Abstract

A new regime for silica glass machining for micro-optical fabrication applications, which uses pulsed CO2 laser radiation in the 2.5–100-µs pulse width region that has been generated by an acousto-optic modulator, is investigated. A filamentary melt ejection process that generates fibers and significant melt displacement limits machining quality below 30-µs pulse width. Ablation and melt ejection thresholds are quantified relative to pulse width, and the region from 30 to 50 µs is identified for low-threshold, smooth machining without melt displacement and ejection effects.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Jacquoire, E. W. Kreutz, R. Proprawe, “Microstructuring of glass with excimer laser radiation at different processing gas atmospheres for microreaction technology,” in High Power Lasers in Manufacturing, X. Chen, T. Fujioka, A. Matsunawa, eds., Proc. SPIE3888, 272–279 (2000).
    [CrossRef]
  2. P. R. Herman, R. S. Marjoribanks, A. Oettl, K. Chen, I. Konovalev, S. Ness, “Laser shaping of photonic materials: deep-ultraviolet and ultrafast lasers,” Appl. Surf. Sci. 154–155, 577–586 (2000).
    [CrossRef]
  3. H. Exner, B. Keiper, P. Meja, “Microstructuring of materials by pulsed laser focusing and projection technique,” in Laser Applications in Microelectronic and Optoelectronic Manufacturing IV, J. J. Dubowski, H. Helvajian, E. W. Kreutz, K. Sugioka, eds., Proc. SPIE3618, 340–347 (2000).
    [CrossRef]
  4. H. M. Presby, A. F. Benner, C. A. Edwards, “Laser micromachining of efficient fiber microlenses,” Appl. Opt. 29, 2692–2695 (1990).
    [CrossRef] [PubMed]
  5. L. Forrest, M. A. O’Key, M. R. Osborne, R. W. Musk, P. Spicer, “Laser machining of fibre ends,” in Proceedings of IEEE Conference on Electrical Devices for Microwave and Optoelectronic Applications Workshop—EDMO, Leeds University, UK, 25–26 Nov., 1996 (Institute of Electrical and Electronics Engineers, New York, 1996), pp. 68–69.
  6. A. Vaidya, J. A. Harrington, “Sculpted optical silica fiber tips for use in Nd:YAG contact tip laser surgery. 1. Fabrication techniques,” Opt. Eng. 31, 1404–1409 (1992).
    [CrossRef]
  7. K. Imen, C. H. Lee, Y. Y. Yang, S. D. Allen, A. Ghosh, “Laser fabricated fiber optical taps for interconnects and optical data processing devices,” in Components for Laser Applications V, P. M. Kopera, ed., Proc. SPIE1365, 60–64 (1991).
    [CrossRef]
  8. H. J. Baker, G. A. J. Markillie, P. Field, Q. Cao, C. Janke, D. R. Hall, “Precision laser processing of optical microstructures with slab waveguide CO2 lasers,” in High Power Lasers in Manufacturing, X. Chen, T. Fujioka, A. Matsunawa, eds., Proc. SPIE3888, 625–634 (2000).
    [CrossRef]
  9. H. L. Schick, “A thermodynamic analysis of the high-temperature vaporization properties of silica,” Chem. Rev. 60, 331–362 (1960).
    [CrossRef]
  10. G. E. Quartz, “Viscosity chart,” http://www.geqonline.com/en/fig14.htm .
  11. M. von Allmen, A. Blatter, Laser-Beam Interactions with Materials, 2nd ed. (Springer-Verlag, Berlin, 1995), Chap. 3, pp. 41–67.
    [CrossRef]
  12. Y. S. Touloukian, R. W. Powell, C. Y. Ho, P. G. Klemens, “Thermal conductivity of nonmetallic solids,” in Thermophysical Properties of Matter, Y. S. Touloukian, C. Y. Ho, eds. (IFI/Plenum, New York, 1970), Vol. 2, pp. 183–193.
  13. Y. S. Touloukian, E. H. Buyco, “Specific heat of nonmetallic solids,” in Thermophysical Properties of Matter, Y. S. Touloukian, C. Y. Ho, eds. (IFI/Plenum, New York, 1970), Vol. 5, pp. 202–206.
  14. A. D. MacLachlan, F. P. Meyer, “Temperature dependence of the extinction coefficient of fused silica for CO2 laser wavelengths,” Appl. Opt. 26, 1728–1731 (1987).
    [CrossRef]
  15. H. R. Philipp, “Silicon dioxide (SiO2) glass,” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, London, 1985), pp. 749–763.
    [CrossRef]
  16. M. von Allmen, A. Blatter, Laser-Beam Interactions with Materials, 2nd ed. (Springer-Verlag, Berlin, 1995), Chap. 5, pp. 115–165.
    [CrossRef]
  17. M. von Allmen, “Laser drilling velocity in metals,” J. Appl. Phys. 47, 5460–5463 (1976).
    [CrossRef]
  18. F. W. Dabby, U. C. Paek, “High-intensity laser-induced vaporization and explosion of solid material,” IEEE J. Quantum Electron. 8, 106–111 (1972).
    [CrossRef]
  19. F. P. Gagliano, U. C. Paek, “Observation of laser-induced explosion of solid materials and correlation with theory,” IEEE J. Quantum Electron. 13, 274–279 (1974).
  20. F. Villarreal, P. R. Murray, Q. Cao, P. A. Field, G. A. J. Markillie, H. J. Baker, D. R. Hall, “Enhancement of the micromachining capabilities of CO2 planar waveguide lasers,” in Proceedings of the Laser Microfabrication Conference ICALEO ’99, P. Christensen, P. P. Herman, R. S. Patel, eds. (Laser Institute of America, Orlando, Fla., 1999), Vol. 88, pp. 20–28.

