y. A. Kim, T. Hayashi, M. Endo, “Synthesis of thick and crystalline nanotube arrays by spray pyrolysis,” Appl. Phys. Lett. 77, 3385–3388 (2000).
[CrossRef]

Kosaka, H.

H. Kosaka, T. Nishigaki, T. Kamimoto, S. Harada, “A study on soot formation and oxidation in an unsteady spray flame via laser induced incandescence and scattering techniques,” SAE tech. paper 952451 (Society of Automotive Engineers, Warrendale, Pa., 1995).

Y.-H. Won, T. Kamimoto, H. Kobayashi, H. Kosaka, “2-D soot visualization in unsteady spray flame by means of laser sheet scattering technique,” SAE paper 910223 (Society of Automotive Engineers, Warrendale, Pa., 1991).

Krikorian, O. H.

H. R. Leider, O. H. Krikorian, D. A. Young, “Thermodynamics properties of carbon up to the critical point,” Carbon 11, 555–563 (1973).
[CrossRef]

Kumar, M.

A. V. Filippov, D. E. Rosner, M. Kumar, “When and how can LII be used to determine soot aggregate size distributions,” presented at the First Joint Meeting of the U.S. Sections of the Combustion Institute, Washington D.C., 14–17 March 1999 (Combustion Institute, Pittsburgh, Pa., 1999).

Ladommatos, N.

D. J. Bryce, N. Ladommatos, Z. Xiao, H. Zhao, “Investigating the effect of oxygenated and aromatic compounds in fuel by comparing laser soot measurements in laminar diffusion flames with Diesel engine emissions.” J. Inst. Energy 72, 150–156 (1999).

H. Zhao, N. Ladommatos, “Optical diagnostics for soot and temperature measurement in Diesel engines,” Prog. Energy Combust. Sci. 24, 221–255 (1998).
[CrossRef]

Lee, K.-O.

R. L. Vander Wal, M. Y. Choi, K.-O. Lee, “The effects of rapid heating of soot: implications when using laser-induced incandescence for soot diagnostics,” Combust. Flame 102, 200–204 (1995).
[CrossRef]

Lee, T.-W.

B. Quay, T.-W. Lee, T. Ni, R. J. Santoro, “Spatially resolved measurements of soot volume fraction using laser induced incandescence,” Combust. Flame 97, 384–392 (1994).
[CrossRef]

Leider, H. R.

H. R. Leider, O. H. Krikorian, D. A. Young, “Thermodynamics properties of carbon up to the critical point,” Carbon 11, 555–563 (1973).
[CrossRef]

Leipertz, A.

S. Schraml, S. Dankers, K. Bader, S. Will, A. Leipertz, “Soot temperature measurements and implications for time-resolved laser-induced incandescence (TIRE-LII),” Combust. Flame 120, 439–450 (2000).
[CrossRef]

S. Will, S. Schraml, K. Bader, A. Leipertz, “Performance characteristics of soot primary particle size measurements by time-resolved laser-induced incandescence,” Appl. Opt. 37, 5647–5658 (1998).
[CrossRef]

Li, F.

H. M. Cheng, F. Li, G. Su, H. Y. Pan, L. L. He, X. Sun, M. S. Dresselhaus, “Large-scale and low cost synthesis of single-walled carbon nanotubes by the catalytic pyrolysis of hydrocarbons,” Appl. Phys. Lett. 72, 3282–3284 (1998).
[CrossRef]

Litzinger, T. A.

J. A. Pinson, D. L. Mitchell, R. J. Santoro, T. A. Litzinger, “Quantitative, planar soot measurements in a D.I. Diesel engine using laser-induced incandescence and light scattering,” SAE tech. paper 932650 (Society of Automotive Engineers, Warrendale, Pa., 1993).

Liu, F.

G. J. Smallwood, D. R. Snelling, F. Liu, O. L. Gülder, “Clouds over soot evaporation: errors in modeling laser-induced incandescence of soot,” J. Heat Transfer 123, 814–818 (2000).
[CrossRef]

D. R. Snelling, G. J. Smallwood, R. A. Sawchuk, W. S. Neill, D. Gareau, W. L. Chippior, F. Liu, O. L. Gülder, “Particulate matter measurements in a Diesel engine exhaust by laser-induced incandescence and the standard gravimetric procedure,” SAE paper 1999-01-3653 (Society of Automotive Engineers, Warrendale, Pa., 1999).

D. R. Snelling, F. Liu, G. F. Smallwood, O. L. Gülder, “Evaluation of the nanoscale heat and mass transfer model of LII: prediction of the excitation intensity,” in Proceedings of the 34th National Heat Transfer Conference, (American Society of Mechanical Engineers, New York, 2000), paper NHTC2000–12132.

Long, M. B.

C. S. McEnally, A. M. Schaffer, M. B. Long, L. D. Pfefferle, M. D. Smooke, M. B. Colket, R. J. Hall, “Computational and experimental study of soot formation in a coflow, laminar ethylene diffusion flame,” in The Twenty-Seventh Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 1497–1505.

K. T. Walsh, J. Fielding, M. D. Smooke, M. B. Long, “Experimental and computation study of temperature, species and soot in buoyant and non-buoyant coflow laminar diffusion flames,” in The Twenty-Eighth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 2000), pp. 1973–1984.

Mareche, J. F.

A. Bougrine, N. Dupont-Pavlovsky, A. Naji, J. Ghanbaja, J. F. Mareche, D. Billaud, “Influence of high temperature treatments on single-walled carbon nanotubes structure, morphology and surface properties,” Carbon 39, 685–695 (2001).
[CrossRef]

Markus, M. W.

A. V. Filippov, M. W. Markus, P. Roth, “In-situ characterization of ultrafine particles by laser-induced incandescence: sizing and particle structure determination,” J. Aerosol Sci. 30, 71–87 (1999).
[CrossRef]

Marquardt, M.

J. Appel, B. Jungfleisch, M. Marquardt, R. Suntz, H. Bockhorn, “Assessment of soot volume fraction from laser-induced incandescence by comparision with extinction measurements in laminar, premixed, flat flames,” in The Twenty-Seventh Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1996), pp. 2387–2395.
[CrossRef]

Martin, S. R.

R. T. Wainner, J. M. Seitzman, S. R. Martin, “Soot measurements in a simulated engine exhaust using laser-induced incandescence,” AIAA J. 37, 738–743 (1999).
[CrossRef]

McEnally, C. S.

C. S. McEnally, A. M. Schaffer, M. B. Long, L. D. Pfefferle, M. D. Smooke, M. B. Colket, R. J. Hall, “Computational and experimental study of soot formation in a coflow, laminar ethylene diffusion flame,” in The Twenty-Seventh Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 1497–1505.

McManus, K. R.

K. R. McManus, J. H. Frank, M. G. Allen, W. T. Rawlins, “Characterization of laser-heated soot particles using optical pyrometry,” paper AIAA-98-0159, presented at the Thirty-Sixth Aerospace Sciences Meeting and Exhibit, Reno, Nev., 12–15 January 1998 (American Institute of Aeronautics and Astronautics, Reston, Va., 1998).

Melton, L. A.

Mewes, B.

