Abstract

We present the results of a cw diode-pumped Nd:YVO4 laser oscillator based on a self-starting adaptive gain-grating resonator. Adaptive laser operation has been demonstrated with 12-W output for 37 W of diode pumping, producing a TEM00 mode that compensates for thermal aberrations. The issue of the finite aperture of the amplifier is discussed, and a design that incorporates an intracavity lens is used to improve the collection efficiency with severe thermal lensing at high pump powers. The powers of the beams involved in the resonator are compared with theory and are found to be in good agreement. Spectral and temporal behavior of the adaptive laser is investigated, and very interesting behavior is shown, including self-induced temporal modulation dynamics and a switching between a narrowband and a broad bandwidth of operation.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Koechner, Solid-State Laser Engineering, 4th ed. (Springer-Verlag, Berlin, 1996).
    [CrossRef]
  2. Y. F. Chen, Y. P. Lan, S. C. Wang, “High-power diode-end-pumped Nd:YVO4 laser: thermally induced fracture versus pump-wavelength sensitivity,” Appl. Phys. B 71, 827–830 (2000).
    [CrossRef]
  3. R. A. Fields, M. Birnbaum, C. L. Fincher, “Highly efficient Nd:YVO4 diode-laser end-pumped laser,” Appl. Phys. Lett. 51, 1885–1886 (1987).
    [CrossRef]
  4. J. Zhang, M. Quade, K. M. Du, Y. Liao, S. Falter, M. Baumann, P. Loosen, R. Poprawe, “Efficient TEM00 operation of Nd:YVO4 laser end pumped by fibre-coupled diode laser,” Electron Lett 33, 775–777 (1997).
    [CrossRef]
  5. P. Zeller, P. Peuser, “Efficient, multiwatt, continuous-wave laser operation on the 4F3/2–4I9/2 transitions of Nd:YVO4 and ND:YAG,” Opt. Lett. 25, 34–36 (2000).
    [CrossRef]
  6. G. Q. Yuan, T. C. Chong, B. X. Xu, “YAG laser end and side pumped by a laser diode,” Appl. Opt. 37, 3971–3976 (1998).
    [CrossRef]
  7. R. Weber, B. Neuenschwander, H. P. Weber, “Thermal effects in solid-state laser materials,” Opt. Mater. 11, 245–254 (1999).
    [CrossRef]
  8. C. Pfistner, R. Weber, H. P. Weber, S. Merazzi, R. Gruber, “Thermal beam distortions in end-pumped Nd:YAG, ND:GSGG, and ND:YLF rods,” IEEE J. Quantum Electron. 30, 1605–1615 (1994).
    [CrossRef]
  9. M. J. Damzen, R. P. M. Green, K. S. Syed, “Self-adaptive solid-state laser-oscillator formed by dynamic gain-grating holograms,” Opt. Lett. 20, 1704–1706 (1995).
    [CrossRef]
  10. G. J. Crofts, X. Banti, M. J. Damzen, “Tunable phase-conjugation in a Ti:Sapphire amplifier,” Opt. Lett. 20, 1634–1636 (1995).
    [CrossRef] [PubMed]
  11. R. P. M. Green, G. J. Crofts, M. J. Damzen, “Holographic laser resonators in Nd:YAG,” Opt. Lett. 19, 393–395 (1994).
    [PubMed]
  12. A. Minassian, G. J. Crofts, M. J. Damzen, “Self-starting Ti:Sapphire holographic laser oscillator,” Opt. Lett. 22, 697–699 (1997).
    [CrossRef] [PubMed]
  13. O. L. Antipov, D. V. Chausov, A. S. Kuzhelev, V. A. Vorob’ev, A. P. Zinoviev, “250 w average-power Nd:YAG laser with self-adaptive cavity completed by dynamic refractive-index gratings,” IEEE J. Quantum Electron. 37, 716–724 (2001).
    [CrossRef]
  14. A. Brignon, J. P. Huignard, “Continuous-wave operation of saturable-gain degenerate 4-wave-mixing in a Nd:YVO4 amplifier,” Opt. Lett. 20, 2096–2098 (1995).
    [CrossRef] [PubMed]
  15. A. Brignon, G. Feugnet, J. P. Huignard, J. P. Pocholle, “Multipass degenerate 4-wave-mixing in a diode-pumped Nd:YVO4 saturable amplifier,” J. Opt. Soc. Am. B 12, 1316–1325 (1995).
    [CrossRef]
  16. M. Trew, G. J. Crofts, M. J. Damzen, J. Hendricks, S. Mailis, D. P. Shepherd, A. C. Tropper, R. W. Eason, “Multiwatt continuous-wave adaptive laser resonator,” Opt. Lett. 25, 1346–1348 (2000).
    [CrossRef]
  17. G. J. Crofts, M. J. Damzen, “Numerical modelling of continuous-wave holographic laser oscillators,” Opt. Commun. 175, 397–408 (2000).
    [CrossRef]
  18. O. Wittler, D. Udaiyan, G. J. Crofts, K. S. Syed, M. J. Damzen, “Characterization of a distortion-corrected Nd:YAG laser with a self-conjugating loop geometry,” IEEE J. Quantum Electron. 35, 656–664 (1999).
    [CrossRef]
  19. CASIX Inc., P.O. Box 1103, Fuzhou, Fujian 350014, China ( http://www.casix.com ).
  20. A. J. Alcock, J. E. Bernard, “Diode-pumped grazing incidence slab lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 3–8 (1997).
    [CrossRef]
  21. J. E. Bernard, A. J. Alcock, “High-efficiency diode-pumped Nd:YVO4 slab laser,” Opt. Lett. 18, 968–970 (1993).
    [CrossRef] [PubMed]
  22. M. J. Damzen, M. Trew, E. Rosas, G. J. Crofts, “Continuous-wave Nd:YVO4 grazing-incidence laser with 22.5 w output power and 64% conversion efficiency,” Opt. Commun. 196, 237–241 (2001).
    [CrossRef]
  23. C. E. Hamilton, R. J. Beach, S. B. Sutton, L. H. Furu, W. F. Krupke, “1-W average power levels and tunability from a diode-pumped 2.94 µm Er:YAG oscillator,” Opt. Lett. 19, 1627–1629 (1994).
    [CrossRef] [PubMed]
  24. K. Otsuka, “Nonlinear dynamics in a microchip multimode laser,” in Chaos in Optics, R. Roy, ed., Proc. SPIE2039, 182–197 (1993).
    [CrossRef]
  25. K. Otsuka, P. Mandel, E. A. Viktorov, “Breakup of CW multimode oscillations and low-frequency instability in a microchip solid-state laser by high-density pumping,” Phys. Rev. A 56, 3226–3232 (1997).
    [CrossRef]
  26. K. Otsuka, H. Utsu, R. Kawai, K. Ohki, Y. Asakawa, S. L. Hwong, J. Y. Ko, J. L. Chern, “Self-induced spiking oscillations and associated instabilities in a laser-diode-pumped three-mode ND:YVO4 laser,” Jpn. J. Appl. Phys. Part 2 38, L1025–L1028 (1999).
    [CrossRef]
  27. A. E. Siegman, Lasers (University Science Books, Mill Valley, Calif., 1986).