2000 (1)

P. R. Herman, R. S. Marjoribanks, A. Oettl, K. Chen, I. Konovalev, S. Ness, “Laser shaping of photonic materials: deep-ultraviolet and ultrafast lasers,” Appl. Surf. Sci. 154–155, 577–586 (2000).
[CrossRef]

1992 (1)

A. Vaidya, J. A. Harrington, “Sculpted optical silica fiber tips for use in Nd:YAG contact tip laser surgery. 1. Fabrication techniques,” Opt. Eng. 31, 1404–1409 (1992).
[CrossRef]

1990 (1)

1987 (1)

1976 (1)

M. von Allmen, “Laser drilling velocity in metals,” J. Appl. Phys. 47, 5460–5463 (1976).
[CrossRef]

1974 (1)

F. P. Gagliano, U. C. Paek, “Observation of laser-induced explosion of solid materials and correlation with theory,” IEEE J. Quantum Electron. 13, 274–279 (1974).

1972 (1)

F. W. Dabby, U. C. Paek, “High-intensity laser-induced vaporization and explosion of solid material,” IEEE J. Quantum Electron. 8, 106–111 (1972).
[CrossRef]

1960 (1)

H. L. Schick, “A thermodynamic analysis of the high-temperature vaporization properties of silica,” Chem. Rev. 60, 331–362 (1960).
[CrossRef]

Allen, S. D.

K. Imen, C. H. Lee, Y. Y. Yang, S. D. Allen, A. Ghosh, “Laser fabricated fiber optical taps for interconnects and optical data processing devices,” in Components for Laser Applications V, P. M. Kopera, ed., Proc. SPIE1365, 60–64 (1991).
[CrossRef]

Baker, H. J.

