Abstract

A tunable external-cavity diode laser (ECDL) based on a transmission diffraction grating in a Littrow mount has been developed and characterized. A single-transverse-mode diode laser at 650 nm is used in an external-cavity configuration in which the transmission grating is used as a dispersive element to select the single longitudinal mode. The transmission diffraction grating is made with electron-beam lithography. A tunable true single-mode cw output power of >20 mW is obtained from the ECDL. The total wavelength tuning range is 12 nm, and the mode-hop-free continuous tunability is >20 GHz.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. E. Wieman, L. Hollberg, “Using diode lasers in atomic physics,” Rev. Sci. Instrum. 62, 1–20 (1991).
    [CrossRef]
  2. M. G. Allen, “Diode laser absorption sensors for gas-dynamic and combustion flows,” Meas. Sci. Technol. 9, 545–562 (1998).
    [CrossRef]
  3. H. Leinen, D. Glässner, H. Metcalf, R. Wynands, D. Haubrich, D. Meschede, “GaN blue diode lasers: spectroscopist’s view,” Appl. Phys. B 70, 567–571 (2000).
    [CrossRef]
  4. C. Affolderbach, A. Nagel, S. Knappe, D. Jung, R. Wiedenmann, R. Wynands, “Nonlinear spectroscopy with a vertical-cavity surface-emitting laser (VCSEL),” Appl. Phys. B 70, 407–413 (2000).
    [CrossRef]
  5. D. C. Hovde, C. A. Parsons, “Wavelength modulation detection of water vapor with a vertical cavity surface-emitting laser,” Appl. Opt. 36, 1135–1138 (1997).
    [CrossRef] [PubMed]
  6. J. Wang, S. T. Sanders, J. B. Jeffries, R. K. Hanson, “Oxygen measurements at high pressures with vertical cavity surface-emitting lasers,” Appl. Phys. B 72, 865–872 (2001).
    [CrossRef]
  7. S. W. Sharpe, J. F. Kelly, J. S. Hartman, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, “High-resolution (Doppler-limited) spectroscopy using quantum-cascade distributed-feedback lasers,” Opt. Lett. 23, 1396–1398 (1998).
    [CrossRef]
  8. A. A. Kosterev, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutschinson, A. Y. Cho, “Trace-gas detection in ambient air with a thermoelectrically cooled, pulsed quantum-cascade distributed feedback laser,” Appl. Opt. 39, 6866–6872 (2000).
    [CrossRef]
  9. C. R. Webster, G. J. Flesch, D. C. Scott, J. E. Swanson, R. D. May, W. S. Woodward, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutschinson, A. Y. Cho, “Quantum-cascade laser measurements of stratospheric methane and nitrous oxide,” Appl. Opt. 40, 321–326 (2001).
    [CrossRef]
  10. K. B. MacAdam, A. Steinbach, C. Wieman, “A narrow-band tunable diode laser system with grating feedback, and saturated absorption spectrometer for Cs and Rb,” Am. J. Phys. 60, 1098–1111 (1992).
    [CrossRef]
  11. L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, T. W. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117, 541–549 (1995).
    [CrossRef]
  12. A. S. Arnold, J. S. Wilson, M. G. Boshier, “A simple extended-cavity diode laser,” Rev. Sci. Instrum. 69, 1236–1239 (1998).
    [CrossRef]
  13. A. Andalkar, S. K. Lamoreux, R. B. Warrington, “Improved external cavity design for cesium D1 (894 nm) diode laser,” Rev. Sci. Instrum. 71, 4029–4031 (2000).
    [CrossRef]
  14. H. Luo, C. Peng, H. Q. Le, S. S. Pei, W.-Y. Hwang, B. Ishaug, J. Um, J. N. Baillargeon, C.-H. Lin, “Grating-tuned external-cavity quantum-cascade semiconductor lasers,” Appl. Phys. Lett. 78, 2834–2836 (2001).
    [CrossRef]
  15. M. G. Boshier, D. Berkeland, E. A. Hinds, V. Sandoghdar, “External-cavity frequency-stabilization of visible and infrared semiconductor lasers for high resolution spectroscopy,” Opt. Commun. 85, 355–359 (1991).
    [CrossRef]
  16. C. J. Hawthorn, K. P. Weber, R. E. Scholten, “Littrow configuration tunable external cavity diode laser with fixed direction output beam,” Rev. Sci. Instrum. 72, 4477–4479 (2001).
    [CrossRef]
  17. K. C. Harvey, C. J. Myatt, “External-cavity diode laser using a grazing-incidence diffraction grating,” Opt. Lett. 16, 910–912 (1991).
    [CrossRef] [PubMed]
  18. J. Lazar, O. Cip, P. Jedlicka, “Tunable extended-cavity diode laser stabilized on iodine at λ = 633 nm,” Appl. Opt. 39, 3085–3088 (2000).
    [CrossRef]
  19. M. Merimaa, H. Talvitie, P. Laakkonen, M. Kuittinen, I. Tittonen, E. Ikonen, “Compact external-cavity diode laser with a novel transmission geometry,” Opt. Commun. 174, 175–180 (2000).
    [CrossRef]
  20. J. Köngäs, P. Savolainen, M. Toivonen, S. Orsila, P. Corvini, M. Jansen, R. F. Nabiev, M. Pessa, “High-efficiency GaInP–AlGaInP ridge waveguide single-mode lasers operating at 650 nm,” IEEE Photon. Technol. Lett. 10, 1533–1535 (1998).
    [CrossRef]
  21. J. Turunen, “Diffraction theory of microrelief gratings,” in Micro Optics: Elements, Systems and Applications, H. P. Herzig, ed. (Taylor & Francis, London, 1997), pp. 31–52.
  22. C. M. Miller, “Intensity modulation and noise characterization of high-speed semiconductor lasers,” IEEE Lightwave Telecommun. Syst. 2, 44–53 (1991).
  23. G. Agrawal, Semiconductor Lasers, 2nd ed. (Van Nostrand Reinhold, New York, 1993).
  24. C. H. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. of Quantum Electron. 18, 259–264 (1982).
    [CrossRef]
  25. H. Sun, S. Menhart, A. Adams, “Calculation of spectral linewidth reduction of external-cavity strong-feedback semiconductor lasers,” Appl. Opt. 33, 4771–4775 (1994).
    [CrossRef] [PubMed]
  26. H. Talvitie, A. Pietiläinen, H. Ludvigsen, E. Ikonen, “Passive frequency and intensity stabilization of extended-cavity diode lasers,” Rev. Sci. Instrum. 68, 1–7 (1997).
    [CrossRef]
  27. D. S. Elliot, R. Rajarshi, S. J. Smith, “Extracavity laser band-shape and bandwidth modification,” Phys. Rev. A 26, 12–18 (1982).
    [CrossRef]
  28. K. Liu, M. G. Littman, “Novel geometry for single-mode scanning of tunable lasers,” Opt. Lett. 6, 117–118 (1981).
    [CrossRef] [PubMed]
  29. J. Mellis, S. A. Al-Chalabi, K. H. Cameron, R. Wyatt, J. C. Regnault, W. J. Devlin, M. C. Brain, “Miniature packaged external-cavity semiconductor laser with 50 GHz continuous electrical tuning range,” Electron. Lett. 24, 988–989 (1988).
    [CrossRef]