2001 (2)

O. L. Antipov, D. V. Chausov, A. S. Kuzhelev, V. A. Vorob’ev, A. P. Zinoviev, “250 w average-power Nd:YAG laser with self-adaptive cavity completed by dynamic refractive-index gratings,” IEEE J. Quantum Electron. 37, 716–724 (2001).
[CrossRef]

M. J. Damzen, M. Trew, E. Rosas, G. J. Crofts, “Continuous-wave Nd:YVO4 grazing-incidence laser with 22.5 w output power and 64% conversion efficiency,” Opt. Commun. 196, 237–241 (2001).
[CrossRef]

2000 (4)

M. Trew, G. J. Crofts, M. J. Damzen, J. Hendricks, S. Mailis, D. P. Shepherd, A. C. Tropper, R. W. Eason, “Multiwatt continuous-wave adaptive laser resonator,” Opt. Lett. 25, 1346–1348 (2000).
[CrossRef]

G. J. Crofts, M. J. Damzen, “Numerical modelling of continuous-wave holographic laser oscillators,” Opt. Commun. 175, 397–408 (2000).
[CrossRef]

Y. F. Chen, Y. P. Lan, S. C. Wang, “High-power diode-end-pumped Nd:YVO4 laser: thermally induced fracture versus pump-wavelength sensitivity,” Appl. Phys. B 71, 827–830 (2000).
[CrossRef]

P. Zeller, P. Peuser, “Efficient, multiwatt, continuous-wave laser operation on the 4F3/2–4I9/2 transitions of Nd:YVO4 and ND:YAG,” Opt. Lett. 25, 34–36 (2000).
[CrossRef]

1999 (3)

R. Weber, B. Neuenschwander, H. P. Weber, “Thermal effects in solid-state laser materials,” Opt. Mater. 11, 245–254 (1999).
[CrossRef]