H. J. Baker, G. A. J. Markillie, P. Field, Q. Cao, C. Janke, D. R. Hall, “Precision laser processing of optical microstructures with slab waveguide CO2 lasers,” in High Power Lasers in Manufacturing, X. Chen, T. Fujioka, A. Matsunawa, eds., Proc. SPIE3888, 625–634 (2000).
[CrossRef]

F. Villarreal, P. R. Murray, Q. Cao, P. A. Field, G. A. J. Markillie, H. J. Baker, D. R. Hall, “Enhancement of the micromachining capabilities of CO2 planar waveguide lasers,” in Proceedings of the Laser Microfabrication Conference ICALEO ’99, P. Christensen, P. P. Herman, R. S. Patel, eds. (Laser Institute of America, Orlando, Fla., 1999), Vol. 88, pp. 20–28.

Benner, A. F.

Blatter, A.

M. von Allmen, A. Blatter, Laser-Beam Interactions with Materials, 2nd ed. (Springer-Verlag, Berlin, 1995), Chap. 5, pp. 115–165.
[CrossRef]

M. von Allmen, A. Blatter, Laser-Beam Interactions with Materials, 2nd ed. (Springer-Verlag, Berlin, 1995), Chap. 3, pp. 41–67.
[CrossRef]

Buyco, E. H.

Y. S. Touloukian, E. H. Buyco, “Specific heat of nonmetallic solids,” in Thermophysical Properties of Matter, Y. S. Touloukian, C. Y. Ho, eds. (IFI/Plenum, New York, 1970), Vol. 5, pp. 202–206.

Cao, Q.

H. J. Baker, G. A. J. Markillie, P. Field, Q. Cao, C. Janke, D. R. Hall, “Precision laser processing of optical microstructures with slab waveguide CO2 lasers,” in High Power Lasers in Manufacturing, X. Chen, T. Fujioka, A. Matsunawa, eds., Proc. SPIE3888, 625–634 (2000).
[CrossRef]

F. Villarreal, P. R. Murray, Q. Cao, P. A. Field, G. A. J. Markillie, H. J. Baker, D. R. Hall, “Enhancement of the micromachining capabilities of CO2 planar waveguide lasers,” in Proceedings of the Laser Microfabrication Conference ICALEO ’99, P. Christensen, P. P. Herman, R. S. Patel, eds. (Laser Institute of America, Orlando, Fla., 1999), Vol. 88, pp. 20–28.

Chen, K.

P. R. Herman, R. S. Marjoribanks, A. Oettl, K. Chen, I. Konovalev, S. Ness, “Laser shaping of photonic materials: deep-ultraviolet and ultrafast lasers,” Appl. Surf. Sci. 154–155, 577–586 (2000).
[CrossRef]

Dabby, F. W.

F. W. Dabby, U. C. Paek, “High-intensity laser-induced vaporization and explosion of solid material,” IEEE J. Quantum Electron. 8, 106–111 (1972).
[CrossRef]

Edwards, C. A.

Exner, H.

H. Exner, B. Keiper, P. Meja, “Microstructuring of materials by pulsed laser focusing and projection technique,” in Laser Applications in Microelectronic and Optoelectronic Manufacturing IV, J. J. Dubowski, H. Helvajian, E. W. Kreutz, K. Sugioka, eds., Proc. SPIE3618, 340–347 (2000).
[CrossRef]

Field, P.

H. J. Baker, G. A. J. Markillie, P. Field, Q. Cao, C. Janke, D. R. Hall, “Precision laser processing of optical microstructures with slab waveguide CO2 lasers,” in High Power Lasers in Manufacturing, X. Chen, T. Fujioka, A. Matsunawa, eds., Proc. SPIE3888, 625–634 (2000).
[CrossRef]

Field, P. A.

F. Villarreal, P. R. Murray, Q. Cao, P. A. Field, G. A. J. Markillie, H. J. Baker, D. R. Hall, “Enhancement of the micromachining capabilities of CO2 planar waveguide lasers,” in Proceedings of the Laser Microfabrication Conference ICALEO ’99, P. Christensen, P. P. Herman, R. S. Patel, eds. (Laser Institute of America, Orlando, Fla., 1999), Vol. 88, pp. 20–28.

Forrest, L.