2001 (4)

J. Wang, S. T. Sanders, J. B. Jeffries, R. K. Hanson, “Oxygen measurements at high pressures with vertical cavity surface-emitting lasers,” Appl. Phys. B 72, 865–872 (2001).
[CrossRef]

C. J. Hawthorn, K. P. Weber, R. E. Scholten, “Littrow configuration tunable external cavity diode laser with fixed direction output beam,” Rev. Sci. Instrum. 72, 4477–4479 (2001).
[CrossRef]

H. Luo, C. Peng, H. Q. Le, S. S. Pei, W.-Y. Hwang, B. Ishaug, J. Um, J. N. Baillargeon, C.-H. Lin, “Grating-tuned external-cavity quantum-cascade semiconductor lasers,” Appl. Phys. Lett. 78, 2834–2836 (2001).
[CrossRef]

C. R. Webster, G. J. Flesch, D. C. Scott, J. E. Swanson, R. D. May, W. S. Woodward, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutschinson, A. Y. Cho, “Quantum-cascade laser measurements of stratospheric methane and nitrous oxide,” Appl. Opt. 40, 321–326 (2001).
[CrossRef]

2000 (6)

A. Andalkar, S. K. Lamoreux, R. B. Warrington, “Improved external cavity design for cesium D1 (894 nm) diode laser,” Rev. Sci. Instrum. 71, 4029–4031 (2000).
[CrossRef]

J. Lazar, O. Cip, P. Jedlicka, “Tunable extended-cavity diode laser stabilized on iodine at λ = 633 nm,” Appl. Opt. 39, 3085–3088 (2000).
[CrossRef]

A. A. Kosterev, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutschinson, A. Y. Cho, “Trace-gas detection in ambient air with a thermoelectrically cooled, pulsed quantum-cascade distributed feedback laser,” Appl. Opt. 39, 6866–6872 (2000).
[CrossRef]

M. Merimaa, H. Talvitie, P. Laakkonen, M. Kuittinen, I. Tittonen, E. Ikonen, “Compact external-cavity diode laser with a novel transmission geometry,” Opt. Commun. 174, 175–180 (2000).
[CrossRef]

H. Leinen, D. Glässner, H. Metcalf, R. Wynands, D. Haubrich, D. Meschede, “GaN blue diode lasers: spectroscopist’s view,” Appl. Phys. B 70, 567–571 (2000).
[CrossRef]

C. Affolderbach, A. Nagel, S. Knappe, D. Jung, R. Wiedenmann, R. Wynands, “Nonlinear spectroscopy with a vertical-cavity surface-emitting laser (VCSEL),” Appl. Phys. B 70, 407–413 (2000).
[CrossRef]

1998 (4)

M. G. Allen, “Diode laser absorption sensors for gas-dynamic and combustion flows,” Meas. Sci. Technol. 9, 545–562 (1998).
[CrossRef]

A. S. Arnold, J. S. Wilson, M. G. Boshier, “A simple extended-cavity diode laser,” Rev. Sci. Instrum. 69, 1236–1239 (1998).
[CrossRef]

J. Köngäs, P. Savolainen, M. Toivonen, S. Orsila, P. Corvini, M. Jansen, R. F. Nabiev, M. Pessa, “High-efficiency GaInP–AlGaInP ridge waveguide single-mode lasers operating at 650 nm,” IEEE Photon. Technol. Lett. 10, 1533–1535 (1998).
[CrossRef]