O. Wittler, D. Udaiyan, G. J. Crofts, K. S. Syed, M. J. Damzen, “Characterization of a distortion-corrected Nd:YAG laser with a self-conjugating loop geometry,” IEEE J. Quantum Electron. 35, 656–664 (1999).
[CrossRef]

K. Otsuka, H. Utsu, R. Kawai, K. Ohki, Y. Asakawa, S. L. Hwong, J. Y. Ko, J. L. Chern, “Self-induced spiking oscillations and associated instabilities in a laser-diode-pumped three-mode ND:YVO4 laser,” Jpn. J. Appl. Phys. Part 2 38, L1025–L1028 (1999).
[CrossRef]

1998 (1)

1997 (4)

A. J. Alcock, J. E. Bernard, “Diode-pumped grazing incidence slab lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 3–8 (1997).
[CrossRef]

J. Zhang, M. Quade, K. M. Du, Y. Liao, S. Falter, M. Baumann, P. Loosen, R. Poprawe, “Efficient TEM00 operation of Nd:YVO4 laser end pumped by fibre-coupled diode laser,” Electron Lett 33, 775–777 (1997).
[CrossRef]

A. Minassian, G. J. Crofts, M. J. Damzen, “Self-starting Ti:Sapphire holographic laser oscillator,” Opt. Lett. 22, 697–699 (1997).
[CrossRef] [PubMed]

K. Otsuka, P. Mandel, E. A. Viktorov, “Breakup of CW multimode oscillations and low-frequency instability in a microchip solid-state laser by high-density pumping,” Phys. Rev. A 56, 3226–3232 (1997).
[CrossRef]

1995 (4)

1994 (3)

1993 (1)

1987 (1)

R. A. Fields, M. Birnbaum, C. L. Fincher, “Highly efficient Nd:YVO4 diode-laser end-pumped laser,” Appl. Phys. Lett. 51, 1885–1886 (1987).
[CrossRef]

Alcock, A. J.

A. J. Alcock, J. E. Bernard, “Diode-pumped grazing incidence slab lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 3–8 (1997).
[CrossRef]

J. E. Bernard, A. J. Alcock, “High-efficiency diode-pumped Nd:YVO4 slab laser,” Opt. Lett. 18, 968–970 (1993).
[CrossRef] [PubMed]

Antipov, O. L.

O. L. Antipov, D. V. Chausov, A. S. Kuzhelev, V. A. Vorob’ev, A. P. Zinoviev, “250 w average-power Nd:YAG laser with self-adaptive cavity completed by dynamic refractive-index gratings,” IEEE J. Quantum Electron. 37, 716–724 (2001).
[CrossRef]

Asakawa, Y.

K. Otsuka, H. Utsu, R. Kawai, K. Ohki, Y. Asakawa, S. L. Hwong, J. Y. Ko, J. L. Chern, “Self-induced spiking oscillations and associated instabilities in a laser-diode-pumped three-mode ND:YVO4 laser,” Jpn. J. Appl. Phys. Part 2 38, L1025–L1028 (1999).
[CrossRef]

Banti, X.

Baumann, M.

J. Zhang, M. Quade, K. M. Du, Y. Liao, S. Falter, M. Baumann, P. Loosen, R. Poprawe, “Efficient TEM00 operation of Nd:YVO4 laser end pumped by fibre-coupled diode laser,” Electron Lett 33, 775–777 (1997).
[CrossRef]

Beach, R. J.

Bernard, J. E.

A. J. Alcock, J. E. Bernard, “Diode-pumped grazing incidence slab lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 3–8 (1997).
[CrossRef]

J. E. Bernard, A. J. Alcock, “High-efficiency diode-pumped Nd:YVO4 slab laser,” Opt. Lett. 18, 968–970 (1993).
[CrossRef] [PubMed]

Birnbaum, M.

R. A. Fields, M. Birnbaum, C. L. Fincher, “Highly efficient Nd:YVO4 diode-laser end-pumped laser,” Appl. Phys. Lett. 51, 1885–1886 (1987).
[CrossRef]

Brignon, A.

Chausov, D. V.

O. L. Antipov, D. V. Chausov, A. S. Kuzhelev, V. A. Vorob’ev, A. P. Zinoviev, “250 w average-power Nd:YAG laser with self-adaptive cavity completed by dynamic refractive-index gratings,” IEEE J. Quantum Electron. 37, 716–724 (2001).
[CrossRef]

Chen, Y. F.