L. Forrest, M. A. O’Key, M. R. Osborne, R. W. Musk, P. Spicer, “Laser machining of fibre ends,” in Proceedings of IEEE Conference on Electrical Devices for Microwave and Optoelectronic Applications Workshop—EDMO, Leeds University, UK, 25–26 Nov., 1996 (Institute of Electrical and Electronics Engineers, New York, 1996), pp. 68–69.

Gagliano, F. P.

F. P. Gagliano, U. C. Paek, “Observation of laser-induced explosion of solid materials and correlation with theory,” IEEE J. Quantum Electron. 13, 274–279 (1974).

Ghosh, A.

K. Imen, C. H. Lee, Y. Y. Yang, S. D. Allen, A. Ghosh, “Laser fabricated fiber optical taps for interconnects and optical data processing devices,” in Components for Laser Applications V, P. M. Kopera, ed., Proc. SPIE1365, 60–64 (1991).
[CrossRef]

Hall, D. R.

H. J. Baker, G. A. J. Markillie, P. Field, Q. Cao, C. Janke, D. R. Hall, “Precision laser processing of optical microstructures with slab waveguide CO2 lasers,” in High Power Lasers in Manufacturing, X. Chen, T. Fujioka, A. Matsunawa, eds., Proc. SPIE3888, 625–634 (2000).
[CrossRef]

F. Villarreal, P. R. Murray, Q. Cao, P. A. Field, G. A. J. Markillie, H. J. Baker, D. R. Hall, “Enhancement of the micromachining capabilities of CO2 planar waveguide lasers,” in Proceedings of the Laser Microfabrication Conference ICALEO ’99, P. Christensen, P. P. Herman, R. S. Patel, eds. (Laser Institute of America, Orlando, Fla., 1999), Vol. 88, pp. 20–28.

Harrington, J. A.

A. Vaidya, J. A. Harrington, “Sculpted optical silica fiber tips for use in Nd:YAG contact tip laser surgery. 1. Fabrication techniques,” Opt. Eng. 31, 1404–1409 (1992).
[CrossRef]

Herman, P. R.

P. R. Herman, R. S. Marjoribanks, A. Oettl, K. Chen, I. Konovalev, S. Ness, “Laser shaping of photonic materials: deep-ultraviolet and ultrafast lasers,” Appl. Surf. Sci. 154–155, 577–586 (2000).
[CrossRef]

Ho, C. Y.

Y. S. Touloukian, R. W. Powell, C. Y. Ho, P. G. Klemens, “Thermal conductivity of nonmetallic solids,” in Thermophysical Properties of Matter, Y. S. Touloukian, C. Y. Ho, eds. (IFI/Plenum, New York, 1970), Vol. 2, pp. 183–193.

Imen, K.

K. Imen, C. H. Lee, Y. Y. Yang, S. D. Allen, A. Ghosh, “Laser fabricated fiber optical taps for interconnects and optical data processing devices,” in Components for Laser Applications V, P. M. Kopera, ed., Proc. SPIE1365, 60–64 (1991).
[CrossRef]

Jacquoire, M.

M. Jacquoire, E. W. Kreutz, R. Proprawe, “Microstructuring of glass with excimer laser radiation at different processing gas atmospheres for microreaction technology,” in High Power Lasers in Manufacturing, X. Chen, T. Fujioka, A. Matsunawa, eds., Proc. SPIE3888, 272–279 (2000).
[CrossRef]

Janke, C.

H. J. Baker, G. A. J. Markillie, P. Field, Q. Cao, C. Janke, D. R. Hall, “Precision laser processing of optical microstructures with slab waveguide CO2 lasers,” in High Power Lasers in Manufacturing, X. Chen, T. Fujioka, A. Matsunawa, eds., Proc. SPIE3888, 625–634 (2000).
[CrossRef]

Keiper, B.