S. W. Sharpe, J. F. Kelly, J. S. Hartman, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, “High-resolution (Doppler-limited) spectroscopy using quantum-cascade distributed-feedback lasers,” Opt. Lett. 23, 1396–1398 (1998).
[CrossRef]

1997 (2)

D. C. Hovde, C. A. Parsons, “Wavelength modulation detection of water vapor with a vertical cavity surface-emitting laser,” Appl. Opt. 36, 1135–1138 (1997).
[CrossRef] [PubMed]

H. Talvitie, A. Pietiläinen, H. Ludvigsen, E. Ikonen, “Passive frequency and intensity stabilization of extended-cavity diode lasers,” Rev. Sci. Instrum. 68, 1–7 (1997).
[CrossRef]

1995 (1)

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, T. W. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117, 541–549 (1995).
[CrossRef]

1994 (1)

1992 (1)

K. B. MacAdam, A. Steinbach, C. Wieman, “A narrow-band tunable diode laser system with grating feedback, and saturated absorption spectrometer for Cs and Rb,” Am. J. Phys. 60, 1098–1111 (1992).
[CrossRef]

1991 (4)

C. E. Wieman, L. Hollberg, “Using diode lasers in atomic physics,” Rev. Sci. Instrum. 62, 1–20 (1991).
[CrossRef]

M. G. Boshier, D. Berkeland, E. A. Hinds, V. Sandoghdar, “External-cavity frequency-stabilization of visible and infrared semiconductor lasers for high resolution spectroscopy,” Opt. Commun. 85, 355–359 (1991).
[CrossRef]

C. M. Miller, “Intensity modulation and noise characterization of high-speed semiconductor lasers,” IEEE Lightwave Telecommun. Syst. 2, 44–53 (1991).

K. C. Harvey, C. J. Myatt, “External-cavity diode laser using a grazing-incidence diffraction grating,” Opt. Lett. 16, 910–912 (1991).
[CrossRef] [PubMed]

1988 (1)

J. Mellis, S. A. Al-Chalabi, K. H. Cameron, R. Wyatt, J. C. Regnault, W. J. Devlin, M. C. Brain, “Miniature packaged external-cavity semiconductor laser with 50 GHz continuous electrical tuning range,” Electron. Lett. 24, 988–989 (1988).
[CrossRef]

1982 (2)

C. H. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. of Quantum Electron. 18, 259–264 (1982).
[CrossRef]

D. S. Elliot, R. Rajarshi, S. J. Smith, “Extracavity laser band-shape and bandwidth modification,” Phys. Rev. A 26, 12–18 (1982).
[CrossRef]

1981 (1)

Adams, A.

Affolderbach, C.

C. Affolderbach, A. Nagel, S. Knappe, D. Jung, R. Wiedenmann, R. Wynands, “Nonlinear spectroscopy with a vertical-cavity surface-emitting laser (VCSEL),” Appl. Phys. B 70, 407–413 (2000).
[CrossRef]

Agrawal, G.

G. Agrawal, Semiconductor Lasers, 2nd ed. (Van Nostrand Reinhold, New York, 1993).

Al-Chalabi, S. A.

J. Mellis, S. A. Al-Chalabi, K. H. Cameron, R. Wyatt, J. C. Regnault, W. J. Devlin, M. C. Brain, “Miniature packaged external-cavity semiconductor laser with 50 GHz continuous electrical tuning range,” Electron. Lett. 24, 988–989 (1988).
[CrossRef]

Allen, M. G.

M. G. Allen, “Diode laser absorption sensors for gas-dynamic and combustion flows,” Meas. Sci. Technol. 9, 545–562 (1998).
[CrossRef]

Andalkar, A.

A. Andalkar, S. K. Lamoreux, R. B. Warrington, “Improved external cavity design for cesium D1 (894 nm) diode laser,” Rev. Sci. Instrum. 71, 4029–4031 (2000).
[CrossRef]

Arnold, A. S.

A. S. Arnold, J. S. Wilson, M. G. Boshier, “A simple extended-cavity diode laser,” Rev. Sci. Instrum. 69, 1236–1239 (1998).
[CrossRef]

Baillargeon, J. N.

Berkeland, D.

M. G. Boshier, D. Berkeland, E. A. Hinds, V. Sandoghdar, “External-cavity frequency-stabilization of visible and infrared semiconductor lasers for high resolution spectroscopy,” Opt. Commun. 85, 355–359 (1991).
[CrossRef]

Boshier, M. G.

A. S. Arnold, J. S. Wilson, M. G. Boshier, “A simple extended-cavity diode laser,” Rev. Sci. Instrum. 69, 1236–1239 (1998).
[CrossRef]

M. G. Boshier, D. Berkeland, E. A. Hinds, V. Sandoghdar, “External-cavity frequency-stabilization of visible and infrared semiconductor lasers for high resolution spectroscopy,” Opt. Commun. 85, 355–359 (1991).
[CrossRef]

Brain, M. C.

J. Mellis, S. A. Al-Chalabi, K. H. Cameron, R. Wyatt, J. C. Regnault, W. J. Devlin, M. C. Brain, “Miniature packaged external-cavity semiconductor laser with 50 GHz continuous electrical tuning range,” Electron. Lett. 24, 988–989 (1988).
[CrossRef]

Cameron, K. H.

J. Mellis, S. A. Al-Chalabi, K. H. Cameron, R. Wyatt, J. C. Regnault, W. J. Devlin, M. C. Brain, “Miniature packaged external-cavity semiconductor laser with 50 GHz continuous electrical tuning range,” Electron. Lett. 24, 988–989 (1988).
[CrossRef]

Capasso, F.

