Abstract

A coherence theory describing the formation of a hologram by an interesting new technique is presented to improve the theoretical treatment given by Schilling and Templeton [Appl. Opt. 40, 5474 (2001)]. Properties of the hologram pattern are discussed, and some comments are made on its reconstruction.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. W. Schilling, G. C. Templeton, “Three-dimensional remote sensing by optical scanning holography,” Appl. Opt. 40, 5474–5481 (2001).
    [CrossRef]
  2. T.-C. Poon, B. W. Schilling, M. H. Wu, K. Shinoda, Y. Suzuki, “Real-time two-dimensional holographic imaging by using an electron-beam-addresses spatial light modulator,” Opt. Lett. 18, 63–65 (1993).
    [CrossRef] [PubMed]
  3. T.-C. Poon, A. Korpel, “Optical transfer function of an acousto-optic heterodyne image processor,” Opt. Lett. 4, 317–319 (1979).
    [CrossRef] [PubMed]
  4. T.-C. Poon, “Scanning holography and two-dimensional imaging processing by acousto-optic two-pupil synthesis,” J. Opt. Soc. Am. A 2, 521–527 (1985).
    [CrossRef]
  5. W. H. Carter, “Coherence theory,” in The Optical Society of America Handbook of Optics, 2nd ed. M. Bass, ed. (McGraw-Hill, New York, 1995), Vol. 1.
  6. M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1980).
  7. J. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968).
  8. W. H. Carter, “Three different kinds of fraunhofer approximations. I. Propagation of the field amplitude,” Radio Sci. 23, 1085–1093 (1988).
    [CrossRef]
  9. G. Indebetouw, P. Klysubun, T. Kim, T.-C. Poon, “Imaging properties of scanning holographic microscopy,” J. Opt. Soc. Am. A 17, 380–390 (2000).
    [CrossRef]
  10. V. C. Rideout, Active Circuits (Prentice-Hall, New York, 1954).
  11. T.-C. Poon, T. Kim, G. Indebetouw, B. W. Schilling, M. H. Wu, K. Shinoda, Y. Suzuki, “Twin-image elimination experiments for three-dimensional images in optical scanning holography,” Opt. Lett. 25, 215–217 (2000).
    [CrossRef]
  12. T.-C. Poon, B. D. Duncan, M. H. Wu, K. Shinoda, Y. Suzuki, “Real-time optical holography using a spatial light modulator,” Jpn. J. Appl. Phys. 29, 1840–1842 (1990).
    [CrossRef]

2001 (1)

2000 (2)

1993 (1)

1990 (1)

T.-C. Poon, B. D. Duncan, M. H. Wu, K. Shinoda, Y. Suzuki, “Real-time optical holography using a spatial light modulator,” Jpn. J. Appl. Phys. 29, 1840–1842 (1990).
[CrossRef]

1988 (1)

W. H. Carter, “Three different kinds of fraunhofer approximations. I. Propagation of the field amplitude,” Radio Sci. 23, 1085–1093 (1988).
[CrossRef]

1985 (1)

1979 (1)

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1980).

Carter, W. H.

W. H. Carter, “Three different kinds of fraunhofer approximations. I. Propagation of the field amplitude,” Radio Sci. 23, 1085–1093 (1988).
[CrossRef]

W. H. Carter, “Coherence theory,” in The Optical Society of America Handbook of Optics, 2nd ed. M. Bass, ed. (McGraw-Hill, New York, 1995), Vol. 1.

Duncan, B. D.

T.-C. Poon, B. D. Duncan, M. H. Wu, K. Shinoda, Y. Suzuki, “Real-time optical holography using a spatial light modulator,” Jpn. J. Appl. Phys. 29, 1840–1842 (1990).
[CrossRef]

Goodman, J.

J. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968).

Indebetouw, G.

Kim, T.

Klysubun, P.

Korpel, A.

Poon, T.-C.

Rideout, V. C.

V. C. Rideout, Active Circuits (Prentice-Hall, New York, 1954).

Schilling, B. W.

Shinoda, K.

Suzuki, Y.

Templeton, G. C.

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1980).

Wu, M. H.

Appl. Opt. (1)

J. Opt. Soc. Am. A (2)

Jpn. J. Appl. Phys. (1)

T.-C. Poon, B. D. Duncan, M. H. Wu, K. Shinoda, Y. Suzuki, “Real-time optical holography using a spatial light modulator,” Jpn. J. Appl. Phys. 29, 1840–1842 (1990).
[CrossRef]

Opt. Lett. (3)

Radio Sci. (1)

W. H. Carter, “Three different kinds of fraunhofer approximations. I. Propagation of the field amplitude,” Radio Sci. 23, 1085–1093 (1988).
[CrossRef]

Other (4)

V. C. Rideout, Active Circuits (Prentice-Hall, New York, 1954).

W. H. Carter, “Coherence theory,” in The Optical Society of America Handbook of Optics, 2nd ed. M. Bass, ed. (McGraw-Hill, New York, 1995), Vol. 1.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1980).

J. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

Illustration of the coordinate system.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

Ux, x0=-ik2π-- U0x, x0expik2dx-x2+y-y2d2x expik|x||x|,
U0x, xo=Rxexpik2f1x0-x2+y0-y2+expik2f2x0-x2+y0-y2-iΔωt
Ux, xo=-ik2π-- Rx×expik2dx-x2+y-y2×expik2f1xo-x2+yo-y2+expik2f2xo-x2+yo-y2-iΔωtd2x
Ixo=xA Ux, xo2d2x =Aλ2----d2x1d2x2Rx1×R*x2μx1, x2×expiπλf1xo-x12-xo-x22+expiπλxo-x12f1-xo-x22f2+iΔωt+expiπλxo-x12f2-xo-x22f1-iΔωt+expiπλf2xo-x12-xo-x22+cc,
xAexpik2dx-x12-x-x22d2x=Aμx1, x2.
Rx=Rδ2x-x,
Ixo=2Aλ2 |R|21+cosπλ1f1-1f2xo-x2+yo-y2+Δωt,
1f=1f1+1-f2,
Rxo=Rn=1Nexpiϕnδ2xo-xn,
Ixo=2R2Aλ2N+n=1Ncosπλ1f1-1f2xo-xn2+yo-yn2+Δωt+R22λ2n=1m=1nmNexpiϕn-ϕmμxn, xm×expiπλxo-xn2f1-xo-xm2f1+expiπλxo-xn2f1-xo-xm2f2+Δωt+expiπλxo-xn2f2-xo-xm2f1-Δωt+expiπλxo-xn2f2-xo-xm2f2+cc,
Ixo=2AR2λ2n=1Ncosπλ1f1-1f2×xo-xn2+yo-yn2+2AR2λ2n=1m=1nmN μxn, xm×cosπλxo-xn2f1-xo-xm2f2+ϕn-ϕm,

Metrics