H. Exner, B. Keiper, P. Meja, “Microstructuring of materials by pulsed laser focusing and projection technique,” in Laser Applications in Microelectronic and Optoelectronic Manufacturing IV, J. J. Dubowski, H. Helvajian, E. W. Kreutz, K. Sugioka, eds., Proc. SPIE3618, 340–347 (2000).
[CrossRef]

Klemens, P. G.

Y. S. Touloukian, R. W. Powell, C. Y. Ho, P. G. Klemens, “Thermal conductivity of nonmetallic solids,” in Thermophysical Properties of Matter, Y. S. Touloukian, C. Y. Ho, eds. (IFI/Plenum, New York, 1970), Vol. 2, pp. 183–193.

Konovalev, I.

P. R. Herman, R. S. Marjoribanks, A. Oettl, K. Chen, I. Konovalev, S. Ness, “Laser shaping of photonic materials: deep-ultraviolet and ultrafast lasers,” Appl. Surf. Sci. 154–155, 577–586 (2000).
[CrossRef]

Kreutz, E. W.

M. Jacquoire, E. W. Kreutz, R. Proprawe, “Microstructuring of glass with excimer laser radiation at different processing gas atmospheres for microreaction technology,” in High Power Lasers in Manufacturing, X. Chen, T. Fujioka, A. Matsunawa, eds., Proc. SPIE3888, 272–279 (2000).
[CrossRef]

Lee, C. H.

K. Imen, C. H. Lee, Y. Y. Yang, S. D. Allen, A. Ghosh, “Laser fabricated fiber optical taps for interconnects and optical data processing devices,” in Components for Laser Applications V, P. M. Kopera, ed., Proc. SPIE1365, 60–64 (1991).
[CrossRef]

MacLachlan, A. D.

Marjoribanks, R. S.

P. R. Herman, R. S. Marjoribanks, A. Oettl, K. Chen, I. Konovalev, S. Ness, “Laser shaping of photonic materials: deep-ultraviolet and ultrafast lasers,” Appl. Surf. Sci. 154–155, 577–586 (2000).
[CrossRef]

Markillie, G. A. J.

H. J. Baker, G. A. J. Markillie, P. Field, Q. Cao, C. Janke, D. R. Hall, “Precision laser processing of optical microstructures with slab waveguide CO2 lasers,” in High Power Lasers in Manufacturing, X. Chen, T. Fujioka, A. Matsunawa, eds., Proc. SPIE3888, 625–634 (2000).
[CrossRef]

F. Villarreal, P. R. Murray, Q. Cao, P. A. Field, G. A. J. Markillie, H. J. Baker, D. R. Hall, “Enhancement of the micromachining capabilities of CO2 planar waveguide lasers,” in Proceedings of the Laser Microfabrication Conference ICALEO ’99, P. Christensen, P. P. Herman, R. S. Patel, eds. (Laser Institute of America, Orlando, Fla., 1999), Vol. 88, pp. 20–28.

Meja, P.

H. Exner, B. Keiper, P. Meja, “Microstructuring of materials by pulsed laser focusing and projection technique,” in Laser Applications in Microelectronic and Optoelectronic Manufacturing IV, J. J. Dubowski, H. Helvajian, E. W. Kreutz, K. Sugioka, eds., Proc. SPIE3618, 340–347 (2000).
[CrossRef]

Meyer, F. P.

Murray, P. R.

F. Villarreal, P. R. Murray, Q. Cao, P. A. Field, G. A. J. Markillie, H. J. Baker, D. R. Hall, “Enhancement of the micromachining capabilities of CO2 planar waveguide lasers,” in Proceedings of the Laser Microfabrication Conference ICALEO ’99, P. Christensen, P. P. Herman, R. S. Patel, eds. (Laser Institute of America, Orlando, Fla., 1999), Vol. 88, pp. 20–28.

Musk, R. W.

L. Forrest, M. A. O’Key, M. R. Osborne, R. W. Musk, P. Spicer, “Laser machining of fibre ends,” in Proceedings of IEEE Conference on Electrical Devices for Microwave and Optoelectronic Applications Workshop—EDMO, Leeds University, UK, 25–26 Nov., 1996 (Institute of Electrical and Electronics Engineers, New York, 1996), pp. 68–69.