Cho, A. Y.

Cip, O.

Corvini, P.

J. Köngäs, P. Savolainen, M. Toivonen, S. Orsila, P. Corvini, M. Jansen, R. F. Nabiev, M. Pessa, “High-efficiency GaInP–AlGaInP ridge waveguide single-mode lasers operating at 650 nm,” IEEE Photon. Technol. Lett. 10, 1533–1535 (1998).
[CrossRef]

Devlin, W. J.

J. Mellis, S. A. Al-Chalabi, K. H. Cameron, R. Wyatt, J. C. Regnault, W. J. Devlin, M. C. Brain, “Miniature packaged external-cavity semiconductor laser with 50 GHz continuous electrical tuning range,” Electron. Lett. 24, 988–989 (1988).
[CrossRef]

Elliot, D. S.

D. S. Elliot, R. Rajarshi, S. J. Smith, “Extracavity laser band-shape and bandwidth modification,” Phys. Rev. A 26, 12–18 (1982).
[CrossRef]

Esslinger, T.

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, T. W. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117, 541–549 (1995).
[CrossRef]

Flesch, G. J.

Glässner, D.

H. Leinen, D. Glässner, H. Metcalf, R. Wynands, D. Haubrich, D. Meschede, “GaN blue diode lasers: spectroscopist’s view,” Appl. Phys. B 70, 567–571 (2000).
[CrossRef]

Gmachl, C.

Hänsch, T. W.

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, T. W. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117, 541–549 (1995).
[CrossRef]

Hanson, R. K.

J. Wang, S. T. Sanders, J. B. Jeffries, R. K. Hanson, “Oxygen measurements at high pressures with vertical cavity surface-emitting lasers,” Appl. Phys. B 72, 865–872 (2001).
[CrossRef]

Hartman, J. S.

Harvey, K. C.

Haubrich, D.

H. Leinen, D. Glässner, H. Metcalf, R. Wynands, D. Haubrich, D. Meschede, “GaN blue diode lasers: spectroscopist’s view,” Appl. Phys. B 70, 567–571 (2000).
[CrossRef]

Hawthorn, C. J.

C. J. Hawthorn, K. P. Weber, R. E. Scholten, “Littrow configuration tunable external cavity diode laser with fixed direction output beam,” Rev. Sci. Instrum. 72, 4477–4479 (2001).
[CrossRef]

Hemmerich, A.

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, T. W. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117, 541–549 (1995).
[CrossRef]

Henry, C. H.

C. H. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. of Quantum Electron. 18, 259–264 (1982).
[CrossRef]

Hinds, E. A.

M. G. Boshier, D. Berkeland, E. A. Hinds, V. Sandoghdar, “External-cavity frequency-stabilization of visible and infrared semiconductor lasers for high resolution spectroscopy,” Opt. Commun. 85, 355–359 (1991).
[CrossRef]

Hollberg, L.

C. E. Wieman, L. Hollberg, “Using diode lasers in atomic physics,” Rev. Sci. Instrum. 62, 1–20 (1991).
[CrossRef]

Hovde, D. C.

Hutschinson, A. L.

Hwang, W.-Y.

H. Luo, C. Peng, H. Q. Le, S. S. Pei, W.-Y. Hwang, B. Ishaug, J. Um, J. N. Baillargeon, C.-H. Lin, “Grating-tuned external-cavity quantum-cascade semiconductor lasers,” Appl. Phys. Lett. 78, 2834–2836 (2001).
[CrossRef]

Ikonen, E.

M. Merimaa, H. Talvitie, P. Laakkonen, M. Kuittinen, I. Tittonen, E. Ikonen, “Compact external-cavity diode laser with a novel transmission geometry,” Opt. Commun. 174, 175–180 (2000).
[CrossRef]

H. Talvitie, A. Pietiläinen, H. Ludvigsen, E. Ikonen, “Passive frequency and intensity stabilization of extended-cavity diode lasers,” Rev. Sci. Instrum. 68, 1–7 (1997).
[CrossRef]

Ishaug, B.

H. Luo, C. Peng, H. Q. Le, S. S. Pei, W.-Y. Hwang, B. Ishaug, J. Um, J. N. Baillargeon, C.-H. Lin, “Grating-tuned external-cavity quantum-cascade semiconductor lasers,” Appl. Phys. Lett. 78, 2834–2836 (2001).
[CrossRef]

Jansen, M.

J. Köngäs, P. Savolainen, M. Toivonen, S. Orsila, P. Corvini, M. Jansen, R. F. Nabiev, M. Pessa, “High-efficiency GaInP–AlGaInP ridge waveguide single-mode lasers operating at 650 nm,” IEEE Photon. Technol. Lett. 10, 1533–1535 (1998).
[CrossRef]

Jedlicka, P.

Jeffries, J. B.

J. Wang, S. T. Sanders, J. B. Jeffries, R. K. Hanson, “Oxygen measurements at high pressures with vertical cavity surface-emitting lasers,” Appl. Phys. B 72, 865–872 (2001).
[CrossRef]

Jung, D.

C. Affolderbach, A. Nagel, S. Knappe, D. Jung, R. Wiedenmann, R. Wynands, “Nonlinear spectroscopy with a vertical-cavity surface-emitting laser (VCSEL),” Appl. Phys. B 70, 407–413 (2000).
[CrossRef]

Kelly, J. F.

Knappe, S.