B. Mewes, J. M. Seitzman, “Soot volume fraction and particle size measurements with laser-induced incandescence,” Appl. Opt. 36, 709–717 (1997).
[CrossRef] [PubMed]

B. Mewes, J. M. Seitzman, “Analysis of laser-induced incandescence and novel soot measurement approaches,” paper AIAA-96-0538, presented at the Thirty-Fourth Aerospace Sciences Meeting, Reno, Nev., 15–18 January 1996 (American Institute of Aeronautics and Astronautics, Reston, Va., 1996).

Michelsen, H. A.

Mitchell, D. L.

J. A. Pinson, D. L. Mitchell, R. J. Santoro, T. A. Litzinger, “Quantitative, planar soot measurements in a D.I. Diesel engine using laser-induced incandescence and light scattering,” SAE tech. paper 932650 (Society of Automotive Engineers, Warrendale, Pa., 1993).

Naji, A.

A. Bougrine, N. Dupont-Pavlovsky, A. Naji, J. Ghanbaja, J. F. Mareche, D. Billaud, “Influence of high temperature treatments on single-walled carbon nanotubes structure, morphology and surface properties,” Carbon 39, 685–695 (2001).
[CrossRef]

Nakakita, K.

K. Inagaki, S. Takasu, K. Nakakita, “In-cylinder quantitative soot concentration measurement by laser-induced incandescence,” SAE tech. paper 199-01-0508 (Society of Automotive Engineers, Warrendale, Pa., 1999).

Neill, W. S.

D. R. Snelling, G. J. Smallwood, R. A. Sawchuk, W. S. Neill, D. Gareau, W. L. Chippior, F. Liu, O. L. Gülder, “Particulate matter measurements in a Diesel engine exhaust by laser-induced incandescence and the standard gravimetric procedure,” SAE paper 1999-01-3653 (Society of Automotive Engineers, Warrendale, Pa., 1999).

Ni, T.

T. Ni, J. A. Pinson, S. Gupta, R. J. Santoro, “Two-dimensional imaging of soot volume fraction by the use of laser-induced incandescence,” Appl. Opt. 34, 7083–7091 (1995).
[CrossRef] [PubMed]

B. Quay, T.-W. Lee, T. Ni, R. J. Santoro, “Spatially resolved measurements of soot volume fraction using laser induced incandescence,” Combust. Flame 97, 384–392 (1994).
[CrossRef]

Nikolaev, P.

S. Arepalli, P. Nikolaev, W. Holmes, C. D. Scott, “Diagnostics of laser-produced plume under carbon nanotube growth conditions,” Appl. Phys. A 70, 125–133 (2000).
[CrossRef]

P. Nikolaev, M. J. Bronikowski, R. K. Bradley, F. Rohmund, D. T. Colbert, K. A. Smith, R. E. Smalley, “Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide.” Chem. Phys. Lett. 313, 91–97 (1999).
[CrossRef]

H. Dai, A. G. Rinzler, P. Nikolaev, A. Thess, D. T. Colbert, R. E. Smalley, “Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide,” Chem. Phys. Lett. 260, 471–476 (1996).
[CrossRef]

Nishigaki, T.

H. Kosaka, T. Nishigaki, T. Kamimoto, S. Harada, “A study on soot formation and oxidation in an unsteady spray flame via laser induced incandescence and scattering techniques,” SAE tech. paper 952451 (Society of Automotive Engineers, Warrendale, Pa., 1995).

Pan, H. Y.

H. M. Cheng, F. Li, G. Su, H. Y. Pan, L. L. He, X. Sun, M. S. Dresselhaus, “Large-scale and low cost synthesis of single-walled carbon nanotubes by the catalytic pyrolysis of hydrocarbons,” Appl. Phys. Lett. 72, 3282–3284 (1998).
[CrossRef]

Pennycook, S. J.

A. A. Puretzky, D. B. Geohegan, X. Fan, S. J. Pennycook, “Dynamics of single-wall carbon nanotube synthesis by laser vaporization,” Appl. Phys. A 70, 153–160 (2000).
[CrossRef]

A. A. Puretzky, D. B. Geohegan, X. Fan, S. J. Pennycook, “In situ imaging and spectroscopy of single-wall carbon nanotube synthesis by laser vaporization,” Appl. Phys. Lett. 76, 182–184 (2000).
[CrossRef]

Pfefferle, L. D.

C. S. McEnally, A. M. Schaffer, M. B. Long, L. D. Pfefferle, M. D. Smooke, M. B. Colket, R. J. Hall, “Computational and experimental study of soot formation in a coflow, laminar ethylene diffusion flame,” in The Twenty-Seventh Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 1497–1505.

Pinson, J. A.

T. Ni, J. A. Pinson, S. Gupta, R. J. Santoro, “Two-dimensional imaging of soot volume fraction by the use of laser-induced incandescence,” Appl. Opt. 34, 7083–7091 (1995).
[CrossRef] [PubMed]

J. A. Pinson, D. L. Mitchell, R. J. Santoro, T. A. Litzinger, “Quantitative, planar soot measurements in a D.I. Diesel engine using laser-induced incandescence and light scattering,” SAE tech. paper 932650 (Society of Automotive Engineers, Warrendale, Pa., 1993).

Puretzky, A. A.

A. A. Puretzky, D. B. Geohegan, X. Fan, S. J. Pennycook, “In situ imaging and spectroscopy of single-wall carbon nanotube synthesis by laser vaporization,” Appl. Phys. Lett. 76, 182–184 (2000).
[CrossRef]

A. A. Puretzky, D. B. Geohegan, X. Fan, S. J. Pennycook, “Dynamics of single-wall carbon nanotube synthesis by laser vaporization,” Appl. Phys. A 70, 153–160 (2000).
[CrossRef]

Qian, D.

R. Andrews, D. Jacques, A. M. Rao, F. Derbyshire, D. Qian, X. Fan, E. C. Dickey, J. Chen, “Continuous production of aligned carbon nanotubes: a step closer to commercial realization,” Chem. Phys. Lett. 303, 467–474 (1999).
[CrossRef]

Quay, B.

B. Quay, T.-W. Lee, T. Ni, R. J. Santoro, “Spatially resolved measurements of soot volume fraction using laser induced incandescence,” Combust. Flame 97, 384–392 (1994).
[CrossRef]

Radziemski, L. J.

L. J. Radziemski, D. A. Cremers, Laser Induced Plasmas and Applications (Marcel Dekker, New York, 1989).

Rao, A. M.

R. Andrews, D. Jacques, A. M. Rao, F. Derbyshire, D. Qian, X. Fan, E. C. Dickey, J. Chen, “Continuous production of aligned carbon nanotubes: a step closer to commercial realization,” Chem. Phys. Lett. 303, 467–474 (1999).
[CrossRef]

Rao, C. N. R.

B. C. Satishkumar, A. Govindaraj, R. Sen, C. N. R. Rao, “Single-walled nanotubes by the pyrolysis of acetylene-organometallic mixtures,” Chem. Phys. Lett. 293, 47–52 (1998).
[CrossRef]

R. Sen, A. Govindaraj, C. N. R. Rao, “Carbon nanotubes by the metallocene route,” Chem. Phys. Lett. 267, 276–280 (1997).
[CrossRef]

Rawlins, W. T.