Ness, S.

P. R. Herman, R. S. Marjoribanks, A. Oettl, K. Chen, I. Konovalev, S. Ness, “Laser shaping of photonic materials: deep-ultraviolet and ultrafast lasers,” Appl. Surf. Sci. 154–155, 577–586 (2000).
[CrossRef]

O’Key, M. A.

L. Forrest, M. A. O’Key, M. R. Osborne, R. W. Musk, P. Spicer, “Laser machining of fibre ends,” in Proceedings of IEEE Conference on Electrical Devices for Microwave and Optoelectronic Applications Workshop—EDMO, Leeds University, UK, 25–26 Nov., 1996 (Institute of Electrical and Electronics Engineers, New York, 1996), pp. 68–69.

Oettl, A.

P. R. Herman, R. S. Marjoribanks, A. Oettl, K. Chen, I. Konovalev, S. Ness, “Laser shaping of photonic materials: deep-ultraviolet and ultrafast lasers,” Appl. Surf. Sci. 154–155, 577–586 (2000).
[CrossRef]

Osborne, M. R.

L. Forrest, M. A. O’Key, M. R. Osborne, R. W. Musk, P. Spicer, “Laser machining of fibre ends,” in Proceedings of IEEE Conference on Electrical Devices for Microwave and Optoelectronic Applications Workshop—EDMO, Leeds University, UK, 25–26 Nov., 1996 (Institute of Electrical and Electronics Engineers, New York, 1996), pp. 68–69.

Paek, U. C.

F. P. Gagliano, U. C. Paek, “Observation of laser-induced explosion of solid materials and correlation with theory,” IEEE J. Quantum Electron. 13, 274–279 (1974).

F. W. Dabby, U. C. Paek, “High-intensity laser-induced vaporization and explosion of solid material,” IEEE J. Quantum Electron. 8, 106–111 (1972).
[CrossRef]

Philipp, H. R.

H. R. Philipp, “Silicon dioxide (SiO2) glass,” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, London, 1985), pp. 749–763.
[CrossRef]

Powell, R. W.

Y. S. Touloukian, R. W. Powell, C. Y. Ho, P. G. Klemens, “Thermal conductivity of nonmetallic solids,” in Thermophysical Properties of Matter, Y. S. Touloukian, C. Y. Ho, eds. (IFI/Plenum, New York, 1970), Vol. 2, pp. 183–193.

Presby, H. M.

Proprawe, R.

M. Jacquoire, E. W. Kreutz, R. Proprawe, “Microstructuring of glass with excimer laser radiation at different processing gas atmospheres for microreaction technology,” in High Power Lasers in Manufacturing, X. Chen, T. Fujioka, A. Matsunawa, eds., Proc. SPIE3888, 272–279 (2000).
[CrossRef]

Schick, H. L.

H. L. Schick, “A thermodynamic analysis of the high-temperature vaporization properties of silica,” Chem. Rev. 60, 331–362 (1960).
[CrossRef]

Spicer, P.

L. Forrest, M. A. O’Key, M. R. Osborne, R. W. Musk, P. Spicer, “Laser machining of fibre ends,” in Proceedings of IEEE Conference on Electrical Devices for Microwave and Optoelectronic Applications Workshop—EDMO, Leeds University, UK, 25–26 Nov., 1996 (Institute of Electrical and Electronics Engineers, New York, 1996), pp. 68–69.

Touloukian, Y. S.

Y. S. Touloukian, R. W. Powell, C. Y. Ho, P. G. Klemens, “Thermal conductivity of nonmetallic solids,” in Thermophysical Properties of Matter, Y. S. Touloukian, C. Y. Ho, eds. (IFI/Plenum, New York, 1970), Vol. 2, pp. 183–193.