C. Affolderbach, A. Nagel, S. Knappe, D. Jung, R. Wiedenmann, R. Wynands, “Nonlinear spectroscopy with a vertical-cavity surface-emitting laser (VCSEL),” Appl. Phys. B 70, 407–413 (2000).
[CrossRef]

Köngäs, J.

J. Köngäs, P. Savolainen, M. Toivonen, S. Orsila, P. Corvini, M. Jansen, R. F. Nabiev, M. Pessa, “High-efficiency GaInP–AlGaInP ridge waveguide single-mode lasers operating at 650 nm,” IEEE Photon. Technol. Lett. 10, 1533–1535 (1998).
[CrossRef]

König, W.

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, T. W. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117, 541–549 (1995).
[CrossRef]

Kosterev, A. A.

Kuittinen, M.

M. Merimaa, H. Talvitie, P. Laakkonen, M. Kuittinen, I. Tittonen, E. Ikonen, “Compact external-cavity diode laser with a novel transmission geometry,” Opt. Commun. 174, 175–180 (2000).
[CrossRef]

Laakkonen, P.

M. Merimaa, H. Talvitie, P. Laakkonen, M. Kuittinen, I. Tittonen, E. Ikonen, “Compact external-cavity diode laser with a novel transmission geometry,” Opt. Commun. 174, 175–180 (2000).
[CrossRef]

Lamoreux, S. K.

A. Andalkar, S. K. Lamoreux, R. B. Warrington, “Improved external cavity design for cesium D1 (894 nm) diode laser,” Rev. Sci. Instrum. 71, 4029–4031 (2000).
[CrossRef]

Lazar, J.

Le, H. Q.

H. Luo, C. Peng, H. Q. Le, S. S. Pei, W.-Y. Hwang, B. Ishaug, J. Um, J. N. Baillargeon, C.-H. Lin, “Grating-tuned external-cavity quantum-cascade semiconductor lasers,” Appl. Phys. Lett. 78, 2834–2836 (2001).
[CrossRef]

Leinen, H.

H. Leinen, D. Glässner, H. Metcalf, R. Wynands, D. Haubrich, D. Meschede, “GaN blue diode lasers: spectroscopist’s view,” Appl. Phys. B 70, 567–571 (2000).
[CrossRef]

Lin, C.-H.

H. Luo, C. Peng, H. Q. Le, S. S. Pei, W.-Y. Hwang, B. Ishaug, J. Um, J. N. Baillargeon, C.-H. Lin, “Grating-tuned external-cavity quantum-cascade semiconductor lasers,” Appl. Phys. Lett. 78, 2834–2836 (2001).
[CrossRef]

Littman, M. G.

Liu, K.

Ludvigsen, H.

H. Talvitie, A. Pietiläinen, H. Ludvigsen, E. Ikonen, “Passive frequency and intensity stabilization of extended-cavity diode lasers,” Rev. Sci. Instrum. 68, 1–7 (1997).
[CrossRef]

Luo, H.

H. Luo, C. Peng, H. Q. Le, S. S. Pei, W.-Y. Hwang, B. Ishaug, J. Um, J. N. Baillargeon, C.-H. Lin, “Grating-tuned external-cavity quantum-cascade semiconductor lasers,” Appl. Phys. Lett. 78, 2834–2836 (2001).
[CrossRef]

MacAdam, K. B.

K. B. MacAdam, A. Steinbach, C. Wieman, “A narrow-band tunable diode laser system with grating feedback, and saturated absorption spectrometer for Cs and Rb,” Am. J. Phys. 60, 1098–1111 (1992).
[CrossRef]

May, R. D.

Mellis, J.

J. Mellis, S. A. Al-Chalabi, K. H. Cameron, R. Wyatt, J. C. Regnault, W. J. Devlin, M. C. Brain, “Miniature packaged external-cavity semiconductor laser with 50 GHz continuous electrical tuning range,” Electron. Lett. 24, 988–989 (1988).
[CrossRef]

Menhart, S.

Merimaa, M.

M. Merimaa, H. Talvitie, P. Laakkonen, M. Kuittinen, I. Tittonen, E. Ikonen, “Compact external-cavity diode laser with a novel transmission geometry,” Opt. Commun. 174, 175–180 (2000).
[CrossRef]

Meschede, D.

H. Leinen, D. Glässner, H. Metcalf, R. Wynands, D. Haubrich, D. Meschede, “GaN blue diode lasers: spectroscopist’s view,” Appl. Phys. B 70, 567–571 (2000).
[CrossRef]

Metcalf, H.

H. Leinen, D. Glässner, H. Metcalf, R. Wynands, D. Haubrich, D. Meschede, “GaN blue diode lasers: spectroscopist’s view,” Appl. Phys. B 70, 567–571 (2000).
[CrossRef]

Miller, C. M.

C. M. Miller, “Intensity modulation and noise characterization of high-speed semiconductor lasers,” IEEE Lightwave Telecommun. Syst. 2, 44–53 (1991).

Myatt, C. J.

Nabiev, R. F.

J. Köngäs, P. Savolainen, M. Toivonen, S. Orsila, P. Corvini, M. Jansen, R. F. Nabiev, M. Pessa, “High-efficiency GaInP–AlGaInP ridge waveguide single-mode lasers operating at 650 nm,” IEEE Photon. Technol. Lett. 10, 1533–1535 (1998).
[CrossRef]

Nagel, A.