Y. F. Chen, Y. P. Lan, S. C. Wang, “High-power diode-end-pumped Nd:YVO4 laser: thermally induced fracture versus pump-wavelength sensitivity,” Appl. Phys. B 71, 827–830 (2000).
[CrossRef]

Chern, J. L.

K. Otsuka, H. Utsu, R. Kawai, K. Ohki, Y. Asakawa, S. L. Hwong, J. Y. Ko, J. L. Chern, “Self-induced spiking oscillations and associated instabilities in a laser-diode-pumped three-mode ND:YVO4 laser,” Jpn. J. Appl. Phys. Part 2 38, L1025–L1028 (1999).
[CrossRef]

Chong, T. C.

Crofts, G. J.

M. J. Damzen, M. Trew, E. Rosas, G. J. Crofts, “Continuous-wave Nd:YVO4 grazing-incidence laser with 22.5 w output power and 64% conversion efficiency,” Opt. Commun. 196, 237–241 (2001).
[CrossRef]

G. J. Crofts, M. J. Damzen, “Numerical modelling of continuous-wave holographic laser oscillators,” Opt. Commun. 175, 397–408 (2000).
[CrossRef]

M. Trew, G. J. Crofts, M. J. Damzen, J. Hendricks, S. Mailis, D. P. Shepherd, A. C. Tropper, R. W. Eason, “Multiwatt continuous-wave adaptive laser resonator,” Opt. Lett. 25, 1346–1348 (2000).
[CrossRef]

O. Wittler, D. Udaiyan, G. J. Crofts, K. S. Syed, M. J. Damzen, “Characterization of a distortion-corrected Nd:YAG laser with a self-conjugating loop geometry,” IEEE J. Quantum Electron. 35, 656–664 (1999).
[CrossRef]

A. Minassian, G. J. Crofts, M. J. Damzen, “Self-starting Ti:Sapphire holographic laser oscillator,” Opt. Lett. 22, 697–699 (1997).
[CrossRef] [PubMed]

G. J. Crofts, X. Banti, M. J. Damzen, “Tunable phase-conjugation in a Ti:Sapphire amplifier,” Opt. Lett. 20, 1634–1636 (1995).
[CrossRef] [PubMed]

R. P. M. Green, G. J. Crofts, M. J. Damzen, “Holographic laser resonators in Nd:YAG,” Opt. Lett. 19, 393–395 (1994).
[PubMed]

Damzen, M. J.

Du, K. M.

J. Zhang, M. Quade, K. M. Du, Y. Liao, S. Falter, M. Baumann, P. Loosen, R. Poprawe, “Efficient TEM00 operation of Nd:YVO4 laser end pumped by fibre-coupled diode laser,” Electron Lett 33, 775–777 (1997).
[CrossRef]

Eason, R. W.

Falter, S.

J. Zhang, M. Quade, K. M. Du, Y. Liao, S. Falter, M. Baumann, P. Loosen, R. Poprawe, “Efficient TEM00 operation of Nd:YVO4 laser end pumped by fibre-coupled diode laser,” Electron Lett 33, 775–777 (1997).
[CrossRef]

Feugnet, G.

Fields, R. A.

R. A. Fields, M. Birnbaum, C. L. Fincher, “Highly efficient Nd:YVO4 diode-laser end-pumped laser,” Appl. Phys. Lett. 51, 1885–1886 (1987).
[CrossRef]

Fincher, C. L.

R. A. Fields, M. Birnbaum, C. L. Fincher, “Highly efficient Nd:YVO4 diode-laser end-pumped laser,” Appl. Phys. Lett. 51, 1885–1886 (1987).
[CrossRef]

Furu, L. H.

Green, R. P. M.

Gruber, R.

C. Pfistner, R. Weber, H. P. Weber, S. Merazzi, R. Gruber, “Thermal beam distortions in end-pumped Nd:YAG, ND:GSGG, and ND:YLF rods,” IEEE J. Quantum Electron. 30, 1605–1615 (1994).
[CrossRef]

Hamilton, C. E.

Hendricks, J.

Huignard, J. P.

Hwong, S. L.

K. Otsuka, H. Utsu, R. Kawai, K. Ohki, Y. Asakawa, S. L. Hwong, J. Y. Ko, J. L. Chern, “Self-induced spiking oscillations and associated instabilities in a laser-diode-pumped three-mode ND:YVO4 laser,” Jpn. J. Appl. Phys. Part 2 38, L1025–L1028 (1999).
[CrossRef]

Kawai, R.