Y. S. Touloukian, E. H. Buyco, “Specific heat of nonmetallic solids,” in Thermophysical Properties of Matter, Y. S. Touloukian, C. Y. Ho, eds. (IFI/Plenum, New York, 1970), Vol. 5, pp. 202–206.

Vaidya, A.

A. Vaidya, J. A. Harrington, “Sculpted optical silica fiber tips for use in Nd:YAG contact tip laser surgery. 1. Fabrication techniques,” Opt. Eng. 31, 1404–1409 (1992).
[CrossRef]

Villarreal, F.

F. Villarreal, P. R. Murray, Q. Cao, P. A. Field, G. A. J. Markillie, H. J. Baker, D. R. Hall, “Enhancement of the micromachining capabilities of CO2 planar waveguide lasers,” in Proceedings of the Laser Microfabrication Conference ICALEO ’99, P. Christensen, P. P. Herman, R. S. Patel, eds. (Laser Institute of America, Orlando, Fla., 1999), Vol. 88, pp. 20–28.

von Allmen, M.

M. von Allmen, “Laser drilling velocity in metals,” J. Appl. Phys. 47, 5460–5463 (1976).
[CrossRef]

M. von Allmen, A. Blatter, Laser-Beam Interactions with Materials, 2nd ed. (Springer-Verlag, Berlin, 1995), Chap. 3, pp. 41–67.
[CrossRef]

M. von Allmen, A. Blatter, Laser-Beam Interactions with Materials, 2nd ed. (Springer-Verlag, Berlin, 1995), Chap. 5, pp. 115–165.
[CrossRef]

Yang, Y. Y.

K. Imen, C. H. Lee, Y. Y. Yang, S. D. Allen, A. Ghosh, “Laser fabricated fiber optical taps for interconnects and optical data processing devices,” in Components for Laser Applications V, P. M. Kopera, ed., Proc. SPIE1365, 60–64 (1991).
[CrossRef]

Appl. Opt. (2)

Appl. Surf. Sci. (1)

P. R. Herman, R. S. Marjoribanks, A. Oettl, K. Chen, I. Konovalev, S. Ness, “Laser shaping of photonic materials: deep-ultraviolet and ultrafast lasers,” Appl. Surf. Sci. 154–155, 577–586 (2000).
[CrossRef]

Chem. Rev. (1)

H. L. Schick, “A thermodynamic analysis of the high-temperature vaporization properties of silica,” Chem. Rev. 60, 331–362 (1960).
[CrossRef]

IEEE J. Quantum Electron. (2)

F. W. Dabby, U. C. Paek, “High-intensity laser-induced vaporization and explosion of solid material,” IEEE J. Quantum Electron. 8, 106–111 (1972).
[CrossRef]

F. P. Gagliano, U. C. Paek, “Observation of laser-induced explosion of solid materials and correlation with theory,” IEEE J. Quantum Electron. 13, 274–279 (1974).

J. Appl. Phys. (1)

M. von Allmen, “Laser drilling velocity in metals,” J. Appl. Phys. 47, 5460–5463 (1976).
[CrossRef]

Opt. Eng. (1)

A. Vaidya, J. A. Harrington, “Sculpted optical silica fiber tips for use in Nd:YAG contact tip laser surgery. 1. Fabrication techniques,” Opt. Eng. 31, 1404–1409 (1992).
[CrossRef]

Other (12)

K. Imen, C. H. Lee, Y. Y. Yang, S. D. Allen, A. Ghosh, “Laser fabricated fiber optical taps for interconnects and optical data processing devices,” in Components for Laser Applications V, P. M. Kopera, ed., Proc. SPIE1365, 60–64 (1991).
[CrossRef]

H. J. Baker, G. A. J. Markillie, P. Field, Q. Cao, C. Janke, D. R. Hall, “Precision laser processing of optical microstructures with slab waveguide CO2 lasers,” in High Power Lasers in Manufacturing, X. Chen, T. Fujioka, A. Matsunawa, eds., Proc. SPIE3888, 625–634 (2000).
[CrossRef]