C. Affolderbach, A. Nagel, S. Knappe, D. Jung, R. Wiedenmann, R. Wynands, “Nonlinear spectroscopy with a vertical-cavity surface-emitting laser (VCSEL),” Appl. Phys. B 70, 407–413 (2000).
[CrossRef]

Orsila, S.

J. Köngäs, P. Savolainen, M. Toivonen, S. Orsila, P. Corvini, M. Jansen, R. F. Nabiev, M. Pessa, “High-efficiency GaInP–AlGaInP ridge waveguide single-mode lasers operating at 650 nm,” IEEE Photon. Technol. Lett. 10, 1533–1535 (1998).
[CrossRef]

Parsons, C. A.

Pei, S. S.

H. Luo, C. Peng, H. Q. Le, S. S. Pei, W.-Y. Hwang, B. Ishaug, J. Um, J. N. Baillargeon, C.-H. Lin, “Grating-tuned external-cavity quantum-cascade semiconductor lasers,” Appl. Phys. Lett. 78, 2834–2836 (2001).
[CrossRef]

Peng, C.

H. Luo, C. Peng, H. Q. Le, S. S. Pei, W.-Y. Hwang, B. Ishaug, J. Um, J. N. Baillargeon, C.-H. Lin, “Grating-tuned external-cavity quantum-cascade semiconductor lasers,” Appl. Phys. Lett. 78, 2834–2836 (2001).
[CrossRef]

Pessa, M.

J. Köngäs, P. Savolainen, M. Toivonen, S. Orsila, P. Corvini, M. Jansen, R. F. Nabiev, M. Pessa, “High-efficiency GaInP–AlGaInP ridge waveguide single-mode lasers operating at 650 nm,” IEEE Photon. Technol. Lett. 10, 1533–1535 (1998).
[CrossRef]

Pietiläinen, A.

H. Talvitie, A. Pietiläinen, H. Ludvigsen, E. Ikonen, “Passive frequency and intensity stabilization of extended-cavity diode lasers,” Rev. Sci. Instrum. 68, 1–7 (1997).
[CrossRef]

Rajarshi, R.

D. S. Elliot, R. Rajarshi, S. J. Smith, “Extracavity laser band-shape and bandwidth modification,” Phys. Rev. A 26, 12–18 (1982).
[CrossRef]

Regnault, J. C.

J. Mellis, S. A. Al-Chalabi, K. H. Cameron, R. Wyatt, J. C. Regnault, W. J. Devlin, M. C. Brain, “Miniature packaged external-cavity semiconductor laser with 50 GHz continuous electrical tuning range,” Electron. Lett. 24, 988–989 (1988).
[CrossRef]

Ricci, L.

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, T. W. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117, 541–549 (1995).
[CrossRef]

Sanders, S. T.

J. Wang, S. T. Sanders, J. B. Jeffries, R. K. Hanson, “Oxygen measurements at high pressures with vertical cavity surface-emitting lasers,” Appl. Phys. B 72, 865–872 (2001).
[CrossRef]

Sandoghdar, V.

M. G. Boshier, D. Berkeland, E. A. Hinds, V. Sandoghdar, “External-cavity frequency-stabilization of visible and infrared semiconductor lasers for high resolution spectroscopy,” Opt. Commun. 85, 355–359 (1991).
[CrossRef]

Savolainen, P.

J. Köngäs, P. Savolainen, M. Toivonen, S. Orsila, P. Corvini, M. Jansen, R. F. Nabiev, M. Pessa, “High-efficiency GaInP–AlGaInP ridge waveguide single-mode lasers operating at 650 nm,” IEEE Photon. Technol. Lett. 10, 1533–1535 (1998).
[CrossRef]

Scholten, R. E.

C. J. Hawthorn, K. P. Weber, R. E. Scholten, “Littrow configuration tunable external cavity diode laser with fixed direction output beam,” Rev. Sci. Instrum. 72, 4477–4479 (2001).
[CrossRef]

Scott, D. C.

Sharpe, S. W.

Sivco, D. L.

Smith, S. J.

D. S. Elliot, R. Rajarshi, S. J. Smith, “Extracavity laser band-shape and bandwidth modification,” Phys. Rev. A 26, 12–18 (1982).
[CrossRef]

Steinbach, A.

K. B. MacAdam, A. Steinbach, C. Wieman, “A narrow-band tunable diode laser system with grating feedback, and saturated absorption spectrometer for Cs and Rb,” Am. J. Phys. 60, 1098–1111 (1992).
[CrossRef]

Sun, H.

Swanson, J. E.

Talvitie, H.

M. Merimaa, H. Talvitie, P. Laakkonen, M. Kuittinen, I. Tittonen, E. Ikonen, “Compact external-cavity diode laser with a novel transmission geometry,” Opt. Commun. 174, 175–180 (2000).
[CrossRef]

H. Talvitie, A. Pietiläinen, H. Ludvigsen, E. Ikonen, “Passive frequency and intensity stabilization of extended-cavity diode lasers,” Rev. Sci. Instrum. 68, 1–7 (1997).
[CrossRef]

Tittel, F. K.

Tittonen, I.

M. Merimaa, H. Talvitie, P. Laakkonen, M. Kuittinen, I. Tittonen, E. Ikonen, “Compact external-cavity diode laser with a novel transmission geometry,” Opt. Commun. 174, 175–180 (2000).
[CrossRef]

Toivonen, M.