K. R. McManus, J. H. Frank, M. G. Allen, W. T. Rawlins, “Characterization of laser-heated soot particles using optical pyrometry,” paper AIAA-98-0159, presented at the Thirty-Sixth Aerospace Sciences Meeting and Exhibit, Reno, Nev., 12–15 January 1998 (American Institute of Aeronautics and Astronautics, Reston, Va., 1998).

Rinzler, A. G.

H. Dai, A. G. Rinzler, P. Nikolaev, A. Thess, D. T. Colbert, R. E. Smalley, “Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide,” Chem. Phys. Lett. 260, 471–476 (1996).
[CrossRef]

Roberts, W. L.

M. R. DeCroix, W. L. Roberts, “Extinction measurements for an unsteady propane-air counterflow diffusion flame,” in The Twenty-Sixth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1996), poster 038.

Rodriguez, N. M.

N. M. Rodriguez, “A review of catalytically grown carbon nanofibers,” J. Mater. Res. 8, 3233–3250 (1993).
[CrossRef]

Rohmund, F.

P. Nikolaev, M. J. Bronikowski, R. K. Bradley, F. Rohmund, D. T. Colbert, K. A. Smith, R. E. Smalley, “Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide.” Chem. Phys. Lett. 313, 91–97 (1999).
[CrossRef]

Rosner, D. E.

A. V. Filippov, D. E. Rosner, M. Kumar, “When and how can LII be used to determine soot aggregate size distributions,” presented at the First Joint Meeting of the U.S. Sections of the Combustion Institute, Washington D.C., 14–17 March 1999 (Combustion Institute, Pittsburgh, Pa., 1999).

Roth, P.

A. V. Filippov, M. W. Markus, P. Roth, “In-situ characterization of ultrafine particles by laser-induced incandescence: sizing and particle structure determination,” J. Aerosol Sci. 30, 71–87 (1999).
[CrossRef]

P. Roth, A. V. Filipov, “In situ ultrafine particle sized by a combination of pulsed laser heatup and particle thermal emission,” J. Aerosol Sci. 27, 95–104 (1996).
[CrossRef]

Ruhle, M.

R. Kamalakaran, M. Terrones, T. Seeger, Ph. Koholer-Redlich, M. Ruhle, Y. A. Kim, T. Hayashi, M. Endo, “Synthesis of thick and crystalline nanotube arrays by spray pyrolysis,” Appl. Phys. Lett. 77, 3385–3388 (2000).
[CrossRef]

Santoro, R. J.

T. Ni, J. A. Pinson, S. Gupta, R. J. Santoro, “Two-dimensional imaging of soot volume fraction by the use of laser-induced incandescence,” Appl. Opt. 34, 7083–7091 (1995).
[CrossRef] [PubMed]

B. Quay, T.-W. Lee, T. Ni, R. J. Santoro, “Spatially resolved measurements of soot volume fraction using laser induced incandescence,” Combust. Flame 97, 384–392 (1994).
[CrossRef]

J. A. Pinson, D. L. Mitchell, R. J. Santoro, T. A. Litzinger, “Quantitative, planar soot measurements in a D.I. Diesel engine using laser-induced incandescence and light scattering,” SAE tech. paper 932650 (Society of Automotive Engineers, Warrendale, Pa., 1993).

Satishkumar, B. C.

B. C. Satishkumar, A. Govindaraj, R. Sen, C. N. R. Rao, “Single-walled nanotubes by the pyrolysis of acetylene-organometallic mixtures,” Chem. Phys. Lett. 293, 47–52 (1998).
[CrossRef]

Sawchuk, R. A.

D. R. Snelling, G. J. Smallwood, R. A. Sawchuk, W. S. Neill, D. Gareau, W. L. Chippior, F. Liu, O. L. Gülder, “Particulate matter measurements in a Diesel engine exhaust by laser-induced incandescence and the standard gravimetric procedure,” SAE paper 1999-01-3653 (Society of Automotive Engineers, Warrendale, Pa., 1999).

Schaffer, A. M.

C. S. McEnally, A. M. Schaffer, M. B. Long, L. D. Pfefferle, M. D. Smooke, M. B. Colket, R. J. Hall, “Computational and experimental study of soot formation in a coflow, laminar ethylene diffusion flame,” in The Twenty-Seventh Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 1497–1505.

Schraml, S.

S. Schraml, S. Dankers, K. Bader, S. Will, A. Leipertz, “Soot temperature measurements and implications for time-resolved laser-induced incandescence (TIRE-LII),” Combust. Flame 120, 439–450 (2000).
[CrossRef]

S. Will, S. Schraml, K. Bader, A. Leipertz, “Performance characteristics of soot primary particle size measurements by time-resolved laser-induced incandescence,” Appl. Opt. 37, 5647–5658 (1998).
[CrossRef]

Scott, C. D.

S. Arepalli, P. Nikolaev, W. Holmes, C. D. Scott, “Diagnostics of laser-produced plume under carbon nanotube growth conditions,” Appl. Phys. A 70, 125–133 (2000).
[CrossRef]

Seeger, T.

R. Kamalakaran, M. Terrones, T. Seeger, Ph. Koholer-Redlich, M. Ruhle, Y. A. Kim, T. Hayashi, M. Endo, “Synthesis of thick and crystalline nanotube arrays by spray pyrolysis,” Appl. Phys. Lett. 77, 3385–3388 (2000).
[CrossRef]

Seitzman, J. M.

R. T. Wainner, J. M. Seitzman, S. R. Martin, “Soot measurements in a simulated engine exhaust using laser-induced incandescence,” AIAA J. 37, 738–743 (1999).
[CrossRef]

B. Mewes, J. M. Seitzman, “Soot volume fraction and particle size measurements with laser-induced incandescence,” Appl. Opt. 36, 709–717 (1997).
[CrossRef] [PubMed]

R. T. Wainner, J. M. Seitzman, “Soot diagnostics using laser-induced incandescence in flames and exhaust flows,” in AIAA-99-0640, presented at the Thirty-Fourth Aerospace Sciences Meeting and Exhibit, Reno, Nev., 11–14 January 1999 (American Institute of Aeronautics and Astronautics, Reston, Va., 1999).

R. T. Wainner, J. M. Seitzman, “Soot diagnostics using laser-induced incandescence in flames and exhaust flows,” paper AIAA-99-0640, presented at the Thirty-Seventh Aerospace Sciences Meeting and Exhibit, Reno, Nev., 11–14 January 1999 (American Institute of Aeronautics and Astronautics, Reston, Va., 1999).

B. Mewes, J. M. Seitzman, “Analysis of laser-induced incandescence and novel soot measurement approaches,” paper AIAA-96-0538, presented at the Thirty-Fourth Aerospace Sciences Meeting, Reno, Nev., 15–18 January 1996 (American Institute of Aeronautics and Astronautics, Reston, Va., 1996).

Sen, R.

B. C. Satishkumar, A. Govindaraj, R. Sen, C. N. R. Rao, “Single-walled nanotubes by the pyrolysis of acetylene-organometallic mixtures,” Chem. Phys. Lett. 293, 47–52 (1998).
[CrossRef]

R. Sen, A. Govindaraj, C. N. R. Rao, “Carbon nanotubes by the metallocene route,” Chem. Phys. Lett. 267, 276–280 (1997).
[CrossRef]

Shaddix, C. R.