H. R. Philipp, “Silicon dioxide (SiO2) glass,” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, London, 1985), pp. 749–763.
[CrossRef]

M. von Allmen, A. Blatter, Laser-Beam Interactions with Materials, 2nd ed. (Springer-Verlag, Berlin, 1995), Chap. 5, pp. 115–165.
[CrossRef]

M. Jacquoire, E. W. Kreutz, R. Proprawe, “Microstructuring of glass with excimer laser radiation at different processing gas atmospheres for microreaction technology,” in High Power Lasers in Manufacturing, X. Chen, T. Fujioka, A. Matsunawa, eds., Proc. SPIE3888, 272–279 (2000).
[CrossRef]

F. Villarreal, P. R. Murray, Q. Cao, P. A. Field, G. A. J. Markillie, H. J. Baker, D. R. Hall, “Enhancement of the micromachining capabilities of CO2 planar waveguide lasers,” in Proceedings of the Laser Microfabrication Conference ICALEO ’99, P. Christensen, P. P. Herman, R. S. Patel, eds. (Laser Institute of America, Orlando, Fla., 1999), Vol. 88, pp. 20–28.

G. E. Quartz, “Viscosity chart,” http://www.geqonline.com/en/fig14.htm .

M. von Allmen, A. Blatter, Laser-Beam Interactions with Materials, 2nd ed. (Springer-Verlag, Berlin, 1995), Chap. 3, pp. 41–67.
[CrossRef]

Y. S. Touloukian, R. W. Powell, C. Y. Ho, P. G. Klemens, “Thermal conductivity of nonmetallic solids,” in Thermophysical Properties of Matter, Y. S. Touloukian, C. Y. Ho, eds. (IFI/Plenum, New York, 1970), Vol. 2, pp. 183–193.

Y. S. Touloukian, E. H. Buyco, “Specific heat of nonmetallic solids,” in Thermophysical Properties of Matter, Y. S. Touloukian, C. Y. Ho, eds. (IFI/Plenum, New York, 1970), Vol. 5, pp. 202–206.

H. Exner, B. Keiper, P. Meja, “Microstructuring of materials by pulsed laser focusing and projection technique,” in Laser Applications in Microelectronic and Optoelectronic Manufacturing IV, J. J. Dubowski, H. Helvajian, E. W. Kreutz, K. Sugioka, eds., Proc. SPIE3618, 340–347 (2000).
[CrossRef]

L. Forrest, M. A. O’Key, M. R. Osborne, R. W. Musk, P. Spicer, “Laser machining of fibre ends,” in Proceedings of IEEE Conference on Electrical Devices for Microwave and Optoelectronic Applications Workshop—EDMO, Leeds University, UK, 25–26 Nov., 1996 (Institute of Electrical and Electronics Engineers, New York, 1996), pp. 68–69.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Variable-pulse-width CO2 laser machining system.

Fig. 2
Fig. 2

Viscosity estimates and vapor pressure for high-temperature silica.

Fig. 3
Fig. 3

Side and top views of laser machined craters for 20-µs rectangular pulse width and various amounts of axial fluence.

Fig. 4
Fig. 4

Side views of laser machined craters for 5- and 100-µs pulse widths and various amounts of axial fluence.

Fig. 5
Fig. 5

Laser machined crater depth versus axial fluence for 5-, 20-, and 100-µs rectangular pulse widths. Dashed curve, previous data8 for a triangular pulse shape directly generated by the slab laser.

Fig. 6
Fig. 6

Threshold irradiance for ablation and melt ejection versus pulse width for laser spot radii of 27 and 58 µm.

Fig. 7
Fig. 7

Plane surfaces machined by a raster scan of craters with w = 27 µm and 25-J cm-2 axial fluence on a 10 µm × 10 µm grid for 10- and 30-µs pulse widths.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Ith=2KT01-R02κtexpα2β24erfcαβ2αβ1+2β2w2-1dβ-1.

Metrics