J. Köngäs, P. Savolainen, M. Toivonen, S. Orsila, P. Corvini, M. Jansen, R. F. Nabiev, M. Pessa, “High-efficiency GaInP–AlGaInP ridge waveguide single-mode lasers operating at 650 nm,” IEEE Photon. Technol. Lett. 10, 1533–1535 (1998).
[CrossRef]

Turunen, J.

J. Turunen, “Diffraction theory of microrelief gratings,” in Micro Optics: Elements, Systems and Applications, H. P. Herzig, ed. (Taylor & Francis, London, 1997), pp. 31–52.

Um, J.

H. Luo, C. Peng, H. Q. Le, S. S. Pei, W.-Y. Hwang, B. Ishaug, J. Um, J. N. Baillargeon, C.-H. Lin, “Grating-tuned external-cavity quantum-cascade semiconductor lasers,” Appl. Phys. Lett. 78, 2834–2836 (2001).
[CrossRef]

Vuletic, V.

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, T. W. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117, 541–549 (1995).
[CrossRef]

Wang, J.

J. Wang, S. T. Sanders, J. B. Jeffries, R. K. Hanson, “Oxygen measurements at high pressures with vertical cavity surface-emitting lasers,” Appl. Phys. B 72, 865–872 (2001).
[CrossRef]

Warrington, R. B.

A. Andalkar, S. K. Lamoreux, R. B. Warrington, “Improved external cavity design for cesium D1 (894 nm) diode laser,” Rev. Sci. Instrum. 71, 4029–4031 (2000).
[CrossRef]

Weber, K. P.

C. J. Hawthorn, K. P. Weber, R. E. Scholten, “Littrow configuration tunable external cavity diode laser with fixed direction output beam,” Rev. Sci. Instrum. 72, 4477–4479 (2001).
[CrossRef]

Webster, C. R.

Weidemüller, M.

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, T. W. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117, 541–549 (1995).
[CrossRef]

Wiedenmann, R.

C. Affolderbach, A. Nagel, S. Knappe, D. Jung, R. Wiedenmann, R. Wynands, “Nonlinear spectroscopy with a vertical-cavity surface-emitting laser (VCSEL),” Appl. Phys. B 70, 407–413 (2000).
[CrossRef]

Wieman, C.

K. B. MacAdam, A. Steinbach, C. Wieman, “A narrow-band tunable diode laser system with grating feedback, and saturated absorption spectrometer for Cs and Rb,” Am. J. Phys. 60, 1098–1111 (1992).
[CrossRef]

Wieman, C. E.

C. E. Wieman, L. Hollberg, “Using diode lasers in atomic physics,” Rev. Sci. Instrum. 62, 1–20 (1991).
[CrossRef]

Wilson, J. S.

A. S. Arnold, J. S. Wilson, M. G. Boshier, “A simple extended-cavity diode laser,” Rev. Sci. Instrum. 69, 1236–1239 (1998).
[CrossRef]

Woodward, W. S.

Wyatt, R.

J. Mellis, S. A. Al-Chalabi, K. H. Cameron, R. Wyatt, J. C. Regnault, W. J. Devlin, M. C. Brain, “Miniature packaged external-cavity semiconductor laser with 50 GHz continuous electrical tuning range,” Electron. Lett. 24, 988–989 (1988).
[CrossRef]

Wynands, R.

H. Leinen, D. Glässner, H. Metcalf, R. Wynands, D. Haubrich, D. Meschede, “GaN blue diode lasers: spectroscopist’s view,” Appl. Phys. B 70, 567–571 (2000).
[CrossRef]

C. Affolderbach, A. Nagel, S. Knappe, D. Jung, R. Wiedenmann, R. Wynands, “Nonlinear spectroscopy with a vertical-cavity surface-emitting laser (VCSEL),” Appl. Phys. B 70, 407–413 (2000).
[CrossRef]

Zimmermann, C.

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, T. W. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117, 541–549 (1995).
[CrossRef]

Am. J. Phys. (1)

K. B. MacAdam, A. Steinbach, C. Wieman, “A narrow-band tunable diode laser system with grating feedback, and saturated absorption spectrometer for Cs and Rb,” Am. J. Phys. 60, 1098–1111 (1992).
[CrossRef]

Appl. Opt. (5)

Appl. Phys. B (3)

H. Leinen, D. Glässner, H. Metcalf, R. Wynands, D. Haubrich, D. Meschede, “GaN blue diode lasers: spectroscopist’s view,” Appl. Phys. B 70, 567–571 (2000).
[CrossRef]

C. Affolderbach, A. Nagel, S. Knappe, D. Jung, R. Wiedenmann, R. Wynands, “Nonlinear spectroscopy with a vertical-cavity surface-emitting laser (VCSEL),” Appl. Phys. B 70, 407–413 (2000).
[CrossRef]

J. Wang, S. T. Sanders, J. B. Jeffries, R. K. Hanson, “Oxygen measurements at high pressures with vertical cavity surface-emitting lasers,” Appl. Phys. B 72, 865–872 (2001).
[CrossRef]

Appl. Phys. Lett. (1)

H. Luo, C. Peng, H. Q. Le, S. S. Pei, W.-Y. Hwang, B. Ishaug, J. Um, J. N. Baillargeon, C.-H. Lin, “Grating-tuned external-cavity quantum-cascade semiconductor lasers,” Appl. Phys. Lett. 78, 2834–2836 (2001).
[CrossRef]

Electron. Lett. (1)

J. Mellis, S. A. Al-Chalabi, K. H. Cameron, R. Wyatt, J. C. Regnault, W. J. Devlin, M. C. Brain, “Miniature packaged external-cavity semiconductor laser with 50 GHz continuous electrical tuning range,” Electron. Lett. 24, 988–989 (1988).
[CrossRef]

IEEE J. of Quantum Electron. (1)

C. H. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. of Quantum Electron. 18, 259–264 (1982).
[CrossRef]

IEEE Lightwave Telecommun. Syst. (1)

C. M. Miller, “Intensity modulation and noise characterization of high-speed semiconductor lasers,” IEEE Lightwave Telecommun. Syst. 2, 44–53 (1991).