P. O. Witze, S. Hochgreb, D. Kayes, H. A. Michelsen, C. R. Shaddix, “Time-resolved laser-induced incandescence and laser inelastic-scattering measurements in a propane diffusion flame,” Appl. Opt. 40, 2443–2452 (2001).
[CrossRef]

C. R. Shaddix, K. C. Smyth, “Laser-induced incandescence measurements of soot production in steady and flickering methane, propane and ethylene diffusion flames,” Combust. Flame 107, 418–452 (1996).
[CrossRef]

C. R. Shaddix, J. E. Harrington, K. C. Smyth, “Quantitative measurements of enhanced soot production in a flickering methane/air diffusion flame,” Combust. Flame 99, 723–732 (1994).
[CrossRef]

Siebers, D. L.

J. E. Dec, A. O. Zur Loye, D. L. Siebers, “Soot distribution in a D. I. Diesel engine using 2-D laser-induced incandescence imaging,” SAE tech. paper 910224 (Society of Automotive Engineers, Warrendale, Pa., 1991).

Smalley, R. E.

P. Nikolaev, M. J. Bronikowski, R. K. Bradley, F. Rohmund, D. T. Colbert, K. A. Smith, R. E. Smalley, “Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide.” Chem. Phys. Lett. 313, 91–97 (1999).
[CrossRef]

H. Dai, A. G. Rinzler, P. Nikolaev, A. Thess, D. T. Colbert, R. E. Smalley, “Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide,” Chem. Phys. Lett. 260, 471–476 (1996).
[CrossRef]

Smallwood, G. F.

D. R. Snelling, F. Liu, G. F. Smallwood, O. L. Gülder, “Evaluation of the nanoscale heat and mass transfer model of LII: prediction of the excitation intensity,” in Proceedings of the 34th National Heat Transfer Conference, (American Society of Mechanical Engineers, New York, 2000), paper NHTC2000–12132.

Smallwood, G. J.

G. J. Smallwood, D. R. Snelling, F. Liu, O. L. Gülder, “Clouds over soot evaporation: errors in modeling laser-induced incandescence of soot,” J. Heat Transfer 123, 814–818 (2000).
[CrossRef]

D. R. Snelling, G. J. Smallwood, R. A. Sawchuk, W. S. Neill, D. Gareau, W. L. Chippior, F. Liu, O. L. Gülder, “Particulate matter measurements in a Diesel engine exhaust by laser-induced incandescence and the standard gravimetric procedure,” SAE paper 1999-01-3653 (Society of Automotive Engineers, Warrendale, Pa., 1999).

Smith, K. A.

P. Nikolaev, M. J. Bronikowski, R. K. Bradley, F. Rohmund, D. T. Colbert, K. A. Smith, R. E. Smalley, “Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide.” Chem. Phys. Lett. 313, 91–97 (1999).
[CrossRef]

Smooke, M. D.

C. S. McEnally, A. M. Schaffer, M. B. Long, L. D. Pfefferle, M. D. Smooke, M. B. Colket, R. J. Hall, “Computational and experimental study of soot formation in a coflow, laminar ethylene diffusion flame,” in The Twenty-Seventh Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 1497–1505.

K. T. Walsh, J. Fielding, M. D. Smooke, M. B. Long, “Experimental and computation study of temperature, species and soot in buoyant and non-buoyant coflow laminar diffusion flames,” in The Twenty-Eighth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 2000), pp. 1973–1984.

Smyth, K. C.

C. R. Shaddix, K. C. Smyth, “Laser-induced incandescence measurements of soot production in steady and flickering methane, propane and ethylene diffusion flames,” Combust. Flame 107, 418–452 (1996).
[CrossRef]

C. R. Shaddix, J. E. Harrington, K. C. Smyth, “Quantitative measurements of enhanced soot production in a flickering methane/air diffusion flame,” Combust. Flame 99, 723–732 (1994).
[CrossRef]

Snelling, D. R.

G. J. Smallwood, D. R. Snelling, F. Liu, O. L. Gülder, “Clouds over soot evaporation: errors in modeling laser-induced incandescence of soot,” J. Heat Transfer 123, 814–818 (2000).
[CrossRef]

D. R. Snelling, G. J. Smallwood, R. A. Sawchuk, W. S. Neill, D. Gareau, W. L. Chippior, F. Liu, O. L. Gülder, “Particulate matter measurements in a Diesel engine exhaust by laser-induced incandescence and the standard gravimetric procedure,” SAE paper 1999-01-3653 (Society of Automotive Engineers, Warrendale, Pa., 1999).

D. R. Snelling, F. Liu, G. F. Smallwood, O. L. Gülder, “Evaluation of the nanoscale heat and mass transfer model of LII: prediction of the excitation intensity,” in Proceedings of the 34th National Heat Transfer Conference, (American Society of Mechanical Engineers, New York, 2000), paper NHTC2000–12132.

Stephens, A. B.

R. L. Vander Wal, T. M. Ticich, A. B. Stephens, “Can soot primary particle size be determined using laser-induced incandescence?” Combust. Flame 116, 291–296 (1999).
[CrossRef]

R. L. Vander Wal, T. M. Ticich, A. B. Stephens, “Optical microscopy investigation of soot structure alterations by laser-induced incandescence,” Appl. Phy. B 67, 115–123 (1998).
[CrossRef]

Stolz, W.

G. Wiltafsky, W. Stolz, J. Kohler, C. Espey, “The quantification of laser-induced incandescence (LII) for planar time-resolved measurements of the soot volume fraction in a combusting Diesel jet,” SAE tech. paper 961200 (Society of Automotive Engineers, Warrendale, Pa., 1996).

Streibel, Th.

H. Geitlinger, Th. Streibel, R. Suntz, H. Bockhorn, “Two-dimensional imaging of soot volume fractions, particle number densities, and particle radii in laminar and turbulent diffusion flames,” in The Twenty-Seventh (International) Symposium on Combustion (Combustion Institute, Pittsburgh, Pa., 1998), pp. 1613–1622.
[CrossRef]

Su, G.

H. M. Cheng, F. Li, G. Su, H. Y. Pan, L. L. He, X. Sun, M. S. Dresselhaus, “Large-scale and low cost synthesis of single-walled carbon nanotubes by the catalytic pyrolysis of hydrocarbons,” Appl. Phys. Lett. 72, 3282–3284 (1998).
[CrossRef]

Sun, X.

H. M. Cheng, F. Li, G. Su, H. Y. Pan, L. L. He, X. Sun, M. S. Dresselhaus, “Large-scale and low cost synthesis of single-walled carbon nanotubes by the catalytic pyrolysis of hydrocarbons,” Appl. Phys. Lett. 72, 3282–3284 (1998).
[CrossRef]

Suntz, R.

H. Geitlinger, Th. Streibel, R. Suntz, H. Bockhorn, “Two-dimensional imaging of soot volume fractions, particle number densities, and particle radii in laminar and turbulent diffusion flames,” in The Twenty-Seventh (International) Symposium on Combustion (Combustion Institute, Pittsburgh, Pa., 1998), pp. 1613–1622.
[CrossRef]

J. Appel, B. Jungfleisch, M. Marquardt, R. Suntz, H. Bockhorn, “Assessment of soot volume fraction from laser-induced incandescence by comparision with extinction measurements in laminar, premixed, flat flames,” in The Twenty-Seventh Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1996), pp. 2387–2395.
[CrossRef]

Tait, N. P.