K. Otsuka, H. Utsu, R. Kawai, K. Ohki, Y. Asakawa, S. L. Hwong, J. Y. Ko, J. L. Chern, “Self-induced spiking oscillations and associated instabilities in a laser-diode-pumped three-mode ND:YVO4 laser,” Jpn. J. Appl. Phys. Part 2 38, L1025–L1028 (1999).
[CrossRef]

Ko, J. Y.

K. Otsuka, H. Utsu, R. Kawai, K. Ohki, Y. Asakawa, S. L. Hwong, J. Y. Ko, J. L. Chern, “Self-induced spiking oscillations and associated instabilities in a laser-diode-pumped three-mode ND:YVO4 laser,” Jpn. J. Appl. Phys. Part 2 38, L1025–L1028 (1999).
[CrossRef]

Koechner, W.

W. Koechner, Solid-State Laser Engineering, 4th ed. (Springer-Verlag, Berlin, 1996).
[CrossRef]

Krupke, W. F.

Kuzhelev, A. S.

O. L. Antipov, D. V. Chausov, A. S. Kuzhelev, V. A. Vorob’ev, A. P. Zinoviev, “250 w average-power Nd:YAG laser with self-adaptive cavity completed by dynamic refractive-index gratings,” IEEE J. Quantum Electron. 37, 716–724 (2001).
[CrossRef]

Lan, Y. P.

Y. F. Chen, Y. P. Lan, S. C. Wang, “High-power diode-end-pumped Nd:YVO4 laser: thermally induced fracture versus pump-wavelength sensitivity,” Appl. Phys. B 71, 827–830 (2000).
[CrossRef]

Liao, Y.

J. Zhang, M. Quade, K. M. Du, Y. Liao, S. Falter, M. Baumann, P. Loosen, R. Poprawe, “Efficient TEM00 operation of Nd:YVO4 laser end pumped by fibre-coupled diode laser,” Electron Lett 33, 775–777 (1997).
[CrossRef]

Loosen, P.

J. Zhang, M. Quade, K. M. Du, Y. Liao, S. Falter, M. Baumann, P. Loosen, R. Poprawe, “Efficient TEM00 operation of Nd:YVO4 laser end pumped by fibre-coupled diode laser,” Electron Lett 33, 775–777 (1997).
[CrossRef]

Mailis, S.

Mandel, P.

K. Otsuka, P. Mandel, E. A. Viktorov, “Breakup of CW multimode oscillations and low-frequency instability in a microchip solid-state laser by high-density pumping,” Phys. Rev. A 56, 3226–3232 (1997).
[CrossRef]

Merazzi, S.

C. Pfistner, R. Weber, H. P. Weber, S. Merazzi, R. Gruber, “Thermal beam distortions in end-pumped Nd:YAG, ND:GSGG, and ND:YLF rods,” IEEE J. Quantum Electron. 30, 1605–1615 (1994).
[CrossRef]

Minassian, A.

Neuenschwander, B.

R. Weber, B. Neuenschwander, H. P. Weber, “Thermal effects in solid-state laser materials,” Opt. Mater. 11, 245–254 (1999).
[CrossRef]

Ohki, K.

K. Otsuka, H. Utsu, R. Kawai, K. Ohki, Y. Asakawa, S. L. Hwong, J. Y. Ko, J. L. Chern, “Self-induced spiking oscillations and associated instabilities in a laser-diode-pumped three-mode ND:YVO4 laser,” Jpn. J. Appl. Phys. Part 2 38, L1025–L1028 (1999).
[CrossRef]

Otsuka, K.

K. Otsuka, H. Utsu, R. Kawai, K. Ohki, Y. Asakawa, S. L. Hwong, J. Y. Ko, J. L. Chern, “Self-induced spiking oscillations and associated instabilities in a laser-diode-pumped three-mode ND:YVO4 laser,” Jpn. J. Appl. Phys. Part 2 38, L1025–L1028 (1999).
[CrossRef]

K. Otsuka, P. Mandel, E. A. Viktorov, “Breakup of CW multimode oscillations and low-frequency instability in a microchip solid-state laser by high-density pumping,” Phys. Rev. A 56, 3226–3232 (1997).
[CrossRef]

K. Otsuka, “Nonlinear dynamics in a microchip multimode laser,” in Chaos in Optics, R. Roy, ed., Proc. SPIE2039, 182–197 (1993).
[CrossRef]

Peuser, P.

Pfistner, C.

C. Pfistner, R. Weber, H. P. Weber, S. Merazzi, R. Gruber, “Thermal beam distortions in end-pumped Nd:YAG, ND:GSGG, and ND:YLF rods,” IEEE J. Quantum Electron. 30, 1605–1615 (1994).
[CrossRef]

Pocholle, J. P.