IEEE Photon. Technol. Lett. (1)

J. Köngäs, P. Savolainen, M. Toivonen, S. Orsila, P. Corvini, M. Jansen, R. F. Nabiev, M. Pessa, “High-efficiency GaInP–AlGaInP ridge waveguide single-mode lasers operating at 650 nm,” IEEE Photon. Technol. Lett. 10, 1533–1535 (1998).
[CrossRef]

Meas. Sci. Technol. (1)

M. G. Allen, “Diode laser absorption sensors for gas-dynamic and combustion flows,” Meas. Sci. Technol. 9, 545–562 (1998).
[CrossRef]

Opt. Commun. (3)

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, T. W. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117, 541–549 (1995).
[CrossRef]

M. G. Boshier, D. Berkeland, E. A. Hinds, V. Sandoghdar, “External-cavity frequency-stabilization of visible and infrared semiconductor lasers for high resolution spectroscopy,” Opt. Commun. 85, 355–359 (1991).
[CrossRef]

M. Merimaa, H. Talvitie, P. Laakkonen, M. Kuittinen, I. Tittonen, E. Ikonen, “Compact external-cavity diode laser with a novel transmission geometry,” Opt. Commun. 174, 175–180 (2000).
[CrossRef]

Opt. Lett. (3)

Phys. Rev. A (1)

D. S. Elliot, R. Rajarshi, S. J. Smith, “Extracavity laser band-shape and bandwidth modification,” Phys. Rev. A 26, 12–18 (1982).
[CrossRef]

Rev. Sci. Instrum. (5)

C. J. Hawthorn, K. P. Weber, R. E. Scholten, “Littrow configuration tunable external cavity diode laser with fixed direction output beam,” Rev. Sci. Instrum. 72, 4477–4479 (2001).
[CrossRef]

H. Talvitie, A. Pietiläinen, H. Ludvigsen, E. Ikonen, “Passive frequency and intensity stabilization of extended-cavity diode lasers,” Rev. Sci. Instrum. 68, 1–7 (1997).
[CrossRef]

A. S. Arnold, J. S. Wilson, M. G. Boshier, “A simple extended-cavity diode laser,” Rev. Sci. Instrum. 69, 1236–1239 (1998).
[CrossRef]

A. Andalkar, S. K. Lamoreux, R. B. Warrington, “Improved external cavity design for cesium D1 (894 nm) diode laser,” Rev. Sci. Instrum. 71, 4029–4031 (2000).
[CrossRef]

C. E. Wieman, L. Hollberg, “Using diode lasers in atomic physics,” Rev. Sci. Instrum. 62, 1–20 (1991).
[CrossRef]

Other (2)

G. Agrawal, Semiconductor Lasers, 2nd ed. (Van Nostrand Reinhold, New York, 1993).

J. Turunen, “Diffraction theory of microrelief gratings,” in Micro Optics: Elements, Systems and Applications, H. P. Herzig, ed. (Taylor & Francis, London, 1997), pp. 31–52.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic drawing of the ECDL. AR, antireflection.

Fig. 2
Fig. 2

Sectional view of the ECDL assembly: 1, XY translator; 2, kinematic mirror mount; 3, Z translator; 4, thermoelectric cooler; 5, transmission grating; 6, carbon fiber rods; 7, laser diode; 8, collimating lens; 9, piezoelectric transducer; 10, half-wave plate; 11, air-cooled heat sink.

Fig. 3
Fig. 3

Notation for grating design parameters.

Fig. 4
Fig. 4

cw optical output power of the diode laser before deposition of the AR coating, and of the ECDL. Two different diode laser chips were used in the ECDL: the chips 5 and 7 have residual reflectivities of 4 × 10-4 and 2 × 10-4, respectively. The heat-sink temperature was stabilized at 20 °C.

Fig. 5
Fig. 5

Relative intensity noise of the ECDL. The apparent discontinuity at 10 kHz is due to the fact that the whole spectrum was measured in two parts. Inset, RIN power dependence at three different frequencies. The line shows the theoretical P -3 slope.

Fig. 6
Fig. 6

Averaged intensity spectra of the diode laser and the ECDL measured with a diffraction grating optical spectrum analyzer. The linewidths are limited by the instrument’s resolution (0.05 nm).

Fig. 7
Fig. 7

Spectra of the solitary diode laser and the ECDL measured with a FPI. The ECDL spectrum is shown schematically on the same scale. Inset, ECDL spectrum measured with a higher-resolution FPI. The instrument-limited linewidth is 12 MHz.

Fig. 8
Fig. 8

Frequency noise spectral density of the ECDL. In this measurement the ECDL was driven from a battery to reduce 1/f noise.

Fig. 9
Fig. 9

Short-term practical linewidth. Inset, the amplitude distribution of the data sample and a Gaussian fit.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δν=πSFMf.

Metrics