N. P. Tait, D. A. Greenhalgh, “2-D soot field measurements by laser induced incandescence,” in Proceedings of the Optical Methods and Data Processing in Heat Transfer and Fluid Flow (Institution of Mechanical Engineering, London, 1992), pp. 185–194.

N. P. Tait, D. A. Greenhalgh, “PLIF imaging of fuel fraction in practical devices and LII imaging of soot,” in Symposium: Laser Diagnostics for Industrial Processes (Deutsche Bunsengesellschaft für Physikalische Chemie, Heidelberg, 1993), pp. 1619–1625.

Takasu, S.

K. Inagaki, S. Takasu, K. Nakakita, “In-cylinder quantitative soot concentration measurement by laser-induced incandescence,” SAE tech. paper 199-01-0508 (Society of Automotive Engineers, Warrendale, Pa., 1999).

Terrones, M.

R. Kamalakaran, M. Terrones, T. Seeger, Ph. Koholer-Redlich, M. Ruhle, Y. A. Kim, T. Hayashi, M. Endo, “Synthesis of thick and crystalline nanotube arrays by spray pyrolysis,” Appl. Phys. Lett. 77, 3385–3388 (2000).
[CrossRef]

Thess, A.

H. Dai, A. G. Rinzler, P. Nikolaev, A. Thess, D. T. Colbert, R. E. Smalley, “Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide,” Chem. Phys. Lett. 260, 471–476 (1996).
[CrossRef]

Tibbets, G. G.

G. G. Tibbets, D. W. Gorkiewicz, R. L. Alig, “A new reactor for growing carbon fibers from liquid- and vapor-phase hydrocarbons,” Carbon 31, 809–814 (1993).
[CrossRef]

Ticich, T. M.

R. L. Vander Wal, T. M. Ticich, J. R. West, “Laser-induced incandescence applied to metal nanostructures,” Appl. Opt. 38, 5867–5879 (1999).
[CrossRef]

R. L. Vander Wal, T. M. Ticich, A. B. Stephens, “Can soot primary particle size be determined using laser-induced incandescence?” Combust. Flame 116, 291–296 (1999).
[CrossRef]

R. L. Vander Wal, T. M. Ticich, A. B. Stephens, “Optical microscopy investigation of soot structure alterations by laser-induced incandescence,” Appl. Phy. B 67, 115–123 (1998).
[CrossRef]

Vander Wal, R. L.

R. L. Vander Wal, L. J. Hall, “Flame synthesis of Fe catalyzed single walled carbon nanotubes and Ni catalyzed nanofibers: growth mechanisms and consequences,” Chem. Phys. Lett. 349, 178–184 (2001).
[CrossRef]

R. L. Vander Wal, M. Y. Choi, “Pulsed laser heating of soot: morphological changes,” Carbon 37, 231–239 (1999).
[CrossRef]

R. L. Vander Wal, T. M. Ticich, A. B. Stephens, “Can soot primary particle size be determined using laser-induced incandescence?” Combust. Flame 116, 291–296 (1999).
[CrossRef]

R. L. Vander Wal, T. M. Ticich, J. R. West, “Laser-induced incandescence applied to metal nanostructures,” Appl. Opt. 38, 5867–5879 (1999).
[CrossRef]

R. L. Vander Wal, K. A. Jensen, “Laser-induced incandescence: excitation intensity,” Appl. Opt. 37, 1607–1616 (1998).
[CrossRef]

R. L. Vander Wal, T. M. Ticich, A. B. Stephens, “Optical microscopy investigation of soot structure alterations by laser-induced incandescence,” Appl. Phy. B 67, 115–123 (1998).
[CrossRef]

R. L. Vander Wal, “Laser-induced incandescence: detection issues,” Appl. Opt. 35, 6548–6559 (1996).
[CrossRef] [PubMed]

R. L. Vander Wal, Z. Zhou, M. Y. Choi, “Laser-induced incandescence calibration via gravimetric sampling,” Combust. Flame 105, 462–470 (1996).
[CrossRef]

R. L. Vander Wal, D. L. Dietrich, “Laser-induced incandescence applied to droplet combustion,” Appl. Opt. 34, 1103–1107 (1995).
[CrossRef]

R. L. Vander Wal, M. Y. Choi, K.-O. Lee, “The effects of rapid heating of soot: implications when using laser-induced incandescence for soot diagnostics,” Combust. Flame 102, 200–204 (1995).
[CrossRef]

R. L. Vander Wal, K. J. Weiland, “Laser-induced incandescence: development and characterization towards a measurement of soot-volume fraction,” Appl. Phys. B 59, 445–451 (1994).
[CrossRef]

R. L. Vander Wal, “Using laser-induced incandescence to measure soot/smoke concentrations,” Contractor rep. CR-237-98 (NASA Glenn Research Center, Cleveland, Ohio, 1997).

Wainner, R. T.

R. T. Wainner, J. M. Seitzman, S. R. Martin, “Soot measurements in a simulated engine exhaust using laser-induced incandescence,” AIAA J. 37, 738–743 (1999).
[CrossRef]

R. T. Wainner, J. M. Seitzman, “Soot diagnostics using laser-induced incandescence in flames and exhaust flows,” paper AIAA-99-0640, presented at the Thirty-Seventh Aerospace Sciences Meeting and Exhibit, Reno, Nev., 11–14 January 1999 (American Institute of Aeronautics and Astronautics, Reston, Va., 1999).

R. T. Wainner, J. M. Seitzman, “Soot diagnostics using laser-induced incandescence in flames and exhaust flows,” in AIAA-99-0640, presented at the Thirty-Fourth Aerospace Sciences Meeting and Exhibit, Reno, Nev., 11–14 January 1999 (American Institute of Aeronautics and Astronautics, Reston, Va., 1999).

Walsh, K. T.

K. T. Walsh, J. Fielding, M. D. Smooke, M. B. Long, “Experimental and computation study of temperature, species and soot in buoyant and non-buoyant coflow laminar diffusion flames,” in The Twenty-Eighth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 2000), pp. 1973–1984.

Weiland, K. J.

R. L. Vander Wal, K. J. Weiland, “Laser-induced incandescence: development and characterization towards a measurement of soot-volume fraction,” Appl. Phys. B 59, 445–451 (1994).
[CrossRef]

West, J. R.

Will, S.

S. Schraml, S. Dankers, K. Bader, S. Will, A. Leipertz, “Soot temperature measurements and implications for time-resolved laser-induced incandescence (TIRE-LII),” Combust. Flame 120, 439–450 (2000).
[CrossRef]

S. Will, S. Schraml, K. Bader, A. Leipertz, “Performance characteristics of soot primary particle size measurements by time-resolved laser-induced incandescence,” Appl. Opt. 37, 5647–5658 (1998).
[CrossRef]

Wiltafsky, G.

G. Wiltafsky, W. Stolz, J. Kohler, C. Espey, “The quantification of laser-induced incandescence (LII) for planar time-resolved measurements of the soot volume fraction in a combusting Diesel jet,” SAE tech. paper 961200 (Society of Automotive Engineers, Warrendale, Pa., 1996).

Witze, P. O.

Won, Y.-H.

Y.-H. Won, T. Kamimoto, H. Kobayashi, H. Kosaka, “2-D soot visualization in unsteady spray flame by means of laser sheet scattering technique,” SAE paper 910223 (Society of Automotive Engineers, Warrendale, Pa., 1991).