Poprawe, R.

J. Zhang, M. Quade, K. M. Du, Y. Liao, S. Falter, M. Baumann, P. Loosen, R. Poprawe, “Efficient TEM00 operation of Nd:YVO4 laser end pumped by fibre-coupled diode laser,” Electron Lett 33, 775–777 (1997).
[CrossRef]

Quade, M.

J. Zhang, M. Quade, K. M. Du, Y. Liao, S. Falter, M. Baumann, P. Loosen, R. Poprawe, “Efficient TEM00 operation of Nd:YVO4 laser end pumped by fibre-coupled diode laser,” Electron Lett 33, 775–777 (1997).
[CrossRef]

Rosas, E.

M. J. Damzen, M. Trew, E. Rosas, G. J. Crofts, “Continuous-wave Nd:YVO4 grazing-incidence laser with 22.5 w output power and 64% conversion efficiency,” Opt. Commun. 196, 237–241 (2001).
[CrossRef]

Shepherd, D. P.

Siegman, A. E.

A. E. Siegman, Lasers (University Science Books, Mill Valley, Calif., 1986).

Sutton, S. B.

Syed, K. S.

O. Wittler, D. Udaiyan, G. J. Crofts, K. S. Syed, M. J. Damzen, “Characterization of a distortion-corrected Nd:YAG laser with a self-conjugating loop geometry,” IEEE J. Quantum Electron. 35, 656–664 (1999).
[CrossRef]

M. J. Damzen, R. P. M. Green, K. S. Syed, “Self-adaptive solid-state laser-oscillator formed by dynamic gain-grating holograms,” Opt. Lett. 20, 1704–1706 (1995).
[CrossRef]

Trew, M.

M. J. Damzen, M. Trew, E. Rosas, G. J. Crofts, “Continuous-wave Nd:YVO4 grazing-incidence laser with 22.5 w output power and 64% conversion efficiency,” Opt. Commun. 196, 237–241 (2001).
[CrossRef]

M. Trew, G. J. Crofts, M. J. Damzen, J. Hendricks, S. Mailis, D. P. Shepherd, A. C. Tropper, R. W. Eason, “Multiwatt continuous-wave adaptive laser resonator,” Opt. Lett. 25, 1346–1348 (2000).
[CrossRef]

Tropper, A. C.

Udaiyan, D.

O. Wittler, D. Udaiyan, G. J. Crofts, K. S. Syed, M. J. Damzen, “Characterization of a distortion-corrected Nd:YAG laser with a self-conjugating loop geometry,” IEEE J. Quantum Electron. 35, 656–664 (1999).
[CrossRef]

Utsu, H.

K. Otsuka, H. Utsu, R. Kawai, K. Ohki, Y. Asakawa, S. L. Hwong, J. Y. Ko, J. L. Chern, “Self-induced spiking oscillations and associated instabilities in a laser-diode-pumped three-mode ND:YVO4 laser,” Jpn. J. Appl. Phys. Part 2 38, L1025–L1028 (1999).
[CrossRef]

Viktorov, E. A.

K. Otsuka, P. Mandel, E. A. Viktorov, “Breakup of CW multimode oscillations and low-frequency instability in a microchip solid-state laser by high-density pumping,” Phys. Rev. A 56, 3226–3232 (1997).
[CrossRef]

Vorob’ev, V. A.

O. L. Antipov, D. V. Chausov, A. S. Kuzhelev, V. A. Vorob’ev, A. P. Zinoviev, “250 w average-power Nd:YAG laser with self-adaptive cavity completed by dynamic refractive-index gratings,” IEEE J. Quantum Electron. 37, 716–724 (2001).
[CrossRef]

Wang, S. C.

Y. F. Chen, Y. P. Lan, S. C. Wang, “High-power diode-end-pumped Nd:YVO4 laser: thermally induced fracture versus pump-wavelength sensitivity,” Appl. Phys. B 71, 827–830 (2000).
[CrossRef]

Weber, H. P.

R. Weber, B. Neuenschwander, H. P. Weber, “Thermal effects in solid-state laser materials,” Opt. Mater. 11, 245–254 (1999).
[CrossRef]

C. Pfistner, R. Weber, H. P. Weber, S. Merazzi, R. Gruber, “Thermal beam distortions in end-pumped Nd:YAG, ND:GSGG, and ND:YLF rods,” IEEE J. Quantum Electron. 30, 1605–1615 (1994).
[CrossRef]

Weber, R.