Xiao, Z.

D. J. Bryce, N. Ladommatos, Z. Xiao, H. Zhao, “Investigating the effect of oxygenated and aromatic compounds in fuel by comparing laser soot measurements in laminar diffusion flames with Diesel engine emissions.” J. Inst. Energy 72, 150–156 (1999).

Young, D. A.

H. R. Leider, O. H. Krikorian, D. A. Young, “Thermodynamics properties of carbon up to the critical point,” Carbon 11, 555–563 (1973).
[CrossRef]

Zhao, H.

D. J. Bryce, N. Ladommatos, Z. Xiao, H. Zhao, “Investigating the effect of oxygenated and aromatic compounds in fuel by comparing laser soot measurements in laminar diffusion flames with Diesel engine emissions.” J. Inst. Energy 72, 150–156 (1999).

H. Zhao, N. Ladommatos, “Optical diagnostics for soot and temperature measurement in Diesel engines,” Prog. Energy Combust. Sci. 24, 221–255 (1998).
[CrossRef]

Zhou, Z.

R. L. Vander Wal, Z. Zhou, M. Y. Choi, “Laser-induced incandescence calibration via gravimetric sampling,” Combust. Flame 105, 462–470 (1996).
[CrossRef]

Zur Loye, A. O.

J. E. Dec, A. O. Zur Loye, D. L. Siebers, “Soot distribution in a D. I. Diesel engine using 2-D laser-induced incandescence imaging,” SAE tech. paper 910224 (Society of Automotive Engineers, Warrendale, Pa., 1991).

Aerosol Sci. Technol. (1)

M. E. Case, D. L. Hofeldt, “Soot mass concentration measurements in Diesel engine exhaust using laser induced incandescence,” Aerosol Sci. Technol. 25, 46–60 (1996).
[CrossRef]

AIAA J. (1)

R. T. Wainner, J. M. Seitzman, S. R. Martin, “Soot measurements in a simulated engine exhaust using laser-induced incandescence,” AIAA J. 37, 738–743 (1999).
[CrossRef]

Appl. Opt. (10)

R. L. Vander Wal, T. M. Ticich, J. R. West, “Laser-induced incandescence applied to metal nanostructures,” Appl. Opt. 38, 5867–5879 (1999).
[CrossRef]

P. O. Witze, S. Hochgreb, D. Kayes, H. A. Michelsen, C. R. Shaddix, “Time-resolved laser-induced incandescence and laser inelastic-scattering measurements in a propane diffusion flame,” Appl. Opt. 40, 2443–2452 (2001).
[CrossRef]

S. Will, S. Schraml, K. Bader, A. Leipertz, “Performance characteristics of soot primary particle size measurements by time-resolved laser-induced incandescence,” Appl. Opt. 37, 5647–5658 (1998).
[CrossRef]

B. Mewes, J. M. Seitzman, “Soot volume fraction and particle size measurements with laser-induced incandescence,” Appl. Opt. 36, 709–717 (1997).
[CrossRef] [PubMed]

C. J. Dasch, “Continuous-wave probe laser investigation of laser vaporization of small soot particles in a flame,” Appl. Opt. 23, 2209–2215 (1984).
[CrossRef] [PubMed]

R. L. Vander Wal, K. A. Jensen, “Laser-induced incandescence: excitation intensity,” Appl. Opt. 37, 1607–1616 (1998).
[CrossRef]

T. Ni, J. A. Pinson, S. Gupta, R. J. Santoro, “Two-dimensional imaging of soot volume fraction by the use of laser-induced incandescence,” Appl. Opt. 34, 7083–7091 (1995).
[CrossRef] [PubMed]

R. L. Vander Wal, D. L. Dietrich, “Laser-induced incandescence applied to droplet combustion,” Appl. Opt. 34, 1103–1107 (1995).
[CrossRef]

R. L. Vander Wal, “Laser-induced incandescence: detection issues,” Appl. Opt. 35, 6548–6559 (1996).
[CrossRef] [PubMed]

L. A. Melton, “Soot diagnostics based on laser heating,” Appl. Opt. 23, 2201–2208 (1984).
[CrossRef] [PubMed]

Appl. Phy. B (1)

R. L. Vander Wal, T. M. Ticich, A. B. Stephens, “Optical microscopy investigation of soot structure alterations by laser-induced incandescence,” Appl. Phy. B 67, 115–123 (1998).
[CrossRef]

Appl. Phys. A (2)

S. Arepalli, P. Nikolaev, W. Holmes, C. D. Scott, “Diagnostics of laser-produced plume under carbon nanotube growth conditions,” Appl. Phys. A 70, 125–133 (2000).
[CrossRef]

A. A. Puretzky, D. B. Geohegan, X. Fan, S. J. Pennycook, “Dynamics of single-wall carbon nanotube synthesis by laser vaporization,” Appl. Phys. A 70, 153–160 (2000).
[CrossRef]

Appl. Phys. B (2)

P. E. Bengtsson, M. Alden, “Soot visualization strategies using laser-techniques,” Appl. Phys. B 60, 51–59 (1995).
[CrossRef]

R. L. Vander Wal, K. J. Weiland, “Laser-induced incandescence: development and characterization towards a measurement of soot-volume fraction,” Appl. Phys. B 59, 445–451 (1994).
[CrossRef]

Appl. Phys. Lett. (3)

A. A. Puretzky, D. B. Geohegan, X. Fan, S. J. Pennycook, “In situ imaging and spectroscopy of single-wall carbon nanotube synthesis by laser vaporization,” Appl. Phys. Lett. 76, 182–184 (2000).
[CrossRef]

R. Kamalakaran, M. Terrones, T. Seeger, Ph. Koholer-Redlich, M. Ruhle, Y. A. Kim, T. Hayashi, M. Endo, “Synthesis of thick and crystalline nanotube arrays by spray pyrolysis,” Appl. Phys. Lett. 77, 3385–3388 (2000).
[CrossRef]

H. M. Cheng, F. Li, G. Su, H. Y. Pan, L. L. He, X. Sun, M. S. Dresselhaus, “Large-scale and low cost synthesis of single-walled carbon nanotubes by the catalytic pyrolysis of hydrocarbons,” Appl. Phys. Lett. 72, 3282–3284 (1998).
[CrossRef]

Carbon (4)

G. G. Tibbets, D. W. Gorkiewicz, R. L. Alig, “A new reactor for growing carbon fibers from liquid- and vapor-phase hydrocarbons,” Carbon 31, 809–814 (1993).
[CrossRef]

R. L. Vander Wal, M. Y. Choi, “Pulsed laser heating of soot: morphological changes,” Carbon 37, 231–239 (1999).
[CrossRef]

H. R. Leider, O. H. Krikorian, D. A. Young, “Thermodynamics properties of carbon up to the critical point,” Carbon 11, 555–563 (1973).
[CrossRef]

A. Bougrine, N. Dupont-Pavlovsky, A. Naji, J. Ghanbaja, J. F. Mareche, D. Billaud, “Influence of high temperature treatments on single-walled carbon nanotubes structure, morphology and surface properties,” Carbon 39, 685–695 (2001).
[CrossRef]

Chem. Phys. Lett. (6)