R. Weber, B. Neuenschwander, H. P. Weber, “Thermal effects in solid-state laser materials,” Opt. Mater. 11, 245–254 (1999).
[CrossRef]

C. Pfistner, R. Weber, H. P. Weber, S. Merazzi, R. Gruber, “Thermal beam distortions in end-pumped Nd:YAG, ND:GSGG, and ND:YLF rods,” IEEE J. Quantum Electron. 30, 1605–1615 (1994).
[CrossRef]

Wittler, O.

O. Wittler, D. Udaiyan, G. J. Crofts, K. S. Syed, M. J. Damzen, “Characterization of a distortion-corrected Nd:YAG laser with a self-conjugating loop geometry,” IEEE J. Quantum Electron. 35, 656–664 (1999).
[CrossRef]

Xu, B. X.

Yuan, G. Q.

Zeller, P.

Zhang, J.

J. Zhang, M. Quade, K. M. Du, Y. Liao, S. Falter, M. Baumann, P. Loosen, R. Poprawe, “Efficient TEM00 operation of Nd:YVO4 laser end pumped by fibre-coupled diode laser,” Electron Lett 33, 775–777 (1997).
[CrossRef]

Zinoviev, A. P.

O. L. Antipov, D. V. Chausov, A. S. Kuzhelev, V. A. Vorob’ev, A. P. Zinoviev, “250 w average-power Nd:YAG laser with self-adaptive cavity completed by dynamic refractive-index gratings,” IEEE J. Quantum Electron. 37, 716–724 (2001).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (1)

Y. F. Chen, Y. P. Lan, S. C. Wang, “High-power diode-end-pumped Nd:YVO4 laser: thermally induced fracture versus pump-wavelength sensitivity,” Appl. Phys. B 71, 827–830 (2000).
[CrossRef]

Appl. Phys. Lett. (1)

R. A. Fields, M. Birnbaum, C. L. Fincher, “Highly efficient Nd:YVO4 diode-laser end-pumped laser,” Appl. Phys. Lett. 51, 1885–1886 (1987).
[CrossRef]

Electron Lett (1)

J. Zhang, M. Quade, K. M. Du, Y. Liao, S. Falter, M. Baumann, P. Loosen, R. Poprawe, “Efficient TEM00 operation of Nd:YVO4 laser end pumped by fibre-coupled diode laser,” Electron Lett 33, 775–777 (1997).
[CrossRef]

IEEE J. Quantum Electron. (3)

C. Pfistner, R. Weber, H. P. Weber, S. Merazzi, R. Gruber, “Thermal beam distortions in end-pumped Nd:YAG, ND:GSGG, and ND:YLF rods,” IEEE J. Quantum Electron. 30, 1605–1615 (1994).
[CrossRef]

O. L. Antipov, D. V. Chausov, A. S. Kuzhelev, V. A. Vorob’ev, A. P. Zinoviev, “250 w average-power Nd:YAG laser with self-adaptive cavity completed by dynamic refractive-index gratings,” IEEE J. Quantum Electron. 37, 716–724 (2001).
[CrossRef]

O. Wittler, D. Udaiyan, G. J. Crofts, K. S. Syed, M. J. Damzen, “Characterization of a distortion-corrected Nd:YAG laser with a self-conjugating loop geometry,” IEEE J. Quantum Electron. 35, 656–664 (1999).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

A. J. Alcock, J. E. Bernard, “Diode-pumped grazing incidence slab lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 3–8 (1997).
[CrossRef]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. Part 2 (1)

K. Otsuka, H. Utsu, R. Kawai, K. Ohki, Y. Asakawa, S. L. Hwong, J. Y. Ko, J. L. Chern, “Self-induced spiking oscillations and associated instabilities in a laser-diode-pumped three-mode ND:YVO4 laser,” Jpn. J. Appl. Phys. Part 2 38, L1025–L1028 (1999).
[CrossRef]

Opt. Commun. (2)

M. J. Damzen, M. Trew, E. Rosas, G. J. Crofts, “Continuous-wave Nd:YVO4 grazing-incidence laser with 22.5 w output power and 64% conversion efficiency,” Opt. Commun. 196, 237–241 (2001).
[CrossRef]

G. J. Crofts, M. J. Damzen, “Numerical modelling of continuous-wave holographic laser oscillators,” Opt. Commun. 175, 397–408 (2000).
[CrossRef]

Opt. Lett. (9)

M. Trew, G. J. Crofts, M. J. Damzen, J. Hendricks, S. Mailis, D. P. Shepherd, A. C. Tropper, R. W. Eason, “Multiwatt continuous-wave adaptive laser resonator,” Opt. Lett. 25, 1346–1348 (2000).
[CrossRef]