R. L. Vander Wal, L. J. Hall, “Flame synthesis of Fe catalyzed single walled carbon nanotubes and Ni catalyzed nanofibers: growth mechanisms and consequences,” Chem. Phys. Lett. 349, 178–184 (2001).
[CrossRef]

H. Dai, A. G. Rinzler, P. Nikolaev, A. Thess, D. T. Colbert, R. E. Smalley, “Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide,” Chem. Phys. Lett. 260, 471–476 (1996).
[CrossRef]

B. C. Satishkumar, A. Govindaraj, R. Sen, C. N. R. Rao, “Single-walled nanotubes by the pyrolysis of acetylene-organometallic mixtures,” Chem. Phys. Lett. 293, 47–52 (1998).
[CrossRef]

R. Sen, A. Govindaraj, C. N. R. Rao, “Carbon nanotubes by the metallocene route,” Chem. Phys. Lett. 267, 276–280 (1997).
[CrossRef]

R. Andrews, D. Jacques, A. M. Rao, F. Derbyshire, D. Qian, X. Fan, E. C. Dickey, J. Chen, “Continuous production of aligned carbon nanotubes: a step closer to commercial realization,” Chem. Phys. Lett. 303, 467–474 (1999).
[CrossRef]

P. Nikolaev, M. J. Bronikowski, R. K. Bradley, F. Rohmund, D. T. Colbert, K. A. Smith, R. E. Smalley, “Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide.” Chem. Phys. Lett. 313, 91–97 (1999).
[CrossRef]

Combust. Flame (8)

R. L. Vander Wal, T. M. Ticich, A. B. Stephens, “Can soot primary particle size be determined using laser-induced incandescence?” Combust. Flame 116, 291–296 (1999).
[CrossRef]

S. Schraml, S. Dankers, K. Bader, S. Will, A. Leipertz, “Soot temperature measurements and implications for time-resolved laser-induced incandescence (TIRE-LII),” Combust. Flame 120, 439–450 (2000).
[CrossRef]

R. L. Vander Wal, Z. Zhou, M. Y. Choi, “Laser-induced incandescence calibration via gravimetric sampling,” Combust. Flame 105, 462–470 (1996).
[CrossRef]

R. L. Vander Wal, M. Y. Choi, K.-O. Lee, “The effects of rapid heating of soot: implications when using laser-induced incandescence for soot diagnostics,” Combust. Flame 102, 200–204 (1995).
[CrossRef]

M. Y. Choi, K. A. Jensen, “Calibration and correction of laser-induced incandescence for soot volume fraction measurements,” Combust. Flame 112, 485–491 (1998).
[CrossRef]

C. R. Shaddix, K. C. Smyth, “Laser-induced incandescence measurements of soot production in steady and flickering methane, propane and ethylene diffusion flames,” Combust. Flame 107, 418–452 (1996).
[CrossRef]

B. Quay, T.-W. Lee, T. Ni, R. J. Santoro, “Spatially resolved measurements of soot volume fraction using laser induced incandescence,” Combust. Flame 97, 384–392 (1994).
[CrossRef]

C. R. Shaddix, J. E. Harrington, K. C. Smyth, “Quantitative measurements of enhanced soot production in a flickering methane/air diffusion flame,” Combust. Flame 99, 723–732 (1994).
[CrossRef]

J. Aerosol Sci. (2)

A. V. Filippov, M. W. Markus, P. Roth, “In-situ characterization of ultrafine particles by laser-induced incandescence: sizing and particle structure determination,” J. Aerosol Sci. 30, 71–87 (1999).
[CrossRef]

P. Roth, A. V. Filipov, “In situ ultrafine particle sized by a combination of pulsed laser heatup and particle thermal emission,” J. Aerosol Sci. 27, 95–104 (1996).
[CrossRef]

J. Appl. Phys. (1)

A. C. Eckbreth, “Effect of laser-modulated particulate incandescence on Raman scattering diagnostics,” J. Appl. Phys. 48, 4473–4479 (1977).
[CrossRef]

J. Heat Transfer (1)

G. J. Smallwood, D. R. Snelling, F. Liu, O. L. Gülder, “Clouds over soot evaporation: errors in modeling laser-induced incandescence of soot,” J. Heat Transfer 123, 814–818 (2000).
[CrossRef]

J. Inst. Energy (1)

D. J. Bryce, N. Ladommatos, Z. Xiao, H. Zhao, “Investigating the effect of oxygenated and aromatic compounds in fuel by comparing laser soot measurements in laminar diffusion flames with Diesel engine emissions.” J. Inst. Energy 72, 150–156 (1999).

J. Mater. Res. (1)

N. M. Rodriguez, “A review of catalytically grown carbon nanofibers,” J. Mater. Res. 8, 3233–3250 (1993).
[CrossRef]

Prog. Energy Combust. Sci. (1)

H. Zhao, N. Ladommatos, “Optical diagnostics for soot and temperature measurement in Diesel engines,” Prog. Energy Combust. Sci. 24, 221–255 (1998).
[CrossRef]

Other (31)

G. Wiltafsky, W. Stolz, J. Kohler, C. Espey, “The quantification of laser-induced incandescence (LII) for planar time-resolved measurements of the soot volume fraction in a combusting Diesel jet,” SAE tech. paper 961200 (Society of Automotive Engineers, Warrendale, Pa., 1996).

J. A. Pinson, D. L. Mitchell, R. J. Santoro, T. A. Litzinger, “Quantitative, planar soot measurements in a D.I. Diesel engine using laser-induced incandescence and light scattering,” SAE tech. paper 932650 (Society of Automotive Engineers, Warrendale, Pa., 1993).

N. P. Tait, D. A. Greenhalgh, “PLIF imaging of fuel fraction in practical devices and LII imaging of soot,” in Symposium: Laser Diagnostics for Industrial Processes (Deutsche Bunsengesellschaft für Physikalische Chemie, Heidelberg, 1993), pp. 1619–1625.

J. E. Dec, “Soot distribution in a D. I. Diesel engine using 2-D laser-induced incandescence, elastic scattering and flame luminosity,” SAE tech. paper 920115 (Society of Automotive Engineers, Warrendale, Pa., 1992).

J. E. Dec, A. O. Zur Loye, D. L. Siebers, “Soot distribution in a D. I. Diesel engine using 2-D laser-induced incandescence imaging,” SAE tech. paper 910224 (Society of Automotive Engineers, Warrendale, Pa., 1991).

C. J. Dasch, “New soot diagnostics in flames based on laser vaporization of soot,” in The Twentieth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1984), pp. 1231–1237.

D. R. Snelling, G. J. Smallwood, R. A. Sawchuk, W. S. Neill, D. Gareau, W. L. Chippior, F. Liu, O. L. Gülder, “Particulate matter measurements in a Diesel engine exhaust by laser-induced incandescence and the standard gravimetric procedure,” SAE paper 1999-01-3653 (Society of Automotive Engineers, Warrendale, Pa., 1999).

K. Inagaki, S. Takasu, K. Nakakita, “In-cylinder quantitative soot concentration measurement by laser-induced incandescence,” SAE tech. paper 199-01-0508 (Society of Automotive Engineers, Warrendale, Pa., 1999).

D. L. Hofeldt, “Real-time soot concentration measurement technique for engine exhaust streams,” SAE tech. paper 390079 (Society of Automotive Engineers, Warrendale, Pa., 1993).