A. Brignon, J. P. Huignard, “Continuous-wave operation of saturable-gain degenerate 4-wave-mixing in a Nd:YVO4 amplifier,” Opt. Lett. 20, 2096–2098 (1995).
[CrossRef] [PubMed]

M. J. Damzen, R. P. M. Green, K. S. Syed, “Self-adaptive solid-state laser-oscillator formed by dynamic gain-grating holograms,” Opt. Lett. 20, 1704–1706 (1995).
[CrossRef]

G. J. Crofts, X. Banti, M. J. Damzen, “Tunable phase-conjugation in a Ti:Sapphire amplifier,” Opt. Lett. 20, 1634–1636 (1995).
[CrossRef] [PubMed]

R. P. M. Green, G. J. Crofts, M. J. Damzen, “Holographic laser resonators in Nd:YAG,” Opt. Lett. 19, 393–395 (1994).
[PubMed]

A. Minassian, G. J. Crofts, M. J. Damzen, “Self-starting Ti:Sapphire holographic laser oscillator,” Opt. Lett. 22, 697–699 (1997).
[CrossRef] [PubMed]

P. Zeller, P. Peuser, “Efficient, multiwatt, continuous-wave laser operation on the 4F3/2–4I9/2 transitions of Nd:YVO4 and ND:YAG,” Opt. Lett. 25, 34–36 (2000).
[CrossRef]

C. E. Hamilton, R. J. Beach, S. B. Sutton, L. H. Furu, W. F. Krupke, “1-W average power levels and tunability from a diode-pumped 2.94 µm Er:YAG oscillator,” Opt. Lett. 19, 1627–1629 (1994).
[CrossRef] [PubMed]

J. E. Bernard, A. J. Alcock, “High-efficiency diode-pumped Nd:YVO4 slab laser,” Opt. Lett. 18, 968–970 (1993).
[CrossRef] [PubMed]

Opt. Mater. (1)

R. Weber, B. Neuenschwander, H. P. Weber, “Thermal effects in solid-state laser materials,” Opt. Mater. 11, 245–254 (1999).
[CrossRef]

Phys. Rev. A (1)

K. Otsuka, P. Mandel, E. A. Viktorov, “Breakup of CW multimode oscillations and low-frequency instability in a microchip solid-state laser by high-density pumping,” Phys. Rev. A 56, 3226–3232 (1997).
[CrossRef]

Other (4)

CASIX Inc., P.O. Box 1103, Fuzhou, Fujian 350014, China ( http://www.casix.com ).

K. Otsuka, “Nonlinear dynamics in a microchip multimode laser,” in Chaos in Optics, R. Roy, ed., Proc. SPIE2039, 182–197 (1993).
[CrossRef]

A. E. Siegman, Lasers (University Science Books, Mill Valley, Calif., 1986).

W. Koechner, Solid-State Laser Engineering, 4th ed. (Springer-Verlag, Berlin, 1996).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Self-starting adaptive holographic laser resonator schematic, showing intersecting beams (A 1A 4), the various output beams, and the nonreciprocal transmission element (NRTE).

Fig. 2
Fig. 2

Experimental self-starting adaptive holographic laser resonator. NRTE, nonreciprocal transmission element; HWP, half-wave plate; P1 and P2, glan-air polarizers; FR, Faraday rotator; CL1, 2, and 3, cylindrical lenses.

Fig. 3
Fig. 3

Experimental graph of output power P PC as a function of diode pump power, P PUMP.

Fig. 4
Fig. 4

Variation of cavity mode sizes in the horizontal direction: (a) a weak thermal lens, (b) a strong thermal lens, and (c) a thermal lens with an intracavity cylindrical lens.

Fig. 5
Fig. 5

Phase conjugate power P PC as a function of diode pumping power P PUMP.

Fig. 6
Fig. 6

3D beam spatial profile, showing the circular nature of the beam.

Fig. 7
Fig. 7

Extraction efficiencies of phase conjugate ηPC, nonphase conjugate ηNPC, ejected nonphase conjugate ηNPC, and total η T as a function of diode-pumping power P PUMP.

Fig. 8
Fig. 8

Spectral data at output power P PC of 11.3 W: (a) Fabry–Perot ring pattern showing output spectrum and (b) cross section of ring pattern clearly showing three-mode operation.

Fig. 9
Fig. 9

Temporal output showing relaxation-oscillation behavior under multimode operation.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

τR=LR+2LOCc,
fR=12πW-1ττph1/2

Metrics