J. D. Black, “Laser-induced incandescence measurements of particles in aeroengine exhausts,” in Environmental Sensing and Applications, M. Carleer, M. Hilton, T. Lamp, R. Reuter, G. M. Russwurm, K. Schaefer, K. Weber, K. Weitkamp, J.-P. Wolf, eds., Proc. SPIE3821, 209–215 (1999).
[CrossRef]

R. L. Vander Wal, “Using laser-induced incandescence to measure soot/smoke concentrations,” Contractor rep. CR-237-98 (NASA Glenn Research Center, Cleveland, Ohio, 1997).

A. V. Filippov, D. E. Rosner, M. Kumar, “When and how can LII be used to determine soot aggregate size distributions,” presented at the First Joint Meeting of the U.S. Sections of the Combustion Institute, Washington D.C., 14–17 March 1999 (Combustion Institute, Pittsburgh, Pa., 1999).

B. Mewes, J. M. Seitzman, “Analysis of laser-induced incandescence and novel soot measurement approaches,” paper AIAA-96-0538, presented at the Thirty-Fourth Aerospace Sciences Meeting, Reno, Nev., 15–18 January 1996 (American Institute of Aeronautics and Astronautics, Reston, Va., 1996).

D. R. Snelling, F. Liu, G. F. Smallwood, O. L. Gülder, “Evaluation of the nanoscale heat and mass transfer model of LII: prediction of the excitation intensity,” in Proceedings of the 34th National Heat Transfer Conference, (American Society of Mechanical Engineers, New York, 2000), paper NHTC2000–12132.

D. A. Greenhalgh, “Planar measurements of fuel vapour, liquid fuel, liquid droplet size and soot,” in Planar Optical Measurement Methods for Gas Turbine Components, NATO Lecture Series 217 (Cranfield University, Cranfield, Bedfordshire, UK, 1999), paper RTO-EN-6, pp. 7/1–7/18.

R. T. Wainner, J. M. Seitzman, “Soot diagnostics using laser-induced incandescence in flames and exhaust flows,” paper AIAA-99-0640, presented at the Thirty-Seventh Aerospace Sciences Meeting and Exhibit, Reno, Nev., 11–14 January 1999 (American Institute of Aeronautics and Astronautics, Reston, Va., 1999).

T. T. Kodas, M. Hampden-Smith, Aerosol Processing of Materials (Wiley-VCH, New York, 1999).

D. J. Bryce, “Development and application of planar laser techniques for isothermal flow and soot diagnostics,” Ph.D. dissertation (Cranfield University, Cranfield, Bedfordshire, UK, 1996).

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, 2nd ed. (Gordon & Breach, New York, 1996).

H. Kosaka, T. Nishigaki, T. Kamimoto, S. Harada, “A study on soot formation and oxidation in an unsteady spray flame via laser induced incandescence and scattering techniques,” SAE tech. paper 952451 (Society of Automotive Engineers, Warrendale, Pa., 1995).

N. P. Tait, D. A. Greenhalgh, “2-D soot field measurements by laser induced incandescence,” in Proceedings of the Optical Methods and Data Processing in Heat Transfer and Fluid Flow (Institution of Mechanical Engineering, London, 1992), pp. 185–194.

Y.-H. Won, T. Kamimoto, H. Kobayashi, H. Kosaka, “2-D soot visualization in unsteady spray flame by means of laser sheet scattering technique,” SAE paper 910223 (Society of Automotive Engineers, Warrendale, Pa., 1991).

K. T. Walsh, J. Fielding, M. D. Smooke, M. B. Long, “Experimental and computation study of temperature, species and soot in buoyant and non-buoyant coflow laminar diffusion flames,” in The Twenty-Eighth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 2000), pp. 1973–1984.

M. R. DeCroix, W. L. Roberts, “Extinction measurements for an unsteady propane-air counterflow diffusion flame,” in The Twenty-Sixth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1996), poster 038.

R. T. Wainner, J. M. Seitzman, “Soot diagnostics using laser-induced incandescence in flames and exhaust flows,” in AIAA-99-0640, presented at the Thirty-Fourth Aerospace Sciences Meeting and Exhibit, Reno, Nev., 11–14 January 1999 (American Institute of Aeronautics and Astronautics, Reston, Va., 1999).

H. Geitlinger, Th. Streibel, R. Suntz, H. Bockhorn, “Two-dimensional imaging of soot volume fractions, particle number densities, and particle radii in laminar and turbulent diffusion flames,” in The Twenty-Seventh (International) Symposium on Combustion (Combustion Institute, Pittsburgh, Pa., 1998), pp. 1613–1622.
[CrossRef]

K. R. McManus, J. H. Frank, M. G. Allen, W. T. Rawlins, “Characterization of laser-heated soot particles using optical pyrometry,” paper AIAA-98-0159, presented at the Thirty-Sixth Aerospace Sciences Meeting and Exhibit, Reno, Nev., 12–15 January 1998 (American Institute of Aeronautics and Astronautics, Reston, Va., 1998).

J. Appel, B. Jungfleisch, M. Marquardt, R. Suntz, H. Bockhorn, “Assessment of soot volume fraction from laser-induced incandescence by comparision with extinction measurements in laminar, premixed, flat flames,” in The Twenty-Seventh Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1996), pp. 2387–2395.
[CrossRef]

C. S. McEnally, A. M. Schaffer, M. B. Long, L. D. Pfefferle, M. D. Smooke, M. B. Colket, R. J. Hall, “Computational and experimental study of soot formation in a coflow, laminar ethylene diffusion flame,” in The Twenty-Seventh Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 1497–1505.

L. J. Radziemski, D. A. Cremers, Laser Induced Plasmas and Applications (Marcel Dekker, New York, 1989).

Statement based on analytical analysis of the radiative emission decay rate based on an energy balance formalism by P. D. Patel.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental schematic. PMT, photomultiplier tube.

Fig. 2
Fig. 2

HRTEM images of (a)–(c) Fe-catalyzed SWNTs and (d)–(f) Ni-catalyzed nanofibers collected from the pyrolysis flame. The images show the material as sampled directly from the flame, without purification or processing.

Fig. 3
Fig. 3

Spectrally resolved emission signals collected at the indicated times after the excitation laser pulse for (a) the Fe SWNT and (b) the Ni nanofiber pyrolysis flame systems.

Fig. 4
Fig. 4

Temporally resolved emission signals collected at the nominal indicated wavelengths for (a) the Fe SWNT and (b) the Ni nanofiber pyrolysis flame systems.

Fig. 5
Fig. 5

Fluence dependencies for (a) the Fe SWNT and (b) the Ni nanofiber pyrolysis flame systems. For each curve there is a prompt detection gate of 50-ns duration, coincident with the end of the excitation laser pulse.

Fig. 6
Fig. 6

Temporally resolved emission signals produced by pulses 1 and 2 in two-pulse laser measurements for (a) and (b) the Fe SWNT and (c) and (d) the Ni nanofiber pyrolysis flame systems. See text for details.

Fig. 7
Fig. 7

Spectrally resolved emission signals collected at the indicated times after the excitation laser pulse in the two-pulse laser measurements for (a) and (b) the Fe SWNT and (c) and (d) the Ni nanofiber pyrolysis flame systems. See text for details.

